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Some aspects of th e fluid mechanics of liquid penetran t testing are considered. Pt' lIt'1 ralioll is represt'llt ed by 
s urface te ns ion d ri ven fl ow into defec ts uf s llla ll d efC'et widt h to d e plh ratiu. Defect width is c hust' n so that both 

grav itatiunal and nOIl-continuUIll effecl s Ill ay be ignored . Penetration lime is found tu fo ll ow a Rid ea l- \Vashburn 

relal ion. in which 
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where / is ti m e. l defec t tlt- pt h . /J- the dyna mi c viscosi ty. y tl,.. s urface te ns iun . R Ih e d,· fec t lI'iellh and 0 tlw 

co nt ac t angl e. Th t' propurtiollalit y ('ollslanl. huwever, is shown to be strongly dt'pt-·nd ent on defC'<:I geumetry and 

pe ne trant app licati u n p rucedure. Th e e ffec t of s li ght fluid e las ti c it y is s hulI'n to b,· n t'g li g ibl'" 
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1 . Introduction 

Liquid penetrants are freq uent ly e mpl oyed to loca te mi c ro

scopic (sUl-face-access ibl e) defects in so l id , non-porous, 

materi als. The bas ic tec hnique in volves 11 , 2, 3]1 

(a) cl ea ning th e mater ia l to be tes led 

(b) ap pl yin g th e pe netra nt 

(c) re moval of excess pe netrant 

(d) appli ca ti on of a deve lope r (e.g. , an absorbe nl coat

ing) 

(e) vi sual in spec tion , and 

(f) post inspection cleaning. 

Success of the process depends on the ability of sUl-face 

te ns ion forces to draw the liquid into sUiface-accessible 

defects. ]n thi s report the identification and quantification of 

the fa ctors which affec t the extent and rate of pe netration 

(and the some what analogous proble m of rate of developme nt) 

are consid ered. 

2. Scope of the Investigation 

We co ns ider so me aspects of the co ntinuum fluid mec han

ics of surface te ns ion dri ven fl ows. We furth e r res tri c l our 

flow s itua tion s to cases in whi ch 

(a) the minimum defec t d ime ns ion is muc h la rger than 

th e inte rmolecular di s tance of the liquid , 

I Numbers enclosed in square brackets identify references. 

(b) th e rate of pene tration is inde pe nd e nt of th e ori e nl a

tion of the de fec t, a nd 

(c) th e surface te ns ion is a functi on of th e s ubs tances 

in vo lved a nd tempera ture onl y. 

Restri ct ions a a nd b c an be used to defin e a rang!:' of 

charac te ri s ti c de fect dillle nsions . For liquids cOlllposed of 

s impl e molec ul es, we may estillla te mol ec ul a r s pac in g 14] as 

(1 ) 

Happe l and Bre nn er [.5], repo rt continuulll fl ows, such as 
Poiseuille flow, pe rs is t for Knud se n numbers (rat io of molec

ular spac ing to sOllle c harac te ri s li c fl ow dillle ns ion (say, R) 
as high as 0.01 . With cons idera ti on of eq (1) th e n, res tri c ti on 

a illlplies that 

R 2= 3.5 X 1O- 2 m (2) 

R estri c tion b governs Ihe la rgesl defect s ize of int erest. It 
requires that surface tens ion effec ts based on th e minimum 

defect s ize be much large r than gravita ti onal effects based on 

a defec t d epth (l) . Mathe ma ti cally 

'Y - » pgl , 
R 

(3) 

where 'Y is the sUiface te nsion , p is the de nsity, and g is the 

acceleration of gravity. For an air-water interface, interpre t

ing "»" as " lOOX", a nd with l = 100R , this implies that 
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R ~ 27 J.Lm (4) Equation 6 is of course simpl y Poiseuille flow with solution 

In what follows then we shall deal with defec t sizes of roughly 
10- 2 J.Lm to 102 J.Lm . Gravitational and non-continuum effec ts 

are ignored. Note furth er that our interpretation of eq (3) 

requIres 

R 
-« 1 
! 

(5) 

Restriction c removes the possibility that the surface tension 
might vary in some manner with the flow. We shall indicate 

where this assumption, though employed, is probably map

pli cable and more detailed investigation warranted. 

