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The propel1ies of no rm a l-stale a nd slIpf.>rconclu f" ting s lriplines a re calcu la ted as a rUJl c lion o f mini a turi za t ion. For 

no rm al conduc tors t lw R e ut e r-Sondh ei mer theory is a ppli e d in o rd er to ac("ou nt for the effec ts of finite film 

thi c kness and Ill ean fret' path . Fo r slIpc rcl) llclu C' tors th(.> MCi lli s-Ba rd C'cll theu ry is lIsed in ord e r to incl ud e effec l s 

du e to Ih e e1w rb'Y ga p. Calculations fo r three exa mple co nduc tor" co ppe r at 29.5 K and 4.2 K a nd niobillill al l\·.2 
K, exam ine the all t' llualioll, d ispe rs ion, and eharucteristi c illlpeciCl ll l't:" of s lriplinE's a s a fUl1(' lion of freq ue ncy and 

dielcc tri c th ick ness. Si mulati ons of pulse transllli ssion are used tu t:'va l ui:l l t' til t' utilit y of th t' l,xa mple slriplillE"s fur 

hi gh-speed ,I igita l ap pl icati o ns. 
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I. Introduction 

S tri p i i nes int e rconnect the ac ti ve de vi ces of bot h se m icon­

duc tor a nd Jose phson-jullcti on hi gh-s peed integrated c ir­

c uits. The desirabil ity of hi gh dev ice de ns iti es, parlieul arl y 

for digital c irc uil s, provides motivalion for Ih e miniaturi za­

tion o f aJl c irc uit compone nt s, includ in g s triplines. At 

prese nt , dev ice de ns iti es for se mi co nduc tor logic c irCttit s 

havin g 100 ps propaga ti on de lays are limited to a bout 25 

gates pe r c hip , s imply because eac h ga te cons um es 4,0 mW 

of powe r [1]1. In contras t, Jose phson-junction c ircuits of 

co mparabl e speed require only abou t one th ousa ndth as 

muc h powe r [2] and correspondingly hi ghe r dev ice dens iti es 

are a nti c ipa ted [3]. While power di ss ipat ion prese ntly limit s 

th e scale of integration for high-s peed se mi co nduc tor c ir­

c uit s, it has also bee n noted that the normal-me tal inte rcon­

nec tion s used in such circuits degrade muc h more rapidly 

with miniatur ization than th e supe rconductin g interconnec­

ti ons of Josep hso n-junc tion c irc uits [4]. Here we prese nt 

de tail ed calc ulations comparing th e properti es of normal­

s tate and s upe rconduc tin g striplines. 

Th e striplin e geo metry to be co ns id e red is s hown in fi gure 

1. Fo r s tripl in es typical of se mi co nduc tor c ircui ts, th e 

condu c tor and di e lec tri c thickness, d a nd s, are ] and 200 

/-Lm res pecti ve ly [5], whil e fo r s uperco nduc lin g c irc uit s these 

dim e ns ions are bOlh a round 0 .2 /-Lm [6]. Thus, a lthou gh th e 

conduclors a re o f roug hl y th e sa me thi c kness in bOlh tec h­

no log ies, th e di e lec tri c th ic kn esses cliffe r by three orde rs of 
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FI GU RE 1. Slripline geometry in cross-seclion. 

magn itude. The thinne r di e lec tri c of th e s upe rco nduc ting 

c ircuit permits higher dev ice de ns iti es fo r two reaso ns. Firsl, 

because the c haracteristi c impedance of a s tripline is, to a 

good approximation , a fun c ti on on ly of th e di e lec tri c co ns ta nt 

and the rat io of strip width to di e lec tri c thi c kness lI 'is , 
shrink ing the d ie leclri c la yer pe rmil s s mall e r s t ri p wid th s 

whi le ma inta inin g th e same imped a nce leve l. Seconcl , be­

cause adjace nt s triplin es becom e coup led if th e separation 

be twee n th e m is less than a fe w di e lec tri c thi c knesses [7], 

thinning th e die lectri c laye r permits c loser s pac ing of the 

striplin es whil e avo idin g c ross ta lk . The ac tual s trip widths 

used in se m ico nduc ting and s upe rcond uc tin g c ircui ts are 

typically 100 /-Lm [5] a nd 5 /-Lm [8] respec ti vely, and diffe r 

by less than a factor of 103 primarily because different 

impedance le vels are approp ri ate for the active devices of 

th e two tec hnologies . For present s upe rconduc lin g c irc uits , 

c rosstalk ca n probabl y be avo id ed if striplines are separated 

by 1 /-Lm , whi le for se mi conducting circu it s a separation of a t 

least 400 /-Lm is required. One concludes tha t the miniaturi-
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zation of striplines beyond their present size in semiconduc­

tor ci rcu its can proceed without red uction of the conductor 
thi ckn ess but not without thinning the dielectric. 

As will be shown , both radiation and dielectri c losses 
beco me relatively less important compared to conductor 

losses as th e dielectric thickness is reduced. For the purpose 
of this study, it thus proves sufficient to focus on the effects 

associated with imperfect conductors, assuming a lossless 
dielectric and neglecting radiation. The effect of miniaturi­

zation is considered for striplines made from three different 
conductors, copper at 295 K and 4.2 K and niobium at 4.2 

K. These cond uctors represent respectively , a normal metal 
exhibiting the normal and anomalous skin effects (at the 

frequencies of interest) and a superconductor. 
To further simplify the calculations, we consider only the 

TEM mode and the stripline width is taken to be much 

greater than the dielectric thickness, w » s, such that 

fringing fields can be neglec ted. These assumpti ons elimi­
nate dispersion associated with the discontinuity in dielectri c 
constant at the air/dielectric interface, an important source 

of dispersion for w comparable to or smaller than s [9, 10]. 

