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The properties of normal-state and superconducting striplines are calculated as a function of miniaturization. For

normal conductors the Reuter-Sondheimer theory is applied in order to account for the effects of finite film

thickness and mean free path. For superconductors the Mattis-Bardeen theory is used in order to include effects

due to the energy gap. Calculations for three example conductors, copper at 295 K and 4.2 K and niobium at 4.2

K, examine the attenuation, dispersion, and characteristic impedance of striplines as a function of frequency and

dielectric thickness. Simulations of pulse transmission are used to evaluate the utility of the example striplines for

high-speed digital applications.
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l. Introduction

Striplines interconnect the active devices of both semicon-
ductor and Josephson-junction high-speed integrated cir-
cuits. The desirability of high device densities, particularly
for digital circuits, provides motivation for the miniaturiza-
tion of all circuit components, including striplines. At
present, device densities for semiconductor logic circuits
having 100 ps propagation delays are limited to about 25

gates per chip, simply because each gate consumes 40 mW

of power [1]'. In contrast, Josephson-junction circuits of

comparable speed require only about one thousandth as
much power [2] and correspondingly higher device densities
are anticipated [3]. While power dissipation presently limits
the scale of integration for high-speed semiconductor cir-
cuits, it has also been noted that the normal-metal intercon-
nections used in such circuits degrade much more rapidly
with miniaturization than the superconducting interconnec-
tions of Josephson-junction circuits [4]. Here we present
detailed calculations comparing the properties of normal-
state and superconducting striplines.

The stripline geometry to be considered is shown in figure
1. For striplines typical of semiconductor circuits, the
conductor and dielectric thickness, d and s, are 1 and 200
um respectively [5], while for superconducting circuits these
dimensions are both around 0.2 um [6]. Thus, although the
conductors are of roughly the same thickness in both tech-

nologies, the dielectric thicknesses differ by three orders of
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FIGURE 1. Stripline geometry in cross-section.

magnitude. The thinner dielectric of the superconducting
circuit permits higher device densities for two reasons. First,
because the characteristic impedance of a stripline 1s, to a
good approximation, a function only of the dielectric constant
and the ratio of strip width to dielectric thickness 10/s.
shrinking the dielectric layer permits smaller strip widths
while maintaining the same impedance level. Second, be-
cause adjacent striplines become coupled if the separation
between them is less than a few dielectric thicknesses [7],
thinning the dielectric layer permits closer spacing of the
striplines while avoiding crosstalk. The actual strip widths
used in semiconducting and superconducting circuits are
typically 100 wm [5] and 5 pum [8] respectively, and differ
by less than a factor of 10° primarily because different
impedance levels are appropriate for the active devices of
the two technologies. For present superconducting circuits,
crosstalk can probably be avoided if striplines are separated
by I wm, while for semiconducting circuits a separation of at
least 400 pm is required. One concludes that the miniaturi-
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zation of striplines beyond their present size in semiconduc-
tor circuits can proceed without reduction of the conductor
thickness but not without thinning the dielectric.

As will be shown, both radiation and dielectric losses
become relatively less important compared to conductor
losses as the dielectric thickness is reduced. For the purpose
of this study, it thus proves sufficient to focus on the effects
associated with imperfect conductors, assuming a lossless
dielectric and neglecting radiation. The effect of miniaturi-
zation is considered for striplines made from three different
conductors, copper at 295 K and 4.2 K and niobium at 4.2
K. These conductors represent respectively, a normal metal
exhibiting the normal and anomalous skin effects (at the
frequencies of interest) and a superconductor.

To further simplify the calculations, we consider only the
TEM mode and the stripline width is taken to be much
greater than the dielectric thickness, w >> s, such that
fringing fields can be neglected. These assumptions elimi-
nate dispersion associated with the discontinuity in dielectric
constant at the air/dielectric interface, an important source
of dispersion for w comparable to or smaller than s [9, 10].
One notes, however, that for the TEM mode such dispersion
can be reduced to an arbitrary magnitude by overlaying the
stripline with a dielectric layer of sufficient thickness.

Under the above assumptions the properties of a stripline
follow almost immediately once the surface impedance of the
conductor is calculated. In section 2, expressions for the
surface impedance of both normal-metals and superconduc-
tors of finite thickness are reviewed. These expressions are
used in section 3 to evaluate the attenuation, phase velocity,
and characteristic impedance as a function of dielectric
thickness assuming a fixed conductor thickness of 1 wm.
Section 4 looks at the propagation of short pulses over various
lengths of stripline.

2. Surface Impedance

The surface impedance required here is a quantity which
abstracts information about the penetration of fields into an
infinite conducting slab of thickness d. Taking the surfaces
of the conductor as the planes z = 0 and z = d. the surface
impedance is defined for a sinusoidal electric field E ,(z.

w)el®?and current density J ,(z, w)e!®! by
E,(0, )

Zw) = — .
f dz] (2, w)

(2.1)

with the boundary condition that the magnetic field be zero
atz = d as is appropriate for a stripline with w >> 5. The
real part of Z, called the surface resistance, accounts for
stripline losses and the imaginary part, the surface reactance,
contributes to the stripline inductance.

