Cutting the d-Cube

Jim Lawrence*

Center for Applied Mathematics, National Bureau of Standards, Washington, DC 20234

October 5, 1978

Some problems concerned with cutting faces of the cube with affine or linear spaces are considered. It is shown that through any d-3 points of R^d there passes a hyperplane which cuts all the facets of the d-cube. Furthermore, it is shown that if $m \leq d-1$ and $d' \leq d \lceil (m+1)/3 \rceil$, then no m-dimensional affine subspace of R^d cuts all the d' -dimensional faces of the cube.

Key words: Cube; geometry; hyperplane.

1. **Introduction**

If K is a convex set in R^d and A is an affine subspace of R^d , we say that A *cuts* K if A intersects the relative interior of K , but A does not contain K .

Let C^d be the d-cube in R^d :

$$
C^d = \{ (x_1, \cdots, x_d) \in R^d : -1 \le x_i \le 1, \text{ for } 1 \le i \le d \}.
$$

In section 2 we strengthen a result of Joel, Shier, and Stein $[2]^1$ by showing that, if *S* is a set of at most d-3 points of R^d , then S is contained in a hyperplane H through the origin (i.e., a linear subspace of dimension d - 1) which cuts each facet of the cube C^d . We also characterize those sets S with $|S| = d-2$ for which there is no such linear subspace.

In section 3 we prove that if $m < d - 1$ and $\left[\frac{1}{3}(m + 1)\right] < d - d'$, then no m-dimensional affine subspace of R^d cuts all the *d'*-dimensional faces of the cube. This sharpens a theorem of McMullen and Shephard [3], which may be regarded as asserting the nonexistence of such a *linear* subspace of R^d .

2. Cutting the Facets of the Cube with Planes and Hyperplanes

When $d \geq 3$, it is not difficult to construct planes in R^d which cut each facet of C^d . Suppose P is a convex polygon in the plane, R^2 , symmetric about the origin, and bounded by 2d edges. Then there are linear functionals λ_i on R^2 with

$$
P = \{ u \in \mathbb{R}^2 : -1 \le \lambda_i(u) \le 1, \quad \text{for} \quad 1 \le i \le d \}.
$$

Consider the function $\lambda: R^2 \to R^d$ with

$$
\lambda(u) = (\lambda_1(u), \cdots, \lambda_d(u)).
$$

Let $L = \lambda(R^2)$, a plane in R^d . Note that $\lambda(P) = L \cap C^d$.

Furthermore, note that if u is a point of the polygon P on the relative interior of the edge of P given by $\lambda_i(x)$ $= 1$ (or -1), then $\lambda(u)$ is on the relative interior of a corresponding facet $\{x \in C^d : x_i = 1 \text{ (or } -1) \}$ of C^d . It follows that L intersects the relative interior of each facet of C^d (and cuts each facet, when $d \geq 3$).

 $*$ This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, **Wushington. D.C. 20234.**

¹ Figures in brackets refer to literature references at the end of this paper.

The following theorem is a strengthening of Theorem 2 of Joel, Shier, and Stein $[2]$.

THEOREM 1. Suppose $d \geq 3$ and S is a set of at most $d - 3$ points in \mathbb{R}^d . There is a hyperplane H, containing $S \cup \{0\}$, which cuts each facet of C^d .

PROOF. It is possible to find a plane L, through the origin, which cuts each facet of \mathcal{C}^d . (We did this above!) The linear space spanned by L \cup S has dimension at most $d - 1$, so there is a hyperplane H with L \cup S \subset H. This is the required hyperplane.

For which sets *S* of $d - 2$ points is there no such hyperplane? The following two theorems will provide the answer. With finitely many exceptions, each $(d - 2)$ - dimensional linear linear subspace of R^d is contained in a hyperplane which cuts each facet of \mathbb{C}^d .

For $1 \leq i \leq j \leq d$, let

$$
A(i, j) = \{x \in R^d : x_i = x_j = 0\}.
$$

If *F* is a $(d-3)$ - dimensional face of C^d , let $A(F)$ be the linear subspace of R^d spanned by *F*.