One notes, however, that for the TEM mode such dispersion 
can be reduced to an arbitrary magnitude by overlaying th e 

s tripline with a dielectric layer of sufficient thickn ess . 
Under the above assumptions the properti es of a s tripline 

follow almost immediately once the surface impedance of the 
conductor is calculated. In section 2, expressions for the 

surface impedance of both normal-metals and superconduc­
tors of finite thickness are reviewed. These expressions are 

used in section 3 to e valuate the attenuation, phase velocity , 

and characteris tic impedance as a function of dielectric 
thickness assuming a fixed conductor thickness of 1 /Lm. 
Section 4 looks at the propagation of short pulses over various 

lengths of stripline . 

2. Surface Impedance 

The surface impedance required here is a quantity which 

abstracts information about the penetration of fields into an 
infinite conducting slab of thickness d. Taking the surfaces 

of the conductor as the planes z = 0 and z = d. the surface 

impedance is defined for a sinusoidal electric field E xCz. 
W )eiwt and current density J xCz, w)eiwt by 

(2.1) 

with the boundary condition that the magneti c field be zero 
at z = d as is appropriate for a stripline with w » s. The 
real part of Z s, called the surface resistance, accounts for 
stripline losses and the imaginary part, the surface reactance, 
contributes to the stripl ine inductance. 

Evaluation of the surface impedance for copper at 295 K 
and niobium at 4.2 K is simplified by the fact that J and E 

are related by the local equation 

J = (TE, (2.2) 

where (T is the complex conductivity. This local equation can 
be assumed because the mean free path l for normal electrons 

is short compared to all other dimensions in the problem. 
Combining eq. (2.2) with Maxwell's equations yield s for the 

surface impedance [11] 

The surface impedance thus follows once the conductivity is 
known . For copper (T is simply a real constant. For supercon­

ducting niobium, (T is a complex , frequency-dependent 
quantity which we take to be of th e form given by Mattis and 

Bardeen [12]. The Mattis-Bardeen eq uation yields th e con­
ductivity of a superconductor at a given frequency and 

temperature provided two material parameters are known; 

the energy gap parameter il and the normal state conductivity 
at the superconducting transition temperature (Tn' A more 

complete account of the application of Mattis-Bardeen theory 
to su perconducting striplines has been given elsewhere [13]. 

In the derivation of eq. (2.3) for the case of infinite 

conductor thi ck ness, it is observed that th e field amplitudes 
decay exponen tially with distance into the conductor. For a 

normal metal the characterist ic decay length is the classical 
skin depth 

(2.4) 

Because 0(' decreases with increasing frequency there exists 

a frequency above which Oc < l and a local relation between 

J and E can no longer be assumed. At such high frequencies 
the skin effect is said to be anomalous. For a superconductor, 

the decay length at frequencies less than the energy gap 
frequency, 2il/.h, is the penetration depth [14] 

which, in contrast to 0c, is frequ ency independent. In the 
process of miniaturizing striplines, the depth of fie ld penetra­

tion plays an increasingly important role as the dielectri c 
thickness is red uced. 

Because the mean free path of copper at 4.2 K can be long 

compared to both 0", and d, the relation between J and E 
assumes the non-local form [15] 

(2.6) 

where we have assumed that the relaxation time T is small 

compared to the inverse frequency, WT« 1. Evaluation of 
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the surface impedance in this case req uires an additional 

boundary condition regarding the scattering of electrons from 
the conductor surface. Of the two s imple limits, diffuse 

scattering and specular reJ1ection, the former seems to 
provide the better agreement with experiment [15] and has 

been assumed in the present calculations . Equation (2.4) 
and Maxwell's equations applied to the surface problem with 

diffuse scattering yield [15] . 

d2~X = iexl -3 Jd dz'Ex(z')K((z' - z)/I) 
dz 0 

(2.7) 

K(u) = f oo d)! - 2.J e- 1u18 

I L r r3 

where ex = 3/2 12/ot R e uter and Sondheimer [16] solved 
this eq uati on in the limit of infinite d and obtain for the 

surface impedance 

1 ex 2/3 
Zs = -12 13 (1 + J3 i) -, ex» 1, 

31 TT I <II 
(2.9) 

The expressions for the surface impedance of a normal 
metal given above are valid either for 1 « 0(", d (eq (2.3» 
or for arbitrary 1 and d = 00 (eq (2.8)). The numerical 

solution of eq (2.7) and calculati on of the surface impedance 

for arbitrary I , 0,., and d is discussed in the appe ndix. The 

resulting general program was used to obtain all results fot· 
normal metals presented he re. 

Although the fi e lds do not fall off in a precisely exponential 
way for th e anomalous skin effect, it remains poss ible to 

defin e a charac teristi c penetration length . In general, the 
distance over which the fi eld amplitude decays is given by 

0= _1_~. 
W/-Lo Re[ZsJ 

(2.10) 

In the local limit thi s red uces to 0(" for a normal metal and to 

(2 .8) A for a supe rconductor. In th e extreme anomalous limit , eq 
(2.9) may be used to obta in 

For ex « 1, (normal skin e ffect), this expression reduces to 
thed = 00 limit of eq (2.3). For ex» 1 (extreme anomalous 

skin effect), Reuter and Sondheimer obta in so that the sk in depth for 1 > 0,. is greater than 0,.. 

(2.11) 

TABLE I. Material Parameters. 

0"( n- 'm- ') l(11l ) 7(S) 

CU, 295 K 5.88 X 10' 3.82 X 10- " 2.34 X 10- 14 

Cu, 4·.2 K 2.94 X 10'0 1. 9J X 10- 5 1.19 X 10- 11 

O",,(n- 'm - ' ) l( 111) d (meV) ~(m) 

Nb, 4·.2 K 1.57 X 10' 1.1 X 10-" 1.48 8.6 X 10- " 

The material parameters of copper and niobium used here 
are presented in table 1. The conductivity of copper at room 
temperature [17] is limited by phonon scattering and all 

specimens have nearly the same value. At 4.2 K scattering 

from impuriti es and defects dominate and, although the 
conducti vity can be more than 104 times that at 295 K for 

spec ially prepared samples, a residual resistance ratio of 102 

is common for off-the-shelf wires [18]. Here we assume, 

perhaps optimistically, that the conduc tivity at 4.2 K is 500 
times the room tempera t ure value. The mean free path is 

derived from th e fact that ail is approximately constan t for a 
given material and has a value of 1.54 X 1015 n- I m- 2 for 

copper [ll] . The relaxat ion tim e is calcu lated from 

(2.12) 

where the Fermi velocity UF is 1.6 X 106 m/s for co pper ~ ll]. 
Material parameters for s uperconduct ing niobium are based 
on the thin-film measurements of Henkels and Kircher [19]. 