3. Fundamentals 

The salient features of surface tens ion driven flow into 

defects may be illustrated by flow through a·' open end ed 

capillary tube,2 as shown in figure 1. It is a straightforward 
exercise to show, for s teady axisymmetric flow at finite 

Reynolds number,3 that in the limit as RI! -+ 0 , the 
equations of motion become to order 1, 

(6) 

Air 

I Penetrant 

2R 

FIGURE 1. Capillary }law a/penetrant in a small tube. 

2 ThaI is , for R/ l ----+ 0, we init ially treat the closed downstream e nd of the defect as 
if it were at t. = 00 , and had little e ffect. A more realistic approac h, whi ch accounts for 
the possibility of e ntrapped a ir is taken up in a late r section. 

3 The same result could be reached by allowingRe == UR/v ----+ 0 , where [; is mean 
veloc it y and v kinematic viscosity. However this is not generally as good an 
approxi mation as R/ l ~ 0 for the range of paramete rs ('onside red here, and in view of 
equation 5 it is unnecessary. 

u (7) 

where 

G= (8) 

In eqs (6), (7) and (8), u is the axial velocity, J.L the dyna mic 
viscosity, r th e radial coordinate and ap/az the applied 1 

pressure gradient. 
The volumetric flow rate can be found as 

(9) 

For a constant area tube Q may be written as 

Q = 7TR2 dzldt (10) 

so that 

(ll) 

For capillary flows , the surface tension IS related to the 

pressure jump across the meniscus by [4] 

fj.p = 2y cos () 

R 
(12) 

where () is the contact angle. Clearly then over a length z, 

fj.p 
G= -

z 

Using eqs (ll) and (13) 

2y cos () 

Rz 

dz = y cos () RI z 
dt 4 J.L 

or integrating and uSlI1g z = 0, at t 

penetration time, a t z = !, 

t= 
R cos (}y 

(13) 

(14) 

o one find s for the 

(15) 

Equation 15 is the Rideal-Washburn [6, 7] equation4 and 
fundamentally identifies and relates th e pertinent variables 

to the penetration time. Equation 15 has been experimentally 
confirmed by S. S. Kozlovskii [8] for liquid flow in glass 

tubes (with gravity) and within reasonable limits (10%) by I 
Good and Lin [9] . Kozlovskii [8] notes correc tly that equation 

4 As applied to horizontal c apillaries or equivalently following from the choice of 
de fect sizes in the present case for negligible grav itational effects. 
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15, d erived from a s teady flow assumpti on, should only be with 

employed for times 

(16) 

with pR2/fL be ing the viscous time scale . For the range of R 
values considered he re, however, eq (16) is not a serious 
limita tion. Modifi cations of eq (15) to account for effec ts 

such as capillary narrowing and network s of capillari es are 

disc ussed in refere nces [10-13]. If eq (15) is to be appli ed to 

I a plug of solid powder (of interest in the d evelopment 

process) a tortuosity fac tor (g) [14] must be introduced (i.e., 

I ~ gl ). The fac tor R/e may be evaluated experimentall y. 

4. The Effect of Non-Circular Cross Section 

An obvious ext ens ion of th e theore ti cal res ults of the 

prev ious sec ti on is to a more reali sti c re prese nta ti on of 

defects. To thi s end we co ns ider fl ow through non-c ircul a r 

cross sec ti ons. The problem of s teady s tate !low through 

straight "p ipes" of uniform but non-c irc ular c ross section is 

highl y deve loped . Under certain s im plifying assumpti ons th e 

proble m redu ces to one in pote nti a l !low th eory and furth e r is 

analogous to the problem of tors ion of an e las ti c bar [IS]. 
The d evelopment of the equati ons here closely foll ows 
Langlois [1 6]. 

Consider a !low, in th e X3 direction of th e fo rm 

(J 7) 

be ing drive n a t s teady s ta te b y a uniform pressure gradi e nt. 

