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Cutting the d-Cube
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Some problems concerned with cutting faces of the cube with affine or linear spaces are considered. It is
shown that through any d-3 points of R? there passes a hyperplane which cuts all the facets of the d-cube.
Furthermore, it is shown that if m < d — 1 andd’' < d — [(m iz l)/fi]. then no m-dimensional affine subspace

of R cuts all the d '-dimensional faces of the cube.
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1. Introduction

If K is a convex set in R? and A is an affine subspace of R?, we say that A cuts K if A intersects the relative

interior of K, but A does not contain K.
Let C? be the d-cube in R%:
Cl={(xy -+, xg) €RY: —1=x;=1, for 1=i=<d}.

In section 2 we strengthen a result of Joel, Shier, and Stein [2]' by showing that, if S is a set of at most d-3
points of R%, then S is contained in a hyperplane H through the origin (i.e., a linear subspace of dimension d
— 1) which cuts each facet of the cube C%. We also characterize those sets S with IS ] = d — 2 for which
there is no such linear subspace.

In section 3 we prove that if m < d — 1 and [1/3(711 F 1)] < d — d’, then no m-dimensional affine
subspace of R? cuts all the d’-dimensional faces of the cube. This sharpens a theorem of McMullen and
Shephard [3], which may be regarded as asserting the nonexistence of such a linear subspace of R?.

2. Cutting the Facets of the Cube with Planes and Hyperplanes

When d = 3, it is not difficult to construct planes in R? which cut each facet of C?. Suppose P is a convex
polygon in the plane, R2, symmetric about the origin, and bounded by 2d edges. Then there are linear

functionals A; on R? with
P={ueR*:—1=Nuw =<1, for 1=i=d.
Consider the function X : R* = R? with
AMu) = (N(w), -+ Aa(w)).

Let L = N(R?), a plane in R?. Note that \(P) = L N C4.

Furthermore, note that if u is a point of the polygon P on the relative interior of the edge of P given by Ai(x)
= 1 (or — 1), then A(u) is on the relative interior of a corresponding facet {.\‘ €C%x,=1(or—1) } of C4. Tt
follows that L intersects the relative interior of each facet of C? (and cuts each facet, when d = 3).

* This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards,
Washington, D.C. 20234.
! Figures in brackets refer to literature references at the end of this paper.
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The following theorem is a strengthening of Theorem 2 of Joel, Shier, and Stein [2].

THEOREM 1. Suppose d = 3 and S is a set of at most d — 3 points in R%. There is a hyperplane H, containing
S U {0}, which cuts each facet of C9.

PROOF. It is possible to find a plane L, through the origin, which cuts each facet of C?. (We did this above!)
The linear space spanned by L U S has dimension at most d — 1, so there is a hyperplane H with L U S C
H. This is the required hyperplane.

For which sets S of d — 2 points is there no such hyperplane? The following two theorems will provide the
answer. With finitely many exceptions, each (d — 2) — dimensional linear linear subspace of R? is contained
in a hyperplane which cuts each facet of C%.

Forl=i=j;=d, let

AG,j) = (v e R iz =z, = O
IfF is a (d — 3) — dimensional face of C?, let A(F) be the linear subspace of R? spanned by F.

THEOREM 2. Suppose d = 3 and H is a hyperplane in R which cuts each facet of C%. Then H contains none
of the linear subspaces A(i, j), A(F).

PROOF. Let A be a plane orthogonal to A(Z, j). Let 7 be the orthogonal projection 7 : R? — A. If H contains
A(i,j) then (H) is a line in A which cuts all four edges of the square 7(C?%). There is no such line, so H
does not contain A(i, j).

Suppose H contains A(F) (and, hence, F') for some (d — 3) — face F of C%. LetA ' be the linear subspace
of dimension three which is orthogonal to the affine span of F. The orthogonal projection ' : R* — A’ takes
H 1o a plane 7 '(H) which cuts each facet of the 3-cube 7 '( C?) and which contains the vertex 7 '(F) of this
3-cube. No plane containing a vertex of the 3-cube cuts all the facets of that cube. (See, also, Joel, Shier and
Stein [2], Theorem 3.) It follows that H cannot contain A(F).

LEMMA. Suppose d = 3 and a = (ay, * -, oq) is a point not on any of subspaces A(i, j) or A(F). Then there
is a plane through the origin and o which cuts each facet of CO.