Evaluation of the surface impedance for copper at 295 K
and niobium at 4.2 K is simplified by the fact that J and E
are related by the local equation

J =0oE, (22))
where ¢ is the complex conductivity. This local equation can
be assumed because the mean free path / for normal electrons
is short compared to all other dimensions in the problem.
Combining eq. (2.2) with Maxwell’s equations yields for the
surface impedance [11]

Z, = (iop,/o)"? coth [(iwp ,0)"3d] (2.3)
The surface impedance thus follows once the conductivity is
known. For copper o is simply a real constant. For supercon-
ducting niobium, o is a complex, frequency-dependent
quantity which we take to be of the form given by Mattis and
Bardeen [12]. The Mattis-Bardeen equation yields the con-
ductivity of a superconductor at a given frequency and
temperature provided two material parameters are known;
the energy gap parameter A and the normal state conductivity
at the superconducting transition temperature o,. A more
complete account of the application of Mattis-Bardeen theory
to superconducting striplines has been given elsewhere [13].

In the derivation of eq. (2.3) for the case of infinite
conductor thickness, it is observed that the field amplitudes
decay exponentially with distance into the conductor. For a
normal metal the characteristic decay length is the classical
skin depth

S, = (wu,0/2)" 12 2.4)
Because 8. decreases with increasing frequency there exists
a frequency above which 8. <[ and a local relation between
J and E can no longer be assumed. At such high frequencies
the skin effect is said to be anomalous. For a superconductor,
the decay length at frequencies less than the energy gap
frequency, 2A /K, is the penetration depth [14]

A = (Kcoth (A/2kT) Jmm,A o), (2.5)
which, in contrast to 8., is frequency independent. In the
process of miniaturizing striplines, the depth of field penetra-
tion plays an increasingly important role as the dielectric
thickness is reduced.

Because the mean free path of copper at 4.2 K can be long
compared to both 8., and d, the relation between J and E
assumes the non-local form [15]

30

Jee) = 4arl

dPpp(p -E@x + p)) p~te?!  (2.6)

where we have assumed that the relaxation time 7 is small
compared to the inverse frequency, w7 << 1. Evaluation of
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the surface impedance in this case requires an additional
boundary condition regarding the scattering of electrons from
the conductor surface. Of the two simple limits, diffuse
scattering and specular reflection, the former seems to
provide the better agreement with experiment [15] and has
been assumed in the present calculations. Equation (2.4)
and Maxwell’s equations applied to the surface problem with
diffuse scattering yield [15].

2 d
(ld—EZr = ial#3J‘ dZ E(z)K((z' — 2)/1)
z 0
. (2.7)
K(u)=f dr[l—%] el
i roor

where @ = 3/2 [2/82. Reuter and Sondheimer [16] solved
this equation in the limit of infinite d and obtain for the
surface impedance

4 & -
7, il%[j de In(1 + L'ak(t)/tz)]

&3 (0

(2.8)

¢

k(1) = ; L 8 o2 o) = el

For a << 1, (normal skin effect), this expression reduces to
the d = @ limit of eq (2.3). For &« >> 1 (extreme anomalous
skin effect), Reuter and Sondheimer obtain

23

. 1 .
Zs=m(l +./31) a >> ], (2.9)

ol

The expressions for the surface impedance of a normal
metal given above are valid either for [ << §,., d (eq (2.3))
or for arbitrary [ and d = % (eq (2.8)). The numerical
solution of eq (2.7) and calculation of the surface impedance
for arbitrary [, 8., and d is discussed in the appendix. The
resulting general program was used to obtain all results for
normal metals presented here.

Although the fields do not fall off in a precisely exponential
way for the anomalous skin effect, it remains possible to
define a characteristic penetration length. In general, the
distance over which the field amplitude decays is given by

_ 1z
wl“'u R(?[Z.S‘] ’

(2.10)

In the local limit this reduces to 8, for a normal metal and to
A for a superconductor. In the extreme anomalous limit, eq
(2.9) may be used to obtain

91/391/6
_ 2'73 o (5(.2[)1/3.

o (2.11)

,n.l/3

so that the skin depth for [ > 8§, is greater than §,..

TABLE 1. Material Parameters.

a( 'm™) l(m) 7(s)
Cu, 295 K 5.88 X 107 3.82x 1078 2.34 X 1074
Cu, 4.2K 2.94 X 10" 1.91 X 10™® 1.19 x 107"

@A) I(m) A(meV) N(m)
Nb, 4.2 K 1.57 X 107 1.1 X 107 1.48 8.6 X 107#

The material parameters of copper and niobium used here
are presented in table 1. The conductivity of copper at room
temperature [17] is limited by phonon scattering and all
specimens have nearly the same value. At 4.2 K scattering
from impurities and defects dominate and, although the
conductivity can be more than 10* times that at 295 K for
specially prepared samples, a residual resistance ratio of 10*
is common for off-the-shelf wires [18]. Here we assume,
perhaps optimistically, that the conductivity at 4.2 K is 500
times the room temperature value. The mean free path is
derived from the fact that o/l is approximately constant for a
given material and has a value of 1.54 X 10" Q7! m~? for
copper [11]. The relaxation time is calculated from

T= [/“F- (2.12)
where the Fermi velocity v is 1.6 X 10° m/s for copper [ 1 1].
Material parameters for superconducting niobium are based
on the thin-film measurements of Henkels and Kircher [19].