Because of th e form of eq (J7) th e nonlinea r, ine rti a te rms 

are identi ca ll y zero , a nd co ntinuity ide nti call y sati s fi ed , so 

tha t the mome ntum equation beco mes 

(18) 

Equation (18) is subject to 

(19) 

on pipe periph ery f. Here 

(20) 

Eq uation (18) is of course a Poisson equation for the velocity. 

i The syste m of eqs (18-20) may be shown to be equivalent to 

the Diri c hl e t probl em5 

(21) 

:; Set 

u.(x" "') = C/2"(o(x,, "2) - [(x" X2)) 

(22) 

provided! sati s fi es 

(23) 

De tail ed soluti ons for so me spec ifi c c ross secti ons , as well 

as additional mathe mati cal d etail s may be found in Sokolni

koff [15] and La nglois [16]. 
We cons ide r here the s impl e but illus tra ti ve case of an 

elli ptical c ross secti on. We ad jus t our coordinat e sys te m so 

tha t the most ge ne ral e llipse ca n be writte n as 

( XI) 2 (X2)2 - + - =1. 
a b 

(24) 

The soluti on of eqs ( 18-20) may be eas il y found to be [16] 

with volumetri c fl ow ra te 

(26) 

Again G may be estimated as 

G = y cos e ( ! + ~) 
sib a b 

(27) 

and pene tration time is found to be, at z = I, 

2/ 2fL a2 + b2 
t = -------

y cos e (a+ blab 
(28) 

The ratio of penetra ti on times for elliptic to c ircul ar pipes 

of equivale nt area may be found from eqs (15) a nd (28) to be 

t ell. 
(29) 

t cir. ab(a + b) 

Note that for b = 100a say, pe netration into the ellipse tak es 

9.9 times longe r than into the equivalent area circle. 

Equation (29) is a reflecti on of the fac t that a c ircular pipe 

produces more flow rate, at a given pressure gradient, than 

an elliptical one, at equivalent area. 

5. Entrapped Air 

It would seem possible, in applying pe netrant , to trap air 

III some d efects. The !low induced compression of this 
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trapped air would , by reducing the effective pressure gra

di e nt , reduce flow rate and increase penetration time. 
Let us conside r the problem in whi ch flow is developing 

slowly du e to a continuously changing axial pressure gra
di e nt. It may be shown that th e condition 

RII ~o (30) 

is sufficient to guarantee slow axial developme nt. By main
taining finite Reynolrls number, the equations of motion 
become 

= P-P+ -( 2y cos ()) 1 
o 1 R I (31) 

Here Po is the atmospheri c pressure and PI the pressure of 
the trapped air (initially atmosphe ri c). Let us furth er take 

(32) 

where 

(33) 

The volume V 1 is then 

(34) 

zll = 1.5% (39) 

so that the effect can be quite dramatic; i. e . , the pene trant 

will not penetrate 98.5% of the depth of the defect. 
The flow rate , here a fun ction of z , can be found directly 

as 

( ) _ (2y cos ()(l - z) - PozR) nR 4 

Q z - -
IR(l - z) 8,..,. 

(40) 

Pe netration time may be found , by integration of eq (40) to 

be 

( 2y ( 2y )z In -- cos () - -- cos () - 1 -
PoR PoR l 

zli )) 
+ ( 2y cos () - 1) 

PoR 

(41) 

As one would antIcIpate, eq (41) shows that the time to 
reac h a zll given by eq (38) is infinite . Both egs (39) and 

(41) indicate that trapped air can have a large effect on the 

penetrant process. 
so that 

Pol 
PI = ---

(I - z) 

It should be noted that unlik e the case considered here, 
one major effect of the compression will probably be to alter 

(35) the sUlface tension and/or c hange the shape of the interface . 

The velocity may be found to be 

with 

( ) [2y cos ()(I - z) - P(jZR] 
u=fr 

IR(l - z) 
(36) 

(37) 

Equations (36) and (37) clearly show that the flow develops 

slowly enough to retain the parabolic profile of Poise uill e 

flow while continuously adjusting its magnitude (and flow 
rate) in proportion to a constantly diminishing pressure 
gradient. 

From eq (36) we note that the flow will cease whe n 

I 2y cos () 
z 1= ---'-------

RPo + 2y cos () 
(38) 

For Po of 1 atmosph e re (~1 X 106 dyn es/c m2), R of 102 

,..,.m and an air-water interface, eq (38) shows that the flow 
will cease at 

Additional research the n, drawing on more de tailed infor

mation on the physi cs of the interfacial region, may be 
fruitful. 

