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Some aspects of the fluid mechanics of liquid penetrant testing are considered. Penetration is represented by

surface tension driven flow into defects of small defect width to depth ratio. Defect width is chosen so that both

gravitational and non-continuum effects may be ignored. Penetration time is found to follow a Rideal-Washburn

relation, in which

(i

t ~ -
YR cos 0

where ¢ is time, [ defect depth, @ the dynamic viscosity, y the surface tension, R the defect width and 6 the

contact angle. The proportionality constant, however, is shown to be strongly dependent on defect geometry and

penetrant application procedure. The effect of slight fluid elasticity is shown to be negligible.
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1. Introduction

Liquid penetrants are frequently employed to locate micro-
scopic (surface-accessible) defects in solid, non-porous,

materials. The basic technique involves [1, 2, 3]’

(a) cleaning the material to be tested

(b) applying the penetrant

(¢) removal of excess penetrant

(d) application of a developer (e.g.. an absorbent coat-
ing)

(e) visual inspection, and

(f) post inspection cleaning.

Success of the process depends on the ability of surface
tension forces to draw the liquid into surface-accessible
defects. In this report the identification and quantification of
the factors which affect the extent and rate of penetration
(and the somewhat analogous problem of rate of development)

are considered.
2. Scope of the Investigation
We consider some aspects of the continuum fluid mechan-
ics of surface tension driven flows. We further restrict our

flow situations to cases in which

(a) the minimum defect dimension is much larger than
the intermolecular distance of the liquid,

S

! Numbers enclosed in square brackets identify references.

(b) the rate of penetration is independent of the orienta-
tion of the defect, and
(¢) the surface tension is a function of the substances

involved and temperature only.

Restrictions @ and b can be used to define a range of
characteristic defect dimensions. For liquids composed of

simple molecules, we may estimate molecular spacing [4] as
N = 8 2% 0 (1)

Happel and Brenner [5], report continuum flows, such as
Poiseuille flow, persist for Knudsen numbers (ratio of molec-
ular spacing to some characteristic flow dimension (say, R)
as high as 0.01. With consideration of eq (1) then, restriction
a implies that

R=35X10%m (2)

Restriction b governs the largest defect size of interest. It
requires that surface tension effects based on the minimum
defect size be much larger than gravitational effects based on

a defect depth (/). Mathematically

y
e l, 3
R PE (3)

where 1y is the surface tension, p is the density, and g is the
acceleration of gravity. For an air-water interface, interpret-
ing “>>" as “100X”, and with [ = 100R, this implies that
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R =27 pm (4)
In what follows then we shall deal with defect sizes of roughly
1072 wm to 10?> wm. Gravitational and non-continuum effects
are ignored. Note further that our interpretation of eq (3)
requires

R
7<<1

(5)
Restriction ¢ removes the possibility that the surface tension
might vary in some manner with the flow. We shall indicate
where this assumption, though employed, is probably inap-
plicable and more detailed investigation warranted.

3. Fundamentals

The salient features of surface tension driven flow into
defects may be illustrated by flow through an open ended
capillary tube,? as shown in figure 1. It is a straightforward
exercise to show, for steady axisymmetric flow at finite
Reynolds number,?® that in the limit as R/l — 0, the
equations of motion become to order 1,

d0%u

ar?

ap

10u
+> = (6)
r or 0z

Penetrant

~— 2R 7

]

3

FiGcure 1.

Capillary flow of penetrant in a small tube.

2 That is, for R/l — 0, we initially treat the closed downstream end of the defect as
if it were at ¢ = %, and had little effect. A more realistic approach, which accounts for
the possibility of entrapped air is taken up in a later section.

3 The same result could be reached by allowing Re = UR/V — 0, where U is mean
velocity and v kinematic viscosity. However this is not generally as good an
approximation as R/l — 0 for the range of parameters considered here, and in view of
equation 5 it is unnecessary.

Equation 6 is of course simply Poiseuille flow with solution

GR?
m==——=(1l = P2 (7)
4
where
ap
E= === 8
Py (8)

In eqs (6), (7) and (8), u is the axial velocity, w the dynamic

viscosity, r the radial coordinate and dp/dz the applied
pressure gradient.