The measured value of o,, 1.59 X 107 Q™' m™!, was
modified slightly so that eq (2.5) is exactly satisfied.

The real and imaginary parts of the surface impedance of
the three example metals are shown in figure 2 for a metal
thickness of 1 um. Because the mean free path is much
shorter than the film thickness, the surface impedance of
copper at 295 K is described by the local formula, eq. (2.3),
for frequencies below about 3 X 10" Hz. Above this
frequency, the classical skin depth is smaller than the mean
free path and the skin effect is anomalous. At sufficiently
low frequencies 8. is large compared to the conductor
thickness and eq (2.3) reduces to

11
Zy= _+igond. (2.13)

& o) &< 0,0
od

This equation, which results when the electric field is
uniform across the conductor thickness, accounts for the
impedance of copper at 295 K and below about 4 X 10° Hz
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FIGURE 2. The real (solid line) and imaginary
(dashed line) parts of the surface impedance for | pm
thick films of copper at 295 K and 4.2K and niobium
at4.2K.

The results for copper at 4.2 K and frequencies above
10'* Hz may be inaccurate due to the omission of relaxation-
time effects.

shown in figure 2. At higher frequencies 8. becomes small
compared to d and eq 2.3 reduces to

L

1/2
Zs=(l+i)<, ') L << S. << d. (2.14)
20

In this limit the electric field decays exponentially to a small
value before reaching the back surface of the conductor.

At 4.2 K the mean free path of copper is sufficiently long
that §. is comparable to [ even at 2 X 10" Hz. Thus, the
anomalous skin effect is exhibited over the entire frequency
range of figure 2. The relaxation time is sufficiently long at
4.2 K that wr is unity at 10" Hz (compared to 7 X 10'* Hz
at room temperature). Pippard [15] has shown, however, that
in the extreme anomalous limit, relaxation-time effects are
important only when 7 is considerably greater than unity
and in the present case need not be considered for frequen-
cies less than about 10" Hz. Since the relaxation time has
been neglected, the results shown in figure 2 for copper at
4.2 K are probably not accurate above this frequency. As at
room temperature, the surface impedance at 4.2 K depends
critically on whether the skin depth is greater or less than
the conductor thickness. The break point occurs when &, =
d or about 2 X 10® Hz. Below this frequency, Z ;is given by
an equation similar to eq (2.13) in which the bulk conductiv-
ity o is replaced by an apparent conductivity ¢ that accounts
for the effect of finite conductor thickness on the mean free
path [20]. In the present case, the apparent conductivity is
0.13 times the bulk conductivity. At frequencies above 2 X
10° Hz we have 8. << [, d and eq (2.9) applies. As can be
easily verified from eq (2.9), the surface impedance in this
region depends only on o/, a constant of the material, and

thus does not depend on the somewhat arbitrarily chosen
residual resistivity ratio. If, for example, the resistivity ratio
had been taken as 5000 rather than 500, the only significant
change in the surface impedance would be a six-fold decrease
in Re[z] below 2 X 10% Hz. These considerations have been
discussed in detail by Keyes et al. [4].

Below the energy gap frequency, 7.2 X 10" Hz for Nb at
4.2 K, the surface resistance of a superconductor is orders of
magnitude smaller than that of a normal metal. In a stripline
the smaller surface resistance results in lower attenuation.
Also, the surface reactance below the energy gap varies as
, making it appear exactly as an inductance. This property
yields a stripline with very low dispersion. Above the energy
gap, a superconductor behaves like a normal metal of
conductivity o,

3. Propagation Constant and Characteristic
Impedance

The propagation constant 7y and characteristic impedance
Zy

impedance Z and shunt admittance Y of a unit length of line,

of a stripline can be expressed in terms of the series

vy =\VZY. (3.1)
Z,=\Z/Y, (3.2)
where Z and Y forw >> s are in turn [11]
s 2
Z=lopn,— +— 2, (3.3)
w w
1"
= lWeEE, (3.4)
&

The first term of Z is the inductive impedance associated
with the magnetic field in the dielectric region and the
second term accounts for penetration of fields into the
conductor. Y is the capacitive admittance between the strip
and the ground plane. In the following calculations a relative
dielectric constant € of 4 is arbitrarily assumed. Note that y
is independent of w while 7, is proportional to 1/w. Thus,

wo, . -
both 7y and — Z , can be calculated without specifying the
s

stripline width. The power attenuation in decibels per length
a5 and the phase velocity vy are related to the real and
imaginary parts of 7y by

(3.5)
(3.6)

Cas R"[Y]
vy = w/Im[y].

Xgp =

where C ;3 = 20 log;ee. The properties of a stripline thus
follow from the surface impedance of the conductor.
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The phase velocity, attenuation, and characteristic imped-
ance of a room temperature copper stripline are shown in
figure 3 for a conductor thickness of 1 um and a dielectric
thickness ranging from 200 pm to 0.2 um. As the dielectric
thickness is reduced toward 0.2 um, the line becomes highly
dispersive and lossy and develops a characteristic impedance
far from the real, frequency-independent impedance of an
ideal line. As a function of frequency the degradation of a
fixed length of line due to loss and dispersion increases with
increasing frequency. This increase in dispersion is less than
obvious since the phase velocity approaches a constant at
high frequencies but will be explained presently. Problems
with impedance matching are reduced at high frequencies as
the characteristic impedance approaches a real constant.