PROOF. Since « is on none of the subspaces A(z, j), at most one of @y, * * * , @q is zero. Since it is on none of
the subspaces A(F), no three of the @;'s have the same absolute value. Let C be a circle centered at the origin
in the plane, R?, whose radius r is less than the minimum of the numbers l/| a; |, forl=i=dand o; ¥ 0.
Note that, if a; # 0, there are two lines in the plane through the point (1/| ; |, 0) which are tangent to the
circle; one of these has positive slope and the other has negative slope.

We construct d linear functionals on R2. If a; = 0, let A;(x1, x2) = x5/ be the linear functional which has
the value 1 at each point of the line parallel to and above the x; — axis, tangent to the circle. If a; # 0 and
there is noj < ¢ with ] o [ = | ; I, let A; be the linear functional which has the value sgn(ca;) (= 1) at each
point of the line tangent to the circle through (1/| a; |, 0) with negative slope. If, on the other hand, there is a
j <iwith |a;| = ||, let A; have the value sgn(a;) on the tangent with positive slope through (1/| a; |, 0).

Now, P ={x €R*: —1 = \;(x) = 1 for 1 =i = d} is a convex polygon in the plane, symmetric about the
origin, with 2d edges. The circle of radius r is inscribed in it. Consider the function A : R> = R? with A(x)
= (Ay(x), = -+, Ng(x) ). Let L = A(R?). Then M(P) = L N C%, and L is a plane which cuts each facet of C?.
Furthermore, the point A(1, 0) = (ay, * ** , aq) is on L, as required.

THEOREM 3. Suppose d = 3 and S is a set of at most d — 2 points of R%. Let A be the linear subspace spanned
by S. Then there is a hyperplane H containing S which cuts each facet of C if and only if A is not one of the
& + 49 subspaces A(i, j), A(F).

Proor. Clearly, Theorem 2 implies that if A is one of the subspaces A(Z, j) or A(F) then there is no such
hyperplane H.
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Suppose A is not such a subspace. If dim A = d — 3, it follows from Theorem 1 that there is such a
hyperplane. If dim A = d — 2, there must be a point & in A not on any of the subspaces A(Z, j) or A(F). By
the lemma, there is a plane L, containing a and the origin, which cuts each facet of C?. Since A N L contains
the line through 0 and @, dim (A UL) = d — 1. Let H be a hyperplane containing A U L. H is the required
hyperplane.

3. Cutting Cubes with Affine Spaces

Is there an affine subspace A of R? of dimension m = 2k which cuts each (d — k) — face of C*? We have
seen that there is a plane which cuts each facet of C%, so fork = 1, the answer is, “Yes.” Also, ifd = 2k +
1 the answer is again affirmative, since the hyperplane given by x; + * + - + x4 = O cuts each (k + 1) — face
of C4.

However, we assert that if 1 < k < (d — 1)/2, then there is no such subspace A. That there is no such
linear subspace follows by dualizing a theorem of McMullen and Shephard ([3], p. 130), and we use their
result to prove the following theorem, from which the assertion follows.

THEOREM 4. I[f0 = m < d — 1, A is an m-dimensional affine subspace of R, and A cuts each do-dimensional
face of CY, then m = 3(d — dy) — 1.

PROOF. Let x be an element of A. We show that the linear subspace A" = A — x also cuts each d, — face of
e, Suppose G is a d, — face of C%. Let F be its relative interior. Then —F is the relative interior of —G, so
A N(=F) # 0. It follows that (—4) N F # 0. (Note that —A = A — 2x.) Let u be an element of ' N A. Let
v = 1, — 2x be an element of (—A) N F, so that v, € A. Then Y2(u + v) € A’ N F, and A’ cuts each d, —
face of C?.

Now, A’ N C? is an m-dimensional centrally symmetric polytope with 2d facets, and any d — d, of these
facets, no pair of which is opposite, intersect in a face of dimension dy — (d — m) = m — (d — d,).
Therefore, the dual of A’ N C? (see [1], page 47) is an m-dimensional polytope with 2d = 2(m + 2) vertices,
and any d — d, of these vertices, no pair of which is opposite, are the vertices of a (d — d, — 1) — simplex
which is a face. By [3], p. 130, assertions (22) and (23), it follows thatd — d, = [ (m + 1)/3]; i.e., m = 3(d
= (@) = Il

The following would be a consequence of the conjecture of McMullen and Shephard ([3], p. 133):

CONJECTURE. For m = 2. if d is larger than 2m-3 then there is no m — dimensional affine subspace of R4
which cuts each (d — 2) — face of CY.

We are grateful to Douglas Shier, Lambert Joel, and Alan Goldman for calling the problems treated in
Section 2 to our attention, and to Martin Pearl for several editorial comments.
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