The volumetric flow rate can be found as

Q = mGR"/8u 9)

For a constant area tube () may be written as

Q = wR? dz/dt (10)
so that
d 2
_z = ﬂ (11)
dt  8u

For capillary flows, the surface tension is related to the
pressure jump across the meniscus by [4]

_2ycosf

A
a R

(12)

where 0 is the contact angle. Clearly then over a length z,

A 27y cos 0
G = =L — &, (13)
z Rz
Using eqs (11) and (13)
dz  7ycosf
== e 14
dt 4w /2 (14)

or integrating and using z = 0, at ¢ = 0 one finds for the
penetration time, at z = [,

202
e (15)
R cos Oy

Equation 15 is the Rideal-Washburn [6, 7] equation* and
fundamentally identifies and relates the pertinent variables
to the penetration time. Equation 15 has been experimentally
confirmed by S. S. Kozlovskii [8] for liquid flow in glass
tubes (with gravity) and within reasonable limits (10%) by

* As applied to horizontal capillaries or equivalently following from the choice of
defect sizes in the present case for negligible gravitational effects.
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15, derived from a steady flow assumption, should only be
employed for times

t >> pR*/ (16)
with pR*/u being the viscous time scale. For the range of R
values considered here, however, eq (16) is not a serious
limitation. Modifications of eq (15) to account for effects
such as capillary narrowing and networks of capillaries are
discussed in references [10-13]. If eq (15) is to be applied to
a plug of solid powder (of interest in the development
process) a tortuosity factor (&) [14] must be introduced (i.e.,
[ — E&l). The factor R/£? may be evaluated experimentally.

4. The Effect of Non-Circular Cross Section

An obvious extension of the theoretical results of the
previous section is to a more realistic representation of
defects. To this end we consider flow through non-circular
cross sections. The problem of steady state flow through
straight “pipes” of uniform but non-circular cross section is
highly developed. Under certain simplifying assumptions the
problem reduces to one in potential flow theory and further is
analogous to the problem of torsion of an elastic bar [15].
The development of the equations here closely follows
Langlois [16].

Consider a flow, in the x5 direction of the form

ug = u(xy, x9); g, ug = 0 (17)
being driven at steady state by a uniform pressure gradient.

Because of the form of eq (17) the nonlinear, inertia terms
are identically zero, and continuity identically satisfied, so
that the momentum equation becomes

A%y + G/ = 0. (18)
Equation (18) is subject to
u(x;, 25) = 0 (19)
on pipe periphery I'. Here
A% = i o i (20)
dx,2  0xy?

Equation (18) is of course a Poisson equation for the velocity.
The system of eqs (18-20) may be shown to be equivalent to
the Dirichlet problem?®

A% =0 (21)

u(xy, %) = G/2pfv(x,, x2) — f(xy, %2)]

with

v = f(xy, x%) on " (22)

provided f satisfies

Af =2, (23)
Detailed solutions for some specific cross sections, as well
as additional mathematical details may be found in Sokolni-
koff [15] and Langlois [16].
We consider here the simple but illustrative case of an
elliptical cross section. We adjust our coordinate system so

that the most general ellipse can be written as

BRI

The solution of eqs (18-20) may be easily found to be [16]

(24)

G a*’b? o) s .
u= 27; (;27_1:[72“ = gafla? = sElP) (25)
with volumetric flow rate
) wG a®b? (26)
=== 5
¢ A a* + b
Again G may be estimated as
08 0 (1 ]
c= Y cos L) 27)
s/b a b
and penetration time is found to be, at z = /.
/e a’ + b2
— (28)

= v
y cos 0 (a+ b)ab

The ratio of penetration times for elliptic to circular pipes
of equivalent area may be found from eqs (15) and (28) to be

tell.  Vabla® + b?)
= - (29)
abla + b)

t cir.

Note that for b = 100a say, penetration into the ellipse takes
9.9 times longer than into the equivalent area circle.
Equation (29) is a reflection of the fact that a circular pipe
produces more flow rate, at a given pressure gradient, than
an elliptical one, at equivalent area.

5. Entrapped Air

It would seem possible, in applying penetrant, to trap air
in some defects. The flow induced compression of this
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trapped air would, by reducing the effective pressure gra-
dient, reduce flow rate and increase penetration time.

Let us consider the problem in which flow is developing
slowly due to a continuously changing axial pressure gra-
dient. It may be shown that the condition

R/l —0 (30)
is sufficient to guarantee slow axial development. By main-

taining finite Reynolds number, the equations of motion
become

(8211
| == ar

ar?

1 du ' 2y cos 0 1
= =(P0—P1+; = (&)
r or R l

Here P, is the atmospheric pressure and P the pressure of
the trapped air (initially atmospheric). Let us further take

PV,=¢C (32)
where
C = wR2IP, (33)
The volume V, is then
Vi= 7R3l — 2) (34)
so that
= (lii)lz) 85)
The velocity may be found to be
27y cos O(l — z) — P,
w= )22 = )Z) Rl (39)
with
R2
S = @(l — r*/R?) (37)

Equations (36) and (37) clearly show that the flow develops
slowly enough to retain the parabolic profile of Poiseuille
flow while continuously adjusting its magnitude (and flow
rate) in proportion to a constantly diminishing pressure
gradient.