6. Effect of Fluid Elasticity 

This section is undertak e n on the assumption that th e 

addition of various dyes , fluorescents and emulsifi ers might 

add a slight elasti city to the penetrating liquid. There is at 

present no ex perime ntal evid ence to support (or refut e) this 

hypothesis . Howeve r, as the effects of even slight elasticity I 
on entrace type flows can be large [17), it would seem 

worthwhile to include at least the outline of an analysis. We 
should also note that perhaps "elastic izing" the fluid may 

prove to be useful in some aspects of the penetrant process 

(say in desensitizing the fluid to a certain defect size range). 
For simplic ity, consider steady axisymmetric fully devel

oped pipe flow. For such a flow (termed viscometric), it is 
fair to s tate that the differe nce between a Newtonian and 
(slightly) vi scoelasti c fluid is that the latter will exhibit non

zero normal stresses. The creation of these extra normal 

stresses in e ntrance flows may lead to a large entry pressure 

drop [17 , 18). Th is extra pressure drop can substantially 
negate the applied pressure gradie nt. 
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We cons id e r a £luid in whi c h th e s he a r a nd no rma l s tresses 

can be writte n as 

a nd 

au 
T rz = fL ar (42) 

(43) 

(51) 

The effec t of elasti c ity th e n is ap t to be s ma ll. 

7. Concluding Remarks 

Some as pec ts of th e continuum fluid mec ha ni cs of pe ne 

tra nt n ow ha ve bee n exa min ed . Cha ra c te ri s ti c d e fect s izes of 

10- 2 to 102 fLm we re cons id e red . Grav ita ti ona l a nd non con

tinuum effec ts we re neglec ted . Th e d e fec t de pth was e ve ry

whe re assum ed mu c h la rger th a n c rac k s ize . 

We furth e r ta ke Funda me nta ll y, the pe ne tra nt process was found to obe y a 

Rid eal- Washburn [6, 7] type re lati o n , so th a t pe ne tra ti on 

(44) time 

wh e re A is a c ha rac te ri s ti c relaxa ti on tim e . Equ a ti ons (42-
44) are not unrea li s ti c for wea kl y viscoe las ti c nuid s in pi pe 

£low. 
Eq ua tio n (42) ta ke n toge the r with more ge ne ra l equ a ti ons 

of moti o n 118] pe rmit a Po ise uill e soluti on. Th e n 

so tha t 

(46) 

Us ing eq (46) , it is algebra icall y s t ra ig htforwa rd [18] to 

find as a n e xp ress ion for th e e ffec ti ve pressure grad ie nt 

Le tting 

one find s for th e e ffective driving pressure 

P = e 

- 1 ± ,/1 + 4A Pa 

2A 

Note th at fo r th e pe netra nt p robl e m 

2y cos () 
P = 

a R 

(47) 

(48) 

(49) 

(50) 

If, as before , we ta ke R/ / ~ 0 , we no te that A ~ 0 , for z 

/ , a nd 

* No s um illt e nd ed on a . 

Ry co () 
(5 2) 

Co ns id e ra tions of nonc ircul a r c ross sec ti on a nd e ntrapped 

a ir , howe ve r, show that the propo rti ona lit y cons ta nt in 

equa ti on 52 is s ubs ta nti a ll y geo me try de pe nde nt a nd poss ibl y 

a lso d epe nd e nt o n th e pe ne tra nt appli ca ti on procedure . 

Elasti c e ffec ts we re s how n to be negli g ibl e . 

Geo me tri c a nd p rocess de pe nd e nce, a lth ough some wha t 

expec ted , is ce rtainl y d isqui e ting . Trap ped a ir , for exa mp le, 

ca n esse nti all y e limin a te pe ne tra ti on a bility ove r a ce rt a in 

ra nge of d efeet s izes. Of cou rse, so me ve ry fund a me nta l 

qu esti ons s uc h as wha t constitut es a s uffi c ie nt pe ne tra ti on 

le ngth , ha ve not bee n cons id e red . It would see m th a t a 

ca refull y cont ro ll ed ex pe rim e nta l inves ti ga ti on , coupl ed pe r

ha ps with compute r s imul a ti ons fiJr co mpli ca ted geome tri es, 

may be wo rth whil e. 
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