The measured value of <In, 1.59 X 107 a - I m- I , was 

modified slightly so that eq (2 .5) is exactly satisfied. 
The real and imaginary parts of the sutface impedance of 

the three example metals are shown in fi gu re 2 for a metal 

thickness of 1 /-Lm. Because the mean free path is much 
shorter than the film thickness, the s urface impedan ce of 

copper at 295 K is described by the local formula, eq. (2.3), 

for frequencies below about 3 X 10 12 Hz. Above thi s 

frequency, the c lassical sk in depth is smalle r than the mean 
free path and the sk in effect is anomalous. At sufficiently 

low frequencies 0(" is large compared to the conductor 

thickness and eq (2.3) reduces to 

1 1 
Zs = <Id + i"3 W/-Lo d, 1« d « oe· (2.13) 

This equation, which results when the electric field is 

uniform across the conductor thickness, accounts for the 

impedance of copper at 295 K and below about 4 X 109 Hz 

1_ . __ -
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The resu lts for coppe r at 4 .2 K and frequencies above 
10]2 H z may be inaccurate due to the omiss ion of relaxat ion­

t ime effects. 

s hown in figure 2. At highe r frequ enc ies 0(' beco Illes s ma ll 

compared to d a nd eq 2.3 ,'edu ces to 

( WII) 1/2 
Zs = (1 + i) ;;0 L« 0(' « rl . (2.14) 

In thi s limit the e lectri c fi e ld decays ex ponen ti a ll y to a s ma ll 

value be fore reachin g the back s urface of the co ndu ctor. 

At 4.2 K th e mea n free path of copper is sufficie ntl y long 

that 0" is co mparabl e to L even at 2 X 104 Hz. Thus, the 

a nomalous skin effect is ex hibited over the e ntire frequency 

range of figure 2. The relaxa ti on time is suffic ientl y long at 

4.2 K that WT is unity a t 1010 Hz (co mpared to 7 X 1012 Hz 
at room te mpe rature). PippaI'd [1 5] has shown , however, that 

in th e extre me anomalous limit , re laxati on-time e ffects are 

important only when WT is co ns ide rably greater than unity 

and in the prese nt case need not be conside red for freq ue n­

c ies less th an about 1012 Hz. Since the re laxat ion time has 

bee n neglected , the results shown in figure 2 for copper at 

4.2 K are probably not accurate above this freq ue ncy. As at 

room te mpe rature, the surface impedan ce a t 4 .2 K depends 

criti call y on wh ether the sk in depth is greater or less th a n 

the conductor thickn ess . The break point occ urs when oa = 

d or about 2 X 108 Hz. Below thi s freque ncy, Z s is given by 

an equation s imilar to eq (2.13) in whi c h th e bulk conductiv­

ity u is replaced by an apparent conducti vi ty (j that accounts 

for th e effect of finite concluctor thi c kness on the mean free 

path [20]. In th e prese nt case, the apparent conduct ivity is 

0.13 tim es the bulk conduc ti vit y. At frequenc ies a bove 2 X 

108 Hz we have 0,, « L, d and eq (2.9) applies. As can be 

eas ily ve rifi ed from eq (2.9), the surface impedance in this 

region de pe nds only on ull , a constant of the material, and 

thu s does not de pe nd on th e somewhat arb itrarily chosen 

residual res istivity ratio. If, for example, the resi sti vi ty ratio 

had been taken as 5000 rather than 500, the only s ign ifican t 

c hange in the surface impedan ce would be a s ix-fo ld decrease 

in Re[zs] below 2 X 108 Hz. These conside rat ions have bee n 

disc ussed in de ta il by Keyes e t al. [4]. 
Below th e e nergy gap frequ e ncy, 7.2 X 1011 Hz for Nb at 

4.2 K, the surface resistance of a superco nductor is orders of 

magnitude smalle r th a n th a t of a normal metal. In a s tripl in e 

the smalle r surface l'esistance results in lower a ttenuati on. 

Also, the surface reactance below th e energy gap vari es as 
w, making it appear exactly as a n inducta nce. Thi s p ropelty 

yields a stripl ine wi th very low dispers ion. Above the energy 

gap, a supe rconductor be haves like a normal metal of 

conductivity Un' 

3. Propagation Constant and Characteristic 
Impeda nce 

T he propagati on constant 'Y and characteris tic impedance 

Z 0 of a s tr ip line ca n be expressed ill terms of the ser ies 

impedance Z and shunt admi tta nce Y ofa II nit le ngth of li ne , 

'Y = VZY. 

whe re Z and Y for IV »s are in turn 11IJ 

s 2 
Z = iwj..L (J - + - :c." 