A better understanding of the results shown in figure 3 can
be obtained by reviewing approximate expressions for y and
Z , applicable in the four regions bounded by dotted lines.

These regions are defined by
I d, sd << 8§,
[ d << §.<< fsd
1. 6. <<s., d
V. s << 5. <<d

and result from the two possible forms for the surface
impedance, eqs (2.13) and (2.14), combined with two
possibilities for the series impedance of eq (3.3), either
resistive or reactive. Of the four regions, I, Il and Il are of
principal interest here since condition 1V is satisfied only for
the 0.2 wm dielectric case over a narrow range of frequen-
cles.

The asymptotic forms for the phase velocity in the regions

of interest are

| wsdo _] 1 &? 1 sd (3.7)
cVe = 4/ === == . 3
¢ €€, | 3L 22
L[, a1
G g = '\E L 3s 8s%d? (3.8)
1 *] 15,
) = — - == 3
I v, \/,u, > 2 (3.9)

where correction terms have been indicated in brackets. As
figure 3 indicates, approximations I, 1. and 11l become valid
al successively higher frequencies. In the lowest frequency
range vg4 is proportional to \/E and goes to zero at zero
frequency. If. however, one considers the phase shift that
results because the low frequencies travel at a velocity less
than the high-frequency asymptotic velocity then for a fixed

length of line ¢ this phase shift
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FIGURE 3. Phase velocity, attenuation, and real
(solid line) and imaginary (dashed line) parts of the
characteristic impedance of a 295 K copper stripline
with 1 pum conductor thickness.

Results are shown for a relative dielectric constant of 4
and dielectric thicknesses of 200 um (a), 20 um, (b) 2 um,
(c), and 0.2 wm (d). Dotted lines divide the graphs of phase
velocity and attenuation into regions where simple approxi-
mate equations hold. Circles, squares, and triangles mark
points at which 8. = s, .= /sd. and 8, = d, respectively.



1 1
Ap = wf - .
¢$-o (1’¢(w) U¢(°°)>'

also goes to zero at zero frequency as /. Thus, dispersion
at low frequencies is not the problem that figure 3 suggests.
At somewhat higher frequencies 8, becomes less than \/sd
and approximation 1l applies. In this region v4 approaches
the asymptotic value (1 — d/3s)/</i €€, with a correction

2 with increasing frequency.

term which decreases as @~
Finally, as 8.becomes less than d as well as s, v4 approaches
1/Jp o€€, with a correction term of —8§./2s. Because this
term goes as 1/y/w, the phase shift A¢ goes as /o and
dispersion effects increase with ® just as at very low
frequencies. Also note that the correction term is proportional
to 1/s so that thin dielectrics enhance dispersion.

The attenuation can be approximated in the regions of

. @m_ﬁ_lf_Lﬂ
PN sdo 382 2827310

interest by

[ agp=
Cos [ee, 1d 4 d*
ILaw=—JﬁJ33 ===l
asd V u, 3s 4581
C 2 16
1L gy = :“* \/% [1 - 25] (3.12)

As a function of frequency, @,y increases as v/ at very low
and very high frequencies with a frequency independent
plateau in between. As a function of dielectric thickness,
a5 always increases with decreasing dielectric thickness,
either as 1/4/s or as 1/s.

Lastly, the characteristic impedance is approximated by

- 1 s 1 d? 1 sd
I.7,=- \/; Il =k T —
w V wee,od 262

(% 1133),
e v
' 382 282
4
11 /0_9 Fo 1 1£1+18_‘~‘
w V€€, Bg BGuH
(3.14)
1 &2 1d 4 d*
= = L === ——| ).
2 sd 3s 45872

In the limit of low frequencies the real and imaginary parts of
Z ,both diverge as 1/y/w. The significance of this divergence
relates to the reduction of the transmission line to a simple

resistor at low frequencies. For 8, < s, d the real part of 7,

s
approaches its high frequency asymptote, — /u,/€€,, and

the imaginary part goes to zero. The correction term to the
real part is 8./2s so that the dielectric thickness directly
influences the ability to match impedances over a wide range
of frequencies.

The properties of copper and niobium striplines at 4.2 K
are shown in figure 4, again for a conductor thickness of 1
um and dielectric thicknesses ranging from 200 um to 0.2
pm. Comparing copper at 295 K and 4.2 K shows that the
500 fold increase in conductivity which might result from
cooling leads to substantial improvements, especially at low
frequencies. These improvements becomes less significant at
frequencies approaching 3 X 102 Hz, where the skin effect
becomes anomalous even for copper at 295 K. The superior-
ity of a superconducting stripline at frequencies below 2A/#
is at once apparent from figure 4. In this region v, is
independent of frequency, a5 is orders of magnitude below
the attenuation for a normal conductor, and the characteristic
impedance is a real constant. Above 7.2 X 10! Hz all of
these desirable properties disappear as the superconductor
begins to behave like a normal conductor.