THEOREM 2. Suppose $d \geq 3$ and H is a hyperplane in R^d which cuts each facet of C^d . Then H contains none *of the linear subspaces* A(i, j), A(F).

PROOF. Let *A* be a plane orthogonal to $A(i, j)$. Let π be the orthogonal projection $\pi : R^d \to A$. If *H* contains $A(i, j)$ then $\pi(H)$ is a line in *A* which cuts all four edges of the square $\pi(C^d)$. There is no such line, so *H* does not contain $A(i, j)$.

Suppose *H* contains *A*(*F*) (and, hence, *F*) for some $(d - 3)$ - face *F* of C^d . Let *A*' be the linear subspace of dimension three which is orthogonal to the *affine* span of *F*. The orthogonal projection $\pi' : R^d \to A'$ takes *H* to a plane $\pi'(H)$ which cuts each facet of the 3-cube $\pi'(C^d)$ and which contains the vertex $\pi'(F)$ of this 3-cube. No plane containing a vertex of the 3-cube cuts all the facets of that cube. (See, also, Joel, Shier and Stein [2], Theorem 3.) It follows that H cannot contain $A(F)$.

LEMMA. Suppose $d \geq 3$ and $\alpha = (\alpha_1, \dots, \alpha_d)$ is a point not on any of subspaces A(i, j) or A(F). Then there *is a plane through the origin and* α *which cuts each facet of* C^d .

PROOF. Since α is on none of the subspaces $A(i, j)$, at most one of $\alpha_1, \dots, \alpha_d$ is zero. Since it is on none of the subspaces $A(F)$, no three of the α_i 's have the same absolute value. Let C be a circle centered at the origin in the plane, R^2 , whose radius r is less than the minimum of the numbers $1/|\alpha_i|$, for $1 \le i \le d$ and $\alpha_i \ne 0$. Note that, if $\alpha_i \neq 0$, there are two lines in the plane through the point $(1/|\alpha_i|, 0)$ which are tangent to the circle; one of these has positive slope and the other has negative slope.

We construct d linear functionals on R^2 . If $\alpha_i = 0$, let $\lambda_i(x_1, x_2) = x_2/r$ be the linear functional which has the value 1 at each point of the line parallel to and above the $x_1 - x$ axis, tangent to the circle. If $\alpha_i \neq 0$ and there is no $j \leq i$ with $|\alpha_i| = |\alpha_j|$, let λ_i be the linear functional which has the value $sgn(\alpha_i)$ (= ± 1) at each point of the line tangent to the circle through $(1/|\alpha_i|, 0)$ with negative slope. If, on the other hand, there *is* a $j \leq i$ with $|\alpha_i| = |\alpha_i|$, let λ_i have the value $sgn(\alpha_i)$ on the tangent with *positive* slope through $(1/|\alpha_i|, 0)$.

Now, $P = \{x \in \mathbb{R}^2 : -1 \leq \lambda_i(x) \leq 1 \text{ for } 1 \leq i \leq d\}$ is a convex polygon in the plane, symmetric about the origin, with 2d edges. The circle of radius *r* is inscribed in it. Consider the function $\lambda : R^2 \to R^d$ with $\lambda(x)$ $= (\lambda_1(x), \dots, \lambda_d(x))$. Let $L = \lambda(R^2)$. Then $\lambda(P) = L \cap C^d$, and *L* is a plane which cuts each facet of C^d . Furthermore, the point $\lambda(1,0) = (\alpha_1, \cdots, \alpha_d)$ is on *L*, as required.

THEOREM 3. Suppose $d \geq 3$ and S is a set of at most $d - 2$ points of R^d . Let A be the linear subspace spanned *by* S. *Then there is a hyperplane* H *containing* S *which cuts each facet of* Cd if *and only* if A *is not one of the* $\binom{d}{2}$ + 4($\binom{d}{3}$ *subspaces* A(i, j), A(F).