IV 1/' 

/I' 
Y = iWEEo - • 

S 

(3 . I) 

(3.2) 

(3 .:~) 

(3.4) 

The first term of Z is the induct ive impedance associated 

with the magneti c fi eld in the dielec tri c region a nd the 

second term accounts for pe net rat ion of f ields into the 

conductor. Y is the capacitive admittance be twee n th e s tr ip 

and th e grou nd plane. In th e following calculations a relative 

dielectri c constant E of 4 is a rbitrarily assumed. Note that 'Y 
is ind ependent of w while Z 0 is propOlti onal to l/w . Thus, 

IV 
both 'Y and - Z 0 can be calcu la ted without spec ifying the 

s 

stripl ine wid th. The power at tenuation in dec ibe ls per length 

(XdB and the phase veloc ity Veb are related to the n~al and 

imaginary parts of 'Y by 

(X dB = C,IB Re[ 'Y], 

Veb = wi I m[ 'Y] , 

(3. S) 

(3.6) 

where C dB = 20 10gIOe. The properties of a stripline thus 

fo llow from the surface impedance of the conductor. 
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The phase veloc ity, a tte nuation , and c harac teri sti c imped­

ance of a room tempe ratu re co ppe r s tri p line are shown in 

fi gure 3 for a cond uc tor thi c kness of 1 j..tm and a dielectri c 

thi c kness ra ngin g from 200 j..tm to 0.2 j..tm. As the dielectri c 

thi c kn ess is reduced towa rd 0.2 j..tm , th e line becomes highly 

d ispe rs ive a nd lossy a nd de ve lops a c harac te risti c impedance 

far from t he real , frequ e ncy- indepe nd e nt impedance of an 

ideal li ne . As a fun c ti on of frequ e ncy the degradation of a 

fixed le ngth of line due to loss and dispers ion increases with 

inc reas in g frequency. Thi s in crease in d ispe rsion is less than 

obvious s i nce the phase velocity approac hes a cons tant a t 

high frequencies but will be explained presently. Proble ms 

with impedance matching are redu ced a t hi gh freque nc ies as 

the c ha ractet'is ti c impeda nce approaches a real cons tan t. 

A belle r und erstanding of the results shown in fi gure 3 ca n 

be ob ta in ed by rev iew in g approx ima te ex press ions fo r ya nd 

Z () app licable in th e four reg ions bounded by dOll ed lines . 

These regions are de fin ed by 

II. d « oc « JSJ 

Ill. oc « s,d 

IV. S « oc « d 

and result from the two poss ib le fo rms for th e surfa ce 

impedance, eqs (2 .13) a nd (2 .] 4), co mb ined with two 

poss ibil it ies for th e se ri es impedance of eq (3 .3), e ith e r 

res is ti ve or reac tive. Of th e four reg ions, I, II , and III a re of 

prin c ipa l int e rest he re s ince co nd ition I V is sa ti sfied o nl y for 

the 0.2 j..tm di e lectri c case ove r a na rrow range of frequ e n­

c ies. 

T he asy mptoti c form s for th e phase ve loc it y in th e regions 

of interest a re 

~[ l 
EE () 

(3.7) 

11. V<b (3.8) 

III. I ' <b (3.9) 

wh e re correc tion te rm s have bee n in dica ted in bracke ts . As 

f igure 3 indi ca tes, approxima ti ons I, II , and III become va li d 

at success iv e ly hi ghe r freq ue nc ies . In the lowest freque ncy 

ran ge t 'eb is propo rti ona l to JW and goes to zero at ze ro 

frequency. If, howeve r, one co nside rs th e phase shift tha t 

resu lts because the low freq ue nc ies trave l at a ve loc it y less 

tha n the hi gh-frequency asymp toti c veloc ity the n for a fi xed 

length of lin e e thi s phase s hi ft 
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( 1 1 ) D..p = we -- - --
V<b(W) V<b(OO) , 

also goes to zero at zero frequency as .,fW. Thus, dispersion 

at low frequencies is not the problem that fi gure 3 suggests. 
At so mew hat hi gher frequencies Oc becomes less than .jSd 
and approximation 11 applies. In thi s region V<b approaches 
the asymptotic value (1 - d/3s)/-/f.LuEEo with a correction 
term which decreases as w- 2 with increas ing frequency. 

Finally , as Oc becomes less than d as well as s, v(/) approaches 

l/-/f.LoEEo with a correction term of - oc/2s. Because this 
te rm goes as 1/.[W, the phase shift D..p goes as JW and 
dispersion effects increase with w just as at very low 
ft·equencies. Also note that the correction term is proportional 

to l/s so that thin di elec trics enhance dispersion. 

The attenuation can be approximated in the regions of 

interest by 

eEEO '~1 -CdB --

I. adB = sda-

11 a = CriB fEE" [1 _ ~ ~ + ~ d 4
] 

. dB V-;; 4' a-sd f.L a 3s 450(" 
(3.11) 

CriB ~ WEEo [ 1 0,,] Ill. adB = - -- 1 - - - . 
s 2a- 2 s 

(3.12) 

As a function of frequency, adB increases as rw at very low 

and very high freq uenci es with a frequency independent 
plateau in betwee n. As a fun ction of dielectric thickness , 

adB always increases with decreas ing dielectric th ickness, 

e ither as 1/";s or as l/s. 
Lastly, th e characteristi c im pedance is approximated by 

s ~--;;:;;{ [ 1 0 c] III. Z 0 = - - 1 + --
W EE o 2 s 

(3.15) 

_ i ~ Oc [ 1 _ ~ ocl } . 
2 s 2 sJ 

In the limit of low frequencies the real and imaginary parts of 
Z u both diverge as l/JW. The significance of this divergence 

relates to the reduction of the transmission line to a simple 
resistor at low frequencies . For 8(' < s, d the real part of Z 0 

s~ 
approaches its high frequency asymptote, - "f.Lu/ EE o, and 

IV 

the imaginary part goes to zero. The correction term to the 

real part is oc/2s so that the dielectric thickness directly 
influences the ability to match impedances over a wide range 
of frequencies. 

The properties of copper and niobium stripl ines at 4.2 K 

are shown in figure 4, again for a conductor thickness of 1 
f.Lm and d ielect ric thicknesses rangi ng from 200 f.L m to 0 .2 

f.Lm. Comparing copper at 295 K and 4 .2 K shows that the 
500 fold increase in cond uctivi ty which mi ght result from 

cooli ng leads to su bstantial improvements, espec iall y at low 
frequencies . These improvements becomes less significant at 

frequencies approach ing 3 X 1012 Hz, where the sk in effect 

becomes anomalous even for copper at 295 K. The superior­
ity of a superconducting stripline at frequencies below 2D./fi 

is at once apparent from figure 4. In this region v(/) is 
independent of frequency, adB is orders of magn it ude below 

the attenuation for a normal conductor, and the characteristic 
impedance is a real constant. Above 7.2 X 1011 Hz all of 

these des irable properties disappear as the superconductor 
begi ns to behave like a normal conductor. 