As for the normal skin effect case at 295 K, simple
approximate formulas can be derived for the properties of a
stripline in the extreme anomalous limit. The regions of
approximation are defined as for the normal skin effect
except that &, is replaced by &,. These regions can be
located in figure 4 by using the points marked with circles
(6, = s), squares (6, = J5d), and triangles (6, = d) as
guides.

At frequencies less than 2A/#% simple approximations also
exist for the parameters of a superconducting stripline [11,
13]. The phase velocity is

w << 2A/h.

2\ 1\ —1/2
1 4—*‘c0ﬂ1i> . (3.16)

1 (
Upl =t
V1 €€, s

While this equation is similar to eq (3.9) for a normal metal,
it differs critically in that A, as opposed to 8., is independent
of frequency. Thus, as s decreases vy also decreases but
remains frequency independent. The attenuation is
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oqp = Cap My

2313 ! ¢ —1/2

@aNSon 2\ d\ vV

312¢1/2¢ 112 __T_,( 1k il £
s 5 A

(3.17)

' { 1/\
X ((-oth S /7 w << 2A /A,

A ;iinhZ(//x

where o7 is the real part of the conductivity. Because o7 is
only weakly frequency dependent, a4 is nearly proportional

PHASE VELOCITY, 10%m/s

ATTENUATION, dB/m

FREQUENCY, Hz

FIGURE 4. Graphs analogous to figure 3 for copper
at 4.2 K (solid lines except long dashes for Im[Z])
and niobium at 4.2 K (short dashes except dots for Im

[Zo])-
For copper, circles, squares, and triangles mark the
points at which 8, = s, 8, = /sd,and 8, = d, respectively.

to w?. For the striplines considered here A << 5. d and the
attenuation is proportional to 1/s. The characteristic imped-
ance is

1/2

s [m, oA d
W £ Cw << 2A/h.

Z,=—1/— |1+ —coth

a
- (3.18)
w Y €€, s A

which like v4 changes with s but remains frequency inde-
pendent. The imaginary part of Z , is negligible. Thus, for
o << 2A/h, the only serious deterioration of superconduct-
ing stripline properties with miniaturization involves the
attenuation.

Before discussing how the transmission of pulses is af-
fected by stripline properties, we briefly examine the two
sources of loss, dielectric and radiation, which were ne-
glected in the above calculations. Dielectric losses occur
when € has a non-zero imaginary part such that € = € +
i€". Assuming €’ << € and a perfect conductor (7, = 0),

the attenuation due to dielectric loss is

"

— €
Cap V1 o€ €~ @ (3.19)
€

|
Xgp = 2

For many materials € and € are approximately independent
of frequency and gy increases roughly as w. For good
dielectrics €'/ € is typically 107* at 10'° Hz [21] yielding, for
€ = 4, an attenuation of 0.2 dB/m. Because this attenuation
is independent of s, the conduction losses will always
dominate for small enough s. As can be seen from figures 3
and 4, conduction losses at 10'” Hz are greater than 0.2 dB/
m for all the normal-state lines considered and for the
superconducting lines withs” = 2 um and 0.2 um. Because
0.2 dB/m represents a small loss over distances typical of a
microcircuit, neglecting dielectric loss will not affect the
conclusions of section 4.

A comparison of radiation and conduction losses is com-
plicated by the fact that radiation losses cannot be converted
to a loss per unit length, radiation being associated only with
discontinuities in the line. In order to estimate the impor-
tance of radiation we consider the () of a half-wave open-end
stripline resonator. Radiation from this structure has been
calculated by a number of authors, most recently by van der
Pauw [22]. Assuming w >> s >> §, van der Pauw’s result

for the () due to radiation losses reduces to

1 e @ = 1F 1) =
+ -

M o€owoiu? 2 3 5

o= . (3.20)

where w, = 7/ €/ €€, is the resonant frequency and ¢ is
the length of the cavity. The () due to conduction losses for
the same resonator is
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_ ﬂ 0WoS

= . SN
Rl 2] (3-21)

Qc

If the characteristic impedance is held fixed (w/s constant)
then () increases with miniaturization and () . decreases.
Davidheiser [23] recently noted this fact and determined the
dielectric thickness at which the () of a superconducting
resonator is maximum. Since the ratio Q) z/() - decreases with
increasing , for both the normal and superconducting cases,
there is a resonant frequency above which radiation losses
dominate conduction losses. This breakpoint frequency is
given in table Il for the various striplines considered here
assuming /s = 10. For the 0.2 and 2 um dielectrics, the
breakpoint occurs at frequencies higher than those of practi-
cal interest and radiation losses can be neglected. For the 20
and 200 um dielectrics, radiation begins to become impor-
tant at frequencies around 10" Hz. Since the wavelength is
1.5 em at 10! Hz for € = 4, microcircuit striplines could be
of the right length to approximate a half-wavelength antenna.

While the load at the ends of a microcircuit stripline is not
infinite, the radiation from a matched or shorted end is a
sizable percentage of that from an open end [24]. Thus
radiation losses may well be important at gigahertz frequen-
cies for dielectric thickness greater than 20 pwm.

