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1. Introduction

The capabilities of presently available general-purpose mathematical software are often strained by the
giant data bases and numerous quantitative relationships characterizing modern large-scale mathematical
models. These strains are reflected in inefficient computational procedures, and in awkward programming
constraints whose satisfaction is time-consuming and likely to generate errors. There is an increasing demand
for software specifically oriented toward these needs of operations-research modelling applications, and a first

priority is an improved capability for handling very large sparse or special-structure matrices.
1.1 Purpose

This paper presents the results of a short study on means for enhancing Standard FORTRAN, as specified
by the American Standards Association (renamed the American National Standards Institute: ANSI), in order
to accommodate the needs of operations research analysts in some of their programming tasks which deal with
large, structured and mostly sparse matrices. These needs arise in the widely used techniques of mathematical
programming and simulation.

The present study did not extend to the point of trial implementation and experimental testing, and
therefore must be understood as representing the investigators’ opinions, based upon prior experience and
“armchair analysis”. In most cases alternatives were considered before deciding upon the syntax presented
below. Some of these alternatives are noted because subsequent study may involve their reconsideration. It
would be premature to aim here at the precision and completeness appropriate in a full-fledged proposal for a
candidate standard. Instead, our goal is to lay out ideas at a level of detail adequate to enable their discussion
by the technical community.

We are aware that some of the topics touched upon below have been discussed extensively, for instance, by
the ANSI FORTRAN committee on previous occasions. Some array computation capabilities have been

* Based on a report (Computer Science Department, VPI, Blacksburg, VA, September 30, 1975) prepared for the National Bureau of Standards, under Purchase Order #600409
10 the Applied Mathematics Division during the Summer of 1975.
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implemented in PL/1. Our focus here, however, is on large sparse and structured matrices —a class of data
structures which to our knowledge have not been discussed previously from the point of view of language
requirements. Last but not least, we aim to identify avenues for much needed research and development,

including experimentation (see section 9.1), following this first step.
1.2 American Standard FORTRAN

It is important to emphasize that this study is concerned with enhancing ANS FORTRAN as a standard and
not with versions which have been produced commercially or otherwise for different processors. Of course,
the recommendations in this report reflect processor considerations, but the primary intent is to comply with
the criteria of the American National Standards Institute of which NBS is a member. It is therefore befitting
that we briefly review elements of ANS FORTRAN with regard to their effect on our study.

Since the inception of FORTRAN (1956), many versions appeared with different processors. In an effort to
provide the first standardized language, the Computer and Business Equipment Manufacturers Association
(CBEMA), secretariat for ANSI, formed a committee to establish a standard FORTRAN. Their specifications
were published in X3.9-1966 (see [2]!, and we call this ANS FORTRAN. Several errors and misconceptions
were rectified in 1969 (see [1]). However, the ANSI FORTRAN Committee (X3J3) recently prepared a
detailed proposal for a new standard. That draft is called FORTREV? in this report.

Perhaps the most significant enhancement in FORTREV is the allowance of character data types plus
associated string processing capability. A second technical change, which appears in FORTREV, is to a PL/
1 type of syntax for specifying index ranges. To accomplish this the colon (:) has been added to the character
set, and we shall use it for similar index referencing.

The ANSI FORTRAN committee has so far decided against the use of dynamic storage allocation (even to
the limited extent found in ALGOL). Their decision stems from a posture on maintaining maximal
independence of the processor (viz., the operating system). Our recommendations include a ‘quasi-dynamic
storage allocation’ capability which may be achieved while maintaining the ANSI posture of independence.

The ANSI FORTRAN committee has also adopted the criterion that compilation should be achievable in
one pass. The syntax presented in this report complies with this requirement as well.

In general, our enhancement to represent and manipulate large, structured matrices conforms with the
former ASA’s criteria as listed in X3.9-1966. This includes “interchangeability of FORTRAN programs
between processors” and “compatibility with existing practice.”

It is important to note that the spirit of ASA’s criteria for enhancement included maintenance of language
style. This is perhaps a subjective and rather vague criterion, but it has influenced the syntax proposed in this
report. At least one less vague derivative from the notion of language style is that of conformance. This is
described in FORTREV, at least with respect to upward compatibility (i.e., a correct program must remain
so, and an incorrect program must produce the same diagnostics). One exception is noted dealing with
optional forms of output, and our enhancement contains a similar exception (see sec. 7).

1.3 Notation

The notation used in this report in describing the form of FORTRAN statements or constructs employs the
metalanguage described in FORTREV. This generally agrees with the metalanguages found in most reference
manuals. In particular, the following conventions are used:

(I) Special characters from the FORTRAN character set, uppercase letters, and uppercase words are to
be written as shown, except where otherwise noted.

(2) Underlined lowercase letters and lowercase words indicate general entities for which specific entities
must be substituted in actual statements. Once a given lowercase letter or word is used in a syntactic
specification to represent an entity, all subsequent occurrences of that letter or word represent the
same entity until that letter or word is used in a subsequent syntactic specification to represent a
different entity.