From eq (36) we note that the flow will cease when

2y cos 60

=2V
RPy + 2y cos 6

(38)

For Py of 1 atmosphere (~1 X 10°% dynes/cm?), R of 10?
um and an air-water interface, eq (38) shows that the flow
will cease at

2/l = 1.5% (39)

so that the effect can be quite dramatic; i.e.. the penetrant
will not penetrate 98.5% of the depth of the defect.

The flow rate, here a function of z, can be found directly
as

(2y cos O(L — z) — PyzR) 71”
IR(l — z) 8u

0() = (40)

Penetration time may be found, by integration of eq (40) to

be

8ul? 1
t= 7
PoR* (2—7) cos 6 — l)
2 2
ln( Y cos 0 — ( Y cos 0 — ])z_
PyR PoR [

o 5 z/1
—ycos 0—1
PyR

As one would anticipate, eq (41) shows that the time to
reach a z/l given by eq (38) is infinite. Both eqs (39) and
(41) indicate that trapped air can have a large effect on the

(41)

penetrant process.

It should be noted that unlike the case considered here,
one major effect of the compression will probably be to alter
the surface tension and/or change the shape of the interface.
Additional research then, drawing on more detailed infor-
mation on the physics of the interfacial region, may be
fruitful.

6. Effect of Fluid Elasticity

This section is undertaken on the assumption that the
addition of various dyes, fluorescents and emulsifiers might
add a slight elasticity to the penetrating liquid. There is at
present no experimental evidence to support (or refute) this
hypothesis. However, as the effects of even slight elasticity
on entrace type flows can be large [17], it would seem
worthwhile to include at least the outline of an analysis. We
should also note that perhaps “elasticizing” the fluid may
prove to be useful in some aspects of the penetrant process
(say in desensitizing the fluid to a certain defect size range).

For simplicity, consider steady axisymmetric fully devel-
oped pipe flow. For such a flow (termed viscometric), it is
fair to state that the difference between a Newtonian and
(slightly) viscoelastic fluid is that the latter will exhibit non-
zero normal stresses. The creation of these extra normal
stresses in entrance flows may lead to a large entry pressure
drop [17, 18]. This extra pressure drop can substantially
negate the applied pressure gradient.
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We consider a fluid in which the shear and normal stresses
can be written as

- du (42)
T =N
i ar
and
du\ 2%
e c{2) “
ar
We further take
C*=C'"\u (44)

where A is a characteristic relaxation time. Equations (42—
44) are not unrealistic for weakly viscoelastic fluids in pipe
flow.

Equation (42) taken together with more general equations

of motion [18] permit a Poiseuille solution. Then

o e (45)
ar 2 9z
so that
A P\ 2
TOX = C"”(* P = (46)
A 0z

Using eq (46), it is algebraically straightforward [18] to
find as an expression for the effective pressure gradient

=B, 17 1 'R
—f=—"+—C ( — I’,.2>\>. (47)
z z 8 %
Letting
1 R?
A=_—C""—\ (48)
8u z
one finds for the effective driving pressure
—1* V1 + 44P,
I e (49)
2A
Note that for the penetrant problem
27y cos 0
P, = 2y G (50)
R

If, as before, we take R/l — 0, we note that A — 0, forz =

[, and

* No sum intended on a.

o) D
Pe > P,

(51)
The effect of elasticity then is apt to be small.
7. Concluding Remarks

Some aspects of the continuum fluid mechanics of pene-
trant flow have been examined. Characteristic defect sizes of
1072 to 10* wm were considered. Gravitational and noncon-
tinuum effects were neglected. The defect depth was every-
where assumed much larger than crack size.

Fundamentally. the penetrant process was found to obey a
Rideal-Washburn [6, 7] type relation, so that penetration

time
(52)

Considerations of noncircular cross section and entrapped
air, however., show that the proportionality constant in
equation 52 is substantially geometry dependent and possibly
also dependent on the penetrant application procedure.
Elastic effects were shown to be negligible.

Geometric and process dependence. although somewhat
expected, is certainly disquieting. Trapped air, for example,
can essentially eliminate penetration ability over a certain
range of defect sizes. Of course, some very fundamental
questions such as what constitutes a sufficient penetration
length, have not been considered. It would seem that a
carefully controlled experimental investigation, coupled per-
haps with computer simulations for complicated geometries,

may l)(‘ \\()l'lh\\ hill‘.
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