A further consideration omitted from the present calcula-
tions regards the propagation of modes of higher order than
the assumed TEM mode. Such higher-order modes become
possible at frequencies sufficiently high that a half wave-
length is comparable to the cross-sectional dimensions of the
stripline (10). Assumingw >> s the cutoff frequency is

W, = 7)1V €€, . (3.22)

such that for € = 4 and w = 200 wm the cutoff is at 4 X
10" Hz. Thus, even for striplines of large dimensions in the
context of microcircuits, the higher-order modes are impor-
tant only at frequencies above those of immediate interest.

TABLE IL. Frequency (Hz) at which radiation and conduction losses are equal for a half-wave open-ended stripline resonator with w/s = 10 and € = 4.

s (pm) 0.2 2 20 200
Cu, 295 K 2.0 X 10" 1.3 X 10" 8.0 X 10" 5.0 X 10°
Cu, 4.2K 1.7 X 10" 8.9 X 10" 4.6 X 10" 2.4 X 10°
Nb, 4.2 K 2.6 X 10" 1.7 X 10* 1.4 X 10° 3.2 X 10°
IV. Pulse Propagation Ry
The evaluation of a stripline from the standpoint of pulse + +
transmission follows from a knowledge of y and Z , but is Vg RSV,

sufficiently complicated that simulations prove valuable. In
this section we consider the propagation of Gaussian pulses
over a stripline of length ¢ using the circuit shown in figure
5. The source/load impedance R is matched to the asymp-
totic high-frequency value of Z , in the case of a normal-state
stripline

i Mo

RL — 5
w €ED

(4.1)

and in the superconducting case is matched to the low-
frequency impedance

s 2\ 1\ 12
R, =2 e 1 + —coth - .
s A

WINNEED

(4.2)

The degree to which a voltage pulse Vg is faithfully repro-
duced across the load is affected both by 7y, in the dispersion
and attenuation of the line, and by Z ,, in reflections at the
interface between the line and the source or load due to
imperfect impedance matching.

The Gaussian pulses considered are of the form

STRIPLINE

FIGURE 5. Circuit for analysts of pulse transmission.

Vg(t) = Ve t127°, (4.3)

where the standard deviation 7 measures the pulse width.
Taking the Fourier transform obtains

Vi(w) = (2m)V2 7V, 0012, (4.4)

so that the frequency spectrum is also Gaussian with a
standard deviation Aw = 1/7. Solving the circuit of figure 5
for the sinusoidal steady-state yields

Viw) Vs(w) = (2 cosh y¢

; _ (4.5)

Z, Rp\ . 1

4 <‘ + =% ) sinh y() -
Rl‘ An
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FIGURE 6. Propagation of Gaussian pulses for a copper stripline at 295 K
for various dielectric thicknesses, line lengths. and pulse widths.

Pulses are shown for line lengths of zero (solid curve), 0.1 cm (dot-dash), 1 ¢m
(dash), and 10 em (dot). Curves which essentially coincide with the zero length curve
have not been graphed. The time origin is shifted by an amount t, = €/v4(*) where
v4(%) = 1.5 X 10* m/s is the high-frequency phase velocity.

so that the pulse received at the load takes the form

Vi(e) = (2/m)"? TV,’f do e~@’72

0 (4.6)
Z, R
E" + 7[ sinh y()

L £ 7

/

X Re e“‘”( 2 cosh y¢ +

Numerical evaluation of the above integral was used to
determine the shape of a pulse after traversing various
lengths of stripline. Since R ; and Z , are both proportional to
1/w these calculations do not depend on the stripline width.

The results of such simulations for copper striplines at 295
K and 4.2 K are shown in figures 6 and 7. For a given
dielectric thickness and initial pulse width, pulses are shown
as they would appear after traversing striplines of length 0,
0.1, 1, and 10 em. The time origin for each trace has been

shifted by an amount

= (/I;d)(OC)_

FIGURE 7. Graphs analogous to figure 6 for a copper line at 4.2 K.

such that a pulse traveling at the asymptotic high-frequency
phase velocity 14() would always be centered at the origin.
The results shown in the left column of figures 6 and 7 are
for a pulse of 7 = 50 ps or roughly at the upper limit of
speed for present digital circuits. If we arbitrarily require
that a pulse be received with at least 80 percent of its original
amplitude to be useful in digital applications, then we see
from figure 6 that fors = 20 um, 2 um, and 0.2 wm useful
stripline lengths are less than 10 ¢m. 1 e¢m, and 0.1 em,
respectively. Thus. the performance of a room-temperature
copper stripline with a dielectric thickness of 2 um or less
can be a limiting factor even for lengths typical of microcir-
cuit dimensions. At 4.2 K this situation is improved by an
order of magnitude in that a dielectric thickness of only
about 0.2 um yields lines of sufficient quality for digital
microcircuits.

Theoretical arguments indicate that it may be possible to
generate pulses with widths as short as 1 ps using supercon-
ducting devices [25]. The propagation of such a pulse on
normal-state striplines is shown in the right column of figures
6 and 7, using a 7 of 0.5 ps to give a full width of about 1 ps.
In going from 7 = 50 ps to 7 = 0.5 ps one notes that the
distortion of the shorter pulse is much the same as that of the
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longer after propagating only one tenth the distance. Thus,
for 7 = 0.5 ps, a copper line at 295 K suitable for digital
microcircuits requires more than 20 wm of dielectric and at
4.2 K requires more than 2 um.