PROOF. Clearly, Theorem 2 implies that if *A* is one of the subspaces $A(i, j)$ or $A(F)$ then there is no such hyperplane H.

Suppose A is not such a subspace. If dim $A \leq d - 3$, it follows from Theorem 1 that there is such a hyperplane. If dim $A = d - 2$, there must be a point α in *A* not on any of the subspaces $A(i, j)$ or $A(F)$. By the lemma, there is a plane L, containing α and the origin, which cuts each facet of C^d . Since $A \cap L$ contains the line through 0 and α , dim $(A \cup L) \leq d - 1$. Let H be a hyperplane containing $A \cup L$. H is the required hyperplane.

3. Cutting Cubes with Affine Spaces

Is there an affine subspace A of R^d of dimension $m = 2k$ which cuts each $(d - k)$ - face of C^d ? We have seen that there is a plane which cuts each facet of C^d , so for $k = 1$, the answer is, "Yes." Also, if $d = 2k + 1$ 1 the answer is again affirmative, since the hyperplane given by $x_1 + \cdots + x_d = 0$ cuts each $(k + 1)$ - face of \mathcal{C}^d .

However, we assert that if $1 \leq k \leq (d-1)/2$, then there is no such subspace A. That there is no such *linear* subspace follows by dualizing a theorem of McMullen and Shephard ([3], p. 130), and we use their result to prove the following theorem, from which the assertion follows.

THEOREM 4. If $0 \le m \le d - 1$, A is an m-dimensional affine subspace of \mathbb{R}^d , and A cuts each d_0 -dimensional *face of* C^d , *then* $m \geq 3(d - d_0) - 1$.

PROOF. Let x be an element of A. We show that the linear subspace $A' = A - x$ also cuts each d_0 – face of C^d . Suppose G is a d_o – face of C^d . Let F be its relative interior. Then $-F$ is the relative interior of $-G$, so $A \cap (-F) \neq 0$. It follows that $(-A) \cap F \neq 0$. (Note that $-A = A - 2x$.) Let *u* be an element of *F* \cap *A*. Let $v = v_o - 2x$ be an element of $(-A) \cap F$, so that $v_o \in A$. Then $1/2(u + v) \in A' \cap F$, and A' cuts each d_o face of \mathcal{C}^d .

Now, $A' \cap C^d$ is an m-dimensional centrally symmetric polytope with 2d facets, and any $d - d_0$ of these facets, no pair of which is opposite, intersect in a face of dimension $d_o - (d - m) = m - (d - d_o)$. Therefore, the dual of A' \cap C^d (see [1], page 47) is an m-dimensional polytope with $2d \ge 2(m + 2)$ vertices, and any $d - d_0$ of these vertices, no pair of which is opposite, are the vertices of a $(d - d_0 - 1)$ - simplex which is a face. By [3], p. 130, assertions (22) and (23), it follows that $d - d_0 \leq [(m + 1)/3]$; i.e., $m \geq 3(d)$ $- d_{\theta}$ $- 1$.

The following would be a consequence of the conjecture of McMullen and Shephard $(3, p. 133)$:

CONJECTURE. For $m \geq 2$, if d is larger than 2m-3 then there is no $m -$ dimensional affine subspace of \mathbb{R}^d *which cuts each* $(d - 2) - face$ of C^d .

We are grateful to Douglas Shier, Lambert Joel, and Alan Goldman for calling the problems treated in Section 2 to our attention, and to Martin Pearl for several editorial comments.

4. References

^[1] Grunbaurn, B., *Convex Polytopes,* Interscience, London (1967).

^[2] Joel, L. S., D. R. Shier, and M. L. Stein, Planes, Cubes and Center Representable Polytopes. Amer. Math. Monthly, 84(1977), 360-363.

^[3] McMullen, P., and G. C. Shephard, Diagrams for Centrally Symmetric Polytopes. Mathematika, 15(1968), 123-138.