As for the normal skin effect case at 295 K, simple 

approximate formulas can be derived for the properties of a 
stripline in the ex treme anomalous limit. The regions of 

approximation are defined as for the normal skin effect 

except that 0,. is replaced by 8a . These regions can be 
located in figure 4 by using the po ints marked with c ircles 
(oa = s), squares (oa = .jSd), and triangles (8a = d) as 
guides. 

At frequenc ies less than 2D./h simple approximations also 
exist for the parameters of a superconducting stripline [11, 

(3.13) 13]. The phase velocity is 

(3.14) 

V<b = 1 ( 1 + 2sA coth~) - 1/2. w« 2D./h. (3.16) 
V f.LoEEo 

While this equation is similar to eq (3.9) for a normal metal, 

it differs critically in that A, as opposed to On is independent 

of frequency. Thus, as s decreases V<b also decreases but 
remains frequency independent. The attenuation is 
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(3. 17) 

x coth - + . ( d tI/A ) 
A s inh 2 t1/A 

w « 'lA / h. 

whe re CT1 is the real part of th e conduc tivity. Because CT1 is 

only weakly freque ncy depend ent , Oi,tH is nearly proportional 
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FI GU RE 4. Graphs analogoll.s to./igure 3jor copper 

at 4,.2 K (solid /incs excc'pt long dashes/or Im/Xo)} 

" nli n iobillm at 4.2 K (.,hort dashes except do ts./or 1m 

[Zo}) · 
For ('opper, circles, squares, and tr iangles mark the 

poi nts al whi ch lin = s. Sa = ..r;;F, and Sa = d, respecti ve ly. 

to w 2 • For the s tripl ines considered here A « s . dand th e 

attenuation is proportional to 1/05. The cha rac te ri s tic i mped­

ance IS 

Z =~ ~(l 
o tv EE() 

2A d) 1/2 + - coth - . w « 2(j. /tL 
S A 

(:3.18) 

which lik e 7i d, c ha nges with .1 but rema ins frequ e nc y ind e­

pendent. Th e im agina ry pa rt of X (I is negli g ib le . Th us, fi)!' 

w « 2(j. / ft , th e onl y seriou s de te rioration of s upe rconduc t­

ing str ipline prope rti es with Illiniaturiza tion invo il'es ti l{-' 

a tte nuation. 

Be fore di sc uss ing how the tra ns mi ss ion or pulses is a f­

fected by stripline prope rti es, we bri e fl y exa mine the two 

sources o f loss , d ie lec tri c a nd radi a ti on, whi eh IVp re np­

glected in th e above ealcul a ti ons . Di e lectri e lossps occu r 

whe n E has a non-ze ro imagin ary pa rt suc h th at E = E' + 
iE". Assumin g E" « E' and a pprfect co nductor (X " = 0 ), 

th e a tt e nuati on due to di e lectric loss is 

( :~. I ()) 

For ma ny ma tpri als E' and E" a re approximatel y indppe lld e llt 

or rrequ e ncy a nd Oi ,m in c rpases roughl y as w. For good 

die lec tric s E"/ E' is typi call y 10-.1 at 1010 I I Z 12 L J yie ld in g, fo r 

E' = 4 , an attpnuation 01'0. 2 dB/ m. Becau se thi s att e nua ti oll 

is ind epe nd e nt of s, the conducti on losses "ill alwa\s 

dominat e for sma ll e nough s. As can be see ll from figures ; ~ 

a nd 4, conduc ti on losses at 1010 I-Iz are greate r th a ll 0.2 d 13/ 

III for all th e no rilla l-s ta te li nes cons id e red a nd fi)r tlw 

superconduc tin g lines with s ' = 2 J1.m a nd 0. 2 Mill. Because 

0.2 dB/m re presents a sma ll loss ove r di s tallces typica l of a 

microc ircuit , neglecti ng dielec tri c loss wi II no t a ffect th e 

conclusions of section 4. 

A compari son of radiation and conduc ti on losses is COJ11 -

plicated b y the fact that radiation losses cann ot be conve rted 

to a loss pe r unit length , radiation be ing assoc ia ted onl y wit h 

discontinuiti es in the line. In order to es tiJ11a te the iJ11por­

tance of radi a ti on we co ns ide r the Q of a haH- wave open-pnd 

stripline resona tor. Radia ti on from thi s s tn lc tu re has bee n 

calc ulat e d by a number of authors, J110st rece ntly by van de r 

Pauw 122J. Assumin g tv »s » 0, van de r Pau w's resu lt 

fo r th e (J due to rad iati on losses red uces to 

(3 .20) 

where Wo = 1r/ e.J M oEEo is the resonant fi'equency and e is 

the le ngth of the cavity. The Q due to conduction losses for 

the same resonator is 

253 



(3 .21) 

If the c harac te ri sti c impedance is held fi xed (IU/S constant ) 

then 0 II inc reases with miniaturization and Q c decreases. 

Davidheiser [23] rece ntly noted thi s fact and de te rmined the 

dielectri c thi ckness at whi ch the Q of a superconducting 

resonator is maximum. Since the ratio Q R/O c dec reases with 

inc reas ing Wo for both the normal and supercond ucting cases, 

th ere is a resonant frequen cy above whic h rad iat ion losses 

dominate conduction losses. Thi s breakpoint frequency is 

g iven in tabl e II for the various striplines cons idered here 

assum ing IU/S = 10. For the 0.2 and 2 /-Lm dielectri cs, th e 

breakpoint occurs at freque nc ies higher than those of practi­

cal interest and radia ti on losses ca n be neglec ted . For the 20 
and 200 /-Lm dielectri cs, rad iat ion beg ins to become impor­

tant at frequ e nc ies around 1010 H z. S ince the wave le ngth is 

1.5 c m at 1010 H z for E = 4, mi c roc ircuit striplin es could be 

of the right le ngth to approximat e a half-wave length a nten na. 