Further insight into the transmission of pulses is gained by
examining four limiting situations in which the transfer
function of eq (4.5) can be simplified. To do this we
introduce the series resistance R and inductance L of a unit

length of line defined by

Z =R + ioL (4.8)
and the shunt capacitance C per unit length defined by
Y = ioC (4.9)

For the striplines considered here both R and L are in general
frequency dependent. The four limits to be discussed result
from two different possibilities for Z in combination with two
possibilities for the length of the line. If the resistive part of
Z is much larger than the reactive part then L can be
neglected and we describe the line as being an RC line. The
propagation constant and characteristic impedance of the RC
line are

y =01 + i) VRwC/2,

w<<R/L (4.10)

Z,= (1 — ) VR/2wC,

These forms are precisely those which lead to the low-
frequency divergences shown in figures 3 and 4 for normal-
state lines. Because Re[Z ;| << Im[Z ] for a superconductor,
no similar RC behavior occurs in this case. When the
reactive part of Z is much larger than the resistive part the
line is said to be an LC line and we have

_R
YT oViIC

= 1 R?
4 mVLC{] +§w2L2],

w>>R/L, (4.11)

R
Zy= VIl =
/ lZw\/LC

such that vy is nearly pure imaginary and Z , is nearly real.
The length of a line will be called short or long depending on
whether | y€| << 1or|yf| >> 1.

For a short RC line eq (4.5) reduces to

Ry

—_—k 4.12
2R, + ¢R’ ( )

VL/VS: w << R/L, 1/RC(27

where we have assumed R ; = JL/C. That is, in the short RC
limit the transmission line can be replaced simply by a
resistor of value ¢R. The complicated behaviors of y and Z
indicated in eq (4.10) thus combine to give the expected low-
frequency result. If the Aw of a pulse satisfies the conditions
of eq (4.12), then the pulse is received with reduced
amplitude but unchanged shape. The reduction in amplitude
becomes significant if the line is long enough that ¢R is
comparable to R ;. For copper at 295 K the length of line for
which /R = R is

_gds [Bo

% (4.13)

2 Vee,

so that the useable length increases in proportion to s and d.
Ford = 1 um and € = 4, this length varies from 0.11 c¢m at
s = 0.2 umto 11 cm ats = 20 um. One concludes that at
least 2 pm of dielectric are required to make striplines show
sufficiently small amplitude reduction. This is the same
conclusion that was drawn from the 7 = 50 ps pulses of
figure 6 and for good reason. The frequencies below which
the various normal-state striplines can be considered RC
lines are listed in table 11I. Since for 7= 50 ps, Av = Aw/
27 is 3 X 10° Hz, the 295 K lines with s = 0.2 um and 2
mm are on the border between RC and LC lines. Moreover,
we shall see that the transfer function of eq (4.12) also
applies in the short LC range so that, with the exception of
those pulses displaced from the origin, all the 50 ps pulses
of figure 6 show the amplitude reduction predicted by eq
(4.12).

At 4.2 K one can define a useable length for copper lines
at low frequencies similar to that of eq (4.13) but with o
replaced by &. This length varies from 7.4 cm at s = 0.2
um to 740 cm at s = 20 um, so that the low-frequency
characteristics of cooled copper lines should be very good for
lengths typical of microcircuits. As can be seen from table
III, however, frequencies considered low are in this case
considerably less than those characteristic of a 7 = 50 ps
pulse.

For a long RC line the frequency response is limited by
the RC time constant of the line. The transfer function is

TaBLE l11. Frequency (Hz) at which the resistive and reactive parts of the series impedance Z are equal for striplines with d = 1 um, € = 4, and various

dielectric thicknesses.

s (um) 052 2 20 200
Cu, 295 K 6 X 10° 1.5 X 10° 2.1 X 10 2.1 X 107
Cu, 4.2K 7 X107 2.5 X 107 3.2 X 10° 3.2 X 10°
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Vi/Vs =V wL/R exp(— € /Rw(C/2)

X exp[ —i(g 4 f’\/RwC/2>:| .

1/RC(? << w << R/L,

(4.14)

which includes both attenuation and phase lag. Impedance
. . T
mismatch causes the JwL/R attenuation and the Y phase

lag. The propagation constant contributes the exponential
attenuation and the phase lag proportional to ¢. The long RC
limit describes the 50 ps pulse traveling the s = 0.2 um, ¢
= 1 c¢m line shown in figure 6.

In the LC limit, impedance mismatch is present only as a
second-order effect and can be neglected. The transfer
function in this limit is

(4.15)

. g .
X e =i LC I+ ——
exp | —ifw ( 8w2[,2>
w >>R/L.

such that waves propagate with a phase velocity of very
nearly 1/yLC. An LC line is short provided ¢ is much less
than the wavelength, ¢ << 1/w \/LT, and in this case eq
(4.15) approximates eq (4.12). Thus, the short RC and LC

lines both can be simply modeled with a resistor.
Of the pulses shown in figure 6, all except the 50 ps pulse

on the s = 0.2 um line are described by the transfer function
for an LC line, eq (4.15), and the impedance mismatch can
be neglected. The propagation of these pulses can be
explained in terms of the attenuation and dispersion shown
in figure 3. Because Avis 3 X 10% and 3 X 10" Hz for 7
equal 50 and 0.5 ps, respectively, the relevant forms for v
and a4 are approximately those of region I1I. In this region
Qg is proportional to v/ (see eq (3.12)) so that in going
from 3 X 10° to 3 X 10" Hz the attenuation increases by a
factor of 10. This is confirmed in figure 6 by the fact that the
0.5 ps pulses show the same attenuation as the 50 ps pulses
after traveling only /10 the distance. Because a gy is also
proportional to 1/s, an increase in attenuation of a 50 ps
pulse on a 2 wm line is comparable to that of a 0.5 ps pulse
on a 20 um line. A similar conclusion can be drawn for the
phase velocity. As eq (3.9) indicates, the deviation of v,
from its high-frequency value is proportional to 1/v/ws. The
phase shift over a given length of line due to this deviation is
thus proportional to /w/s. Thus, broadening of a pulse and
displacement of its peak from ¢ = ¢, change with @ and s just
as the attenuation.

The LC approximation applies to all of the pulses shown in
figure 7 for copper at 4.2 K. For frequencies typical of the

pulses shown the surface impedance is governed by the
extreme-anomalous equations with 8, < s, d. In this limit,
the attenuation and phase shift are proportional to w?/%s.
Conclusions similar to those drawn for copper at 295 K can
thus be made for figure 7.

An analysis of pulse propagation for superconducting
niobium is shown in figure 8 for pulses with 7 = 1 and 0.5
ps. For a pulse with 7 = 50 ps there is no significant
distortion even after propagating a distance of 10 cm on a
line with 0.2 um of dielectric. Pulse degradation is essen-
tially negligible for superconducting lines until the frequen-
cies involved begin to approach the energy-gap frequency, at
which point the stripline characteristics degrade rapidly. The
increase in distortion between the 1 and 0.5 ps pulses of
figure 8 is thus nearly as great as that between 50 and 0.5 ps
pulses on a normal-state stripline. The distortion evident in
figure 8 is primarily due to dispersion at frequencies some-
what below the energy gap as discussed elsewhere in detail
[13]. Comparison of figures 7 and 8 shows that a supercon-
ducting line is marginally superior to a normal-state line
even for 7 = 0.5 ps. For longer pulses the superiority of
superconducting lines is beyond question.

1ps 0.5ps
20um 20um
— T 1
T = 1ps
T s = 2um
\—44
e
W
<
<<
=
=
o
=
1
s = 0.2um
1
8

TIME, t»tL, ps

FIGURE 8. Graphs analogous to figure 6 for a niobium line at 4.2 K.

The time origin is shifted by an amount ¢, = ¢/14(0) where the low-frequency
phase velocity v4(0) is 1.10 X 10, 1.44 X 10%, and 1.49 X 10° m/s for dielectric
thickness of 0.2, 2, and 20 um, respectively.
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V. Appendix

The numerical solution of eq (2.7) and calculation of the
surface impedance for general [, 8., and d follows a method
presented by Mason and Gould [26] for the superconducting
case. Applying the transformations of Mason and Gould to eq

(2.7) yields

d

E(z) = Eo(d) + i‘i; f 47 E(z")

0

-G — d)/L, (Z = 2)/]) (A.1)

Gi(u. L‘):f drf ds(v—r)(’l—%) CRLLEA
u 1 S S

where the kernal G, can be evaluated in terms of £, the
exponential integral [27]. Over the domain of interest (u =

0,v =u),

1
Gi(w, v) = ;L [(® 4+ u* = 10u — 6)e"
+ (ut — 12 W?)E( }ul)]
1 :
+ ZZ-L[( |1r3! — 92 — l()|11| + 6)e 0!
+ ( — 12 v2)E;( Ivl)]

T é (v — wl(w?® + u — 4)et
+ (& — 6u)E;( |u|)]
* g( lv| + v)
3 v v

A numerical solution of the above integral equation results
when the integral is approximated by a sum consisting of N
terms in which the integrand is evaluated at the points z’ =
Z1, Z2, ', zy. By choosing z to be each of these z; in
succession, one obtains a set of V linear equations which can
be solved for the unknowns E ,(z;). In this procedure £ ,.(d)
may be taken as any non-zero constant as it merely sets the
scale.

Once £ ,(z) is known, the integral over current density
required for the surface impedance can be obtained from

/

! [ 1 1 )
Gs(u, v) :f (lrJ ds\ = = @ Irls
u 1 S s

=0,v =0),

d ) d
f dz J(z2) = — 0'[ dz E(2)Ga((z — d) /1, z/1)

where for the domain of interest (u

Go(u, v) = % e é[(u2 +u— 4 + (i — 6wk (|ul)]

Sl é[tz — v —4A)e ! — (03 — 60)E,(v)]. (A4)

The above procedure gives accurate results using a small
number of integration points except when the depth of field
penetration is small compared to d. In this limit, however, d
can be taken as infinity and the Reuter-Sondheimer result,
eq (2.8), adopted in place of the integral equation.
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