While the load at the ends of a microcirc uit striplin e is not 

infinite, th e radiation from a matc hed or s hO/ted end is a 

s izable percentage of that from an open end [24]. Thus 

radiation losses may well be impOltant at gigahertz frequen­

c ies for di electri c thi c kness greater than 20 /-Lm . 

A fUlther cons iderat ion om itted from the present calcula­

ti ons regards the propagation of modes of higher order than 

the assumed TEM mode. Such higher-order modes become 

poss ibl e at frequ encies suffic ie ntly high that a half wave­

length is comparable to the cross-sectional dim ensions of the 

stripline (1O). Assuming w > > s th e cutoff frequ ency is 

W e = 7T /IU V /-L oEEo, (3.22) 

suc h that for E = 4 and tv = 200 /-Lm the cutoff is at 4 X 

lOll Hz. Thus, e ve n for stripl ines oflarge dimensions in the 

cont ext of mi croc ircuits, the high er-order mod es are impor­

tant only at frequencies above those of immed ia te inte rest. 

TABLE II. Freqaeney (Hz) at which radiation and conduction losses are equal/or a hal {wave open-ended stripline resonator with wls = 10 and E = 4. 

.S (/Lm) 0. 2 2 

Cu , 295 K 2.0 X 1013 1.3 X 1012 

Cu, 4.2 K 1. 7 X 1013 8 .9 X 10" 
Nb, 4.2 K 2.6 X 1013 1. 7 X 1012 

IV. Pulse Propagation 

The evaluation of a stripline from the standpoint of pulse 

transmission foll ows from a knowledge of y and Z a but is 

suffic ie ntly complicated that s imulati ons prove valuable . In 

thi s section we conside r the propagation of Gaussian pulses 

over a stripline of length e us ing the c ircuit shown in figure 

5. The so urce/ load im pedance R t is matc hed to the asymp­

toti c hi gh-freque ncy value of Z 0 in the case of a normal-state 

s triplin e 

(4.1) 

and in the superconductin g case is matc hed to the low­

freque ncy impedan ce 

s ~p:;; ( 2A d) 1/2 RI" = - - 1 + - coth -
IU EEu S A 

(4.2) 

The degree to whi ch a voltage pulse V s is faithfull y repro­

duced across the load is affected both by y, in the di spers ion 

and a tt enuati on of the line, and by Z 0' in re fl ecti ons at the 

inte rface between th e line and the source or load due to 

imperfec t im pedan ce matc hing. 

The Gaussian pul ses conside red are of the form 

20 200 

8 .0 X 1010 5.0 X 10" 
4.6 X 1010 2. 4 X ]0" 
1.4 X 109 3.2 X 10" 

'---~y~--~ 

STRIPLINE 

FIGURE 5. Circuit/or analysis o/pdse transmission . 

(4.3) 

where the standard dev ia ti on 7 measures the pulse width. 

Taking the Fourie r transform obtai ns 

(4.4) 

so that the freque ncy spec trum is also Gauss ian with a 

standard deviati on LlW = 1/7. Solving the circuit of figure 5 

[or the s inusoidal steady-state yields 

Vt(w)/ Vs(w) = (2 cosh ye 

( ) ) 
(4. 5) Z. RL - [ 

+ - + --;- s inh ye , 
RL Zo 
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-200 o 200 

TII1E,t-t 1 , ps 

F,GURE: 6. IJropagalion olGall",sia.n Pl/lSl' s.!',r a copper -,' ri,lline ([I 29.') f( 

lor I'(/riou-, dielectric Ihicknesses. line lenK,ltS. ([lid !,Idle lI 'i,IIh,. 
Pubws art' shown for line len~hs of 1:t'1"O (~olid cune). O. I COl (dul-da~hJ . ] (·m 

(dash). and 10 em (dot). Curv('s "hich f'~st'lltHI II ~ {'oincide \\ith the zero 1 t:'"II~ h ('une 

have nol been graplwd. The timt' origin is ~hifted by an amount I( = t/l'(/)(X) \\here 

l'<b(OC) = 1. .:; X J(f m/s is the high-frt'quf"I1(" Y I'ha'it' velOCIty. 

so that the pulse rece ived at the load takes the form 

V/,(l) = (2/7T)1 /2 TV" J 00 dw e--w'r2/2 

" (4.6) 

[ . ( ( Z" RL) ) -'J X Re e'W( 2 cosh yf + RL + Z" sinh yf 

Numerical evaluation of the above integral was used to 

determine the shape of a pulse after traversing various 

lengths of s tr ipl in t'o Since R L and X /I are bot h proportional to 

l /w tllt'se ca lculations do not dt'pt'nd on the strip li ne width. 

The resu lts of ~uch simulations for copper st riplines at 29.') 

K and Ik2 K are shown in figures 6 and 7. For a givt'n 

dielt'ctric thickness and initi a l pulse width , pulses are shown 

as they would appear a fter traversing striplines of length O. 

O. I , 1, and to cm. The time origin for each trace has been 

shifted by an amount 

(4.7) 

- 200 

T ~ 50ps 

5 = 20)lm 

T = 50ps 

5 = 2~m 

T = 50ps 

5 = O.211m 

200 400 -2 

TI11[, t-t l , pS 

2 

FICL HE 7. Grt/plt" ([n"logol/.' lojigllre 6ji". (/ cOJlper lillt, al ·t .2 f.. . 

suc h that a plllst' travt'ling at tilt' asv lllpt otic hi gh-frt'CJuenc y 

phase velocity I'<J>{OC) \Ioulci always be ct'ntt'rt'ci at the origin. 

The results shown in the It' f"t column of figures 6 an d 7 arc 

for a pulse of T = 50 ps or roughly at the up!>t'r limit of 

speed for present digita l circuits . If we arbi tra rily require 

that a pulse be received with at least 80 percent of its original 

amplitude to be useful in digital applications. th en we see 

from figure 6 that for s = 20 p.,1ll , 2 p.,m, and 0 .2 p.,nl useful 

stripline lengths are less than 10 ern. 1 Clll, and O. I cm, 

respectivelv. Thus. the performanct' of a roorll-tt'mpt'rature 
copper s tripline with a dielectric thickn ess o f :2 p.,111 or less 

can be a limiting factor elen for len gths typical of microcir­

cu it dimens ions. At 4.2 K thi s s ituati on is improved by an 

orde r of magnitude in that a dielectric thickness of only 

abou t 0.2 p.,m ~ields lines of sufficient qua lity for digital 

microcircuits. 

Theoretical arguments indicatt' that it may be possible to 

generate pulses with widths as short as ] ps using supercon­

ducting devices l25J. The propagation of such a pulse on 

normal-state striplines is shown in the right column of figures 

6 and 7, using a T of 0 .. 5 ps to give a full width of about 1 ps. 
In going from T = 50 ps to T = 0.5 ps one notes th at the 

distortion of the shorter pulse is much the same as that of the 
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longer after propagating only one tenth the distance. Thus, 
for T = 0.5 ps, a copper line at 295 K suitable for digital 
microcircuits requires more than 20 fJ-m of dielectric and at 
4.2 K requires more than 2 fJ-m. 

Further insight into the transmission of pulses is gained by 
exami ning four limiting situations in which the transfer 
function of eq (4.5) can be simplified. To do this we 
introduce the series resistance R and inductance L of a unit 

length of line defined by 

Z = R + iwL (4.8) 

and the shunt capacitance C per unit length defined by 

Y = iwC (4.9) 

For the striplines considered here both Rand L are in general 
frequency dependent. The four limits to be discussed result 
from two different possibilities for Z in combination with two 
possibilities for the length of the line. If the resistive part of 
Z is much larger than the reactive part then L can be 
neglected and we describe the line as being an RC line. The 
propagation constant and characteristic impedance of the RC 
line are 

'Y = (1 + i) VRwC/2, 
w«R/L (4.10) 

Zo = (l - i) VR/2wC, 

These forms are precisely those which lead to the low­
frequency divergences shown in figures 3 and 4 for normal­
state lines . Because Re[Z s] < < I m[Z s] for a superconductor, 
no similar RC behavior occurs in this case. When the 
reactive PaIt of Z is much larger than the resistive part the 
line is said to be an LC line and we have 

R - [ I R2] 'Y =-- + iwVLC 1 + --- . 
2VLC 8 w2U 

w»R/L, (4.11) 

such that 'Y is nearly pure imaginary and Z a is nearly real. 
The length of a line will be called shOlt or long depending on 

whether I 'Yel « 1 or I 'Yel » 1. 

For a shortRC line eq (4.5) reduces to 

v V - RL 
d s - 2RL + eR' 

w« R/L, (4.12) 

where we have assumed R L = .jLjC. That is, in the short RC 
limit the transmission line can be replaced simply by a 
resistor of value eR. The complicated behaviors of 'Y and Z 0 

indicated in eq (4.10) thus combine to give the expected low­
frequency result. If the liw of a pulse satisfies the conditions 
of eq (4.12), then the pulse is received with reduced 
amplitude but unchanged shape. The reduction in amplitude 
becomes significant if the line is long enough that eR is 
comparable to R L' For copper at 295 K the length of line for 
which eR = RL is 

(4.13) 

so that the useable length increases in proportion to sand d. 
For d = 1 fJ-m and E = 4, this length varies from 0.11 cm at 
s = 0.2 fJ-m to 11 cm at s = 20 fJ-m. One concludes that at 
least 2 fJ-m of dielectric are required to make striplines show 
sufficiently small amplitude reduction. This is the same 
conclusion that was drawn from the T = 50 ps pulses of 
figure 6 and for good reason. The frequencies below which 
the various normal-state striplines can be considered RC 
lines are listed in table Ill. Since for T = 50 ps, Ii v '= liwj 
27T is 3 X 109 Hz, the 295 K lines with s = 0.2 fJ-m and 2 
fJ-m are on the border between RC and LC lines. Moreover, 
we shall see that the transfer function of eq (4.12) also 
applies in the sholt LC range so that, with the exception of 
those pulses displaced from the origin, all the 50 ps pulses 
of figure 6 show the amplitude reduction predicted by eq 
(4.12). 

At 4.2 K one can define a useable length for copper lines 
at low frequencies similar to that of eq (4.13) but with (T 

replaced by u. This length varies from 7.4 cm at s = 0.2 
fJ-m to 740 cm at s = 20 fJ-m, so that the low-frequency 
characteristics of cooled copper lines should be very good for 
lengths typical of microcircuits. As can be seen from table 
lII, however, frequencies considered low are in this case 
considerably less than those characteristic of a T = 50 ps 
pulse. 

For a long RC line the frequency response is limited by 
the RC time constant of the line. The transfer function is 

TABLE 111. Frequeru-y (Hz) at which the resistive and reactive parts a/the series impedance Z are equal/or striplines with d = 1 }J.lIl, E = 4, and various 
dielectric thicknesses. 

s (j.Lm) 

Cu, 295 K 
Cu, 4.2 K 

0.2 

6 X ]0· 
7 X 10' 

2 

1.5 X 1()" 

2.5 X 10' 
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20 

2.1 X 10" 
3.2 X 10" 

200 

2.1 X 10' 
3.2 X 105 



VdVs = VwL/Rexp( - fVRwC/2) 
pulses shown the surface impedance is governed by the 
extreme-anomalous equations with Oa < s, 'd. In this limit, 
the attenuation and phase shift are proportional to w2131s. 

X exp[ -i( ~ + fVRWC/Z) ] (4.14) Conclusions similar to those drawn for copper at 295 K can 
thus be made for figure 7. 

I/R(J2« w« R / L, 

which includes both attenuation and phase lag. Impedance 

mismatch causes the J wLIR attenuation and the '1! phase 
4 

lag. The propagation constant contributes the exponential 
attenuation and the phase lag proportional to f. The long RC 
limit describes the 50 ps pulse traveling the s = 0.2 J1-m , ( 
= 1 cm line shown in figure 6. 

In the LC limit, impeclance mi smatch is presen t only as a 
second-order e ffect and can be neglected. The transfer 
fun cti on in this limit is 

VdVs = ~exp( -CzVR ~ 
2 . L/d 

[ - R2 )] 
X exp - dwVLC( 1 + 8w 2U (4. ]:1) 

w » R/L. 

such th at waH'S propagate with a phase velocitv of \cn 
nearly ] I J LC. An LC I in !"' is short prov ided { is ,~u c h les~ 
than th e wavelengt h, C < < ] I w J[C, and in th is case (-'(I 
(4.]5) approximates eq (4.12). Thus, the short RC a nd LC 
lines both ca ll be simpl y modeled with a res istor. 

Of th e pulses shown in figure 6, all except the 50 ps pulse 
on th e s = 0.2 J1-m line are described by the transfer fun cti on 
for an LC line, eq (4.15), and the impedance mismatch can 
be neglected. The propagation of these pulses can be 
explained in terms of the attenuation and dispersion shown 
in figure 3. Because Llv is 3 X 109 and 3 X 1011 Hz for T 

equal 50 and 0.5 ps, respecti vely, the relevant forms for L' </> 

and adB are approximately those of region Ill. In this region 
adB is proportional to Jw(see eq (3.12)) so that in going 
from 3 X 109 to 3 X 10" Hz th e at tenuation increases by a 
fac tor of 10. This is confirmed in figure 6 by the fact that the 
0.5 ps pulses show the same attenuation as the 50 ps pulses 
after traveling only 1/10 the distance. Because adB is also 
proportional to l is, an increase in attenuation of a 50 ps 
pulse on a 2 jLm line is comparable to that of a 0.5 ps pulse 
on a 20 J1-m line. A sim ila r conclusion can be drawn for the 
phase velocity. As eq (3.9) indicates, the deviation of I ' </> 

from its hi gh-frequency value is proportional to II JW s. The 
phase shift over a given length ofline du e to this dev iation is 
thus proportional to JWls. Thus, broadening of a pulse and 
displacement of its peak from I = t( change with wand 5 just 
as the attenuation. 

The LC approximation applies to all of the pulses shown in 
figure 7 for copper at 4.2 K. For frequencies typical of the 

An analysis of pulse propagation for superconducti ng 
niobium is shown in figure 8 for pulses with T = 1 and 0.5 
ps. For a pulse with T = 50 ps there is no significant 
distortion even after propagating a distance of 10 cm on a 
line with 0.2 J1-m of dielectric. Pulse degradation is essen­
tially negligible for superconducting lines until the frequen­
cies involved begin to approach the energy-gap frequency , at 
which point the stripline characteristics degrade rapidly. The 
increase in distoliion between the 1 and 0.5 ps pulses of 
figure 8 is thus nearly as great as that between 50 and 0.5 ps 
pulses on a normal-state stripline. The distortion ev ident in 
figure 8 is primarily due to dispersion at frequenc ies some-
what below the energy gap as discussed elsewhere in detail 
[13] . Comparison of figures 7 and 8 shows that a supercon­
ducting line is marginally superior to a normal-state line 
even for T = 0.5 ps. For longer pulses the supe riority of 
superconducti ng lines is beyond question. 

-4 

TIME, t-t 1 • ps 

FIGURE 8. Graphs analogous to figure 6 for a niobium line at 4.2 K. 
The time origin is shifted by an amount If = e/Vcb(O) where the low-frequency 

phase velocity v .. (O) is 1.10 X 10', 1.44 X 10', and 1.49 X 10' m/s for dielectri c 
thickness of 0.2, 2, and 20 p.m, respectively. 

257 



V. Appendix 

The numerical solution of eq (2.7) and calculation of the 

surface impedance for general t, 0", and d follows a method 

presented by Mason and Goulc! [26] for the superconducting 
case. Applying the transformations of Mason and Gould to eq 

(2.7) yields 

(A. 1) 

where the kernal G] can be evaluated in lerms of E], the 
exponential integral [27]. Over the domain of interest (u :s 
0, /) 2: a), 

+ (a4 - 12a2)E](lal)] 

+ -.l [( I v 31 - u 2 - 10 I v I + 6)p - I ,. I 
24 

+ (v4 - 12v 2 )El( Ivl)] 

1 . + - (u - u)[(a2 + II - 4)e" 
6 

+ (1l3 - 611)Ed I a I)] 
2 

+ "3 ( I v I + /I) 

(A.2) 

A numerical solution of the above integral equation results 
when the integral is approximated by a sum consisting of N 
terms in which the integrand is evaluated at the points z ' = 

Zl, Z2, "', z". By c hoosing z to be each of these Z i in 
succession, one obtains a sel ofN linear equal ions which can 

be so lved for the unknowns E Az i)' In this procedure E J.(dl 
may be taken as any non-zero constant as it merely sets the 

scale. 
Once E Az) is known, the integral over CUlTent density 

required for the sUlface impedance can be obtained from 

J" 3 Jd dz ./x(z) = - (T rLz EAz)Gl((z - rI)I!, zll) 
o 4 a 

(A.3) 

where for the domain of interest (ll :S 0, v 2: 0), 

4 1 
G2(a. u) = - + - [(a 2 + u - 4)e" + (IP - 611)E1 ( I a I)] 

3 6 
1 + - [v 2 - U - 4)e- V - (v 3 - 6v)El(V)]. (A.4) 
6 

The above procedure gives accurate results using a small 

number of integration points except when the depth of field 
penetration is small compared to d. In this limit, however, d 
can be taken as infinity and the Reuter-Sondheimer result, 

eq (2.8), adopted in place of th e integral equation. 
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