! Figures in brackets indicate literature references at the end of this paper.
2 Now described in ref. 14.
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(3) Brackets ([ |) are used to indicate one or more optional items.

(4) An ellipsis (-*-) indicates that the preceding optional items may be repeated one or more times in
succession.

(5) Blanks are used to improve readability, but unless otherwise noted have no significance.

The type of elements refers to the type of variable acceptable in ANSI FORTRAN. Currently, there are two
types: (1) arithmetic and (2) logical. (The arithmetic type may be further stratified into integer, real, double
precision and complex.) FORTREV admits a third type: (3) character. The construction of the name of a
matrix identifies its type of elements in the same manner currently applicable to arrays. Since we require
every element of a matrix to be of the same type, we can refer to the ‘type of matrix’ to mean its type of
elements. We use the terms ‘row” and ‘column’ of a matrix in the usual sense, but the manner of accessing a
row, column or element is subject to further specification. Before we do so let us define a trivial element to be
as follows:

Data Type Meaning of Trivial
arithmetic Z€ero
logical false
character blank

Then, we define a matrix to be trivial if all of its elements are trivial.

Next define a submatrix of a matrix to consist of subsets of, respectively, its rows and columns with the
associated elements. Thus, each row (or column) of a matrix constitutes an instance of a submatrix. This
implies a definition of trivial rows and trivial columns.

A two dimensional array is considered a matrix with an implied manner of access which retains current
usage. In particular, trivial elements of arrays are explicitly represented, and we have random access to
elements by index numbers.

In the next section we shall describe a syntax for declaring other manners of access, in which the associated
(packed) matrices do not explicitly represent trivial elements. Basically we can first specify whether we want
to access by row, column or element; then we specify whether the mode is to be sequential or random. The
essential difference is in subsequent speed of computation rather than feasibility of references. An operations
research programmer can acquire a deeper appreciaton for this distinction upon examining the structures for
implementation (see section 8).

In summary, the manner of access is by one of the following:

(1) row

(2) column

(3) element
and the mode is either sequential or random. We emphasize that the reference to ‘sequential” versus ‘random’
is for efficiency considerations, and affects neither a program’s correctness nor its meaning.

We interject the thought that (1) and (2) may be merged into one specification of a dimension when
extending the enhancement to higher dimensional arrays. However, there are some difficulties with regard to
language style and ease-of-use.

An example illustrates the metalanguage. Given a description of the form of a statement as:
CALL sub[(a[, a]:")]
the following forms are allowed:

CALL sub

CALL sub (a)
CALL sub (a, a)
CALL sub (a, a, a)

clch
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2. Extended Terms and Concepts

This section describes the extended terms and concepts associated with the proposed enhancement.
Consideraton is given to differences between the current standard and FORTREV.

2.1 Arrays and Matrices

Current (1966) ANSI FORTRAN defines an array as “an ordered set of data of one, two, or three
dimensions.” FORTREV extends this range to seven dimensions.

Within the context of this study the meaning of “array” is maintained with the following characteristics
noted:

(1) storage in linear list form,
(2) references by index numbers,
(3) no dynamic storage allocation.

Our intention is to provide a new type of array, which we may call a packed array, differing in characteristics
(1) and (2); further, certain syntactical elements and use of intrinsic functions (cf. sec. 5.2) will provide a
“quasi-dynamic storage allocation” (which is processor independent with regard to feasibility).

In this study we shall confine ourselves to packed arrays of two dimensions which we call “matrices.” As
we describe some of the difficulties encountered in achieving the stated purpose, the existence of problems to
be resolved for higher dimensions will become noticeable. (The handling of higher dimensional arrays is cited
in secton 9 as one of the avenues for further study.)

Formally, a matrix is a named collection of data whose elements are referenced by two index values. The
exact nature of the index values, method of storage, types of elements and manners of reference are subjects
described in subsequent sections.

We may note here that the basic attributes of a matrix are:

(1) type of elements
(2) manner of access
(3) effective size.

which we shall mention in secton 3 when introducing the syntax for declaration.

The effective size of a matrix is a dynamic entity represented by a couple, say (m, n), where m and n are
non-negative integers specifying the number of non-trivial rows and non-trivial columns, respectively. We
may thus think of every matrix as infinite dimensional (to have inherent mathematical conformality of
dimensions when performing operations) with the effective size determining storage requirements and speed of
computation. Note this would mean every matrix is a trivial matrix (i.e. a matrix whose elements are all
trivial) when first declared.

2.2 Names

It is often desirable to permit index reference by name rather than by number. This is especially true in
operations research applications, notably in mathematical programming or simulation models. For example,
a column may correspond to an activity of transporting goods from a supplier to a warehouse, perhaps in a
particular time period. In this case it would be desirable to reference the column by the form:

supplier - warehouse * time period.
Specifically, the supplier may be identified by a city name, such as DALLAS, the warehouse may be
identified by a region,say SW, and the time period may be a month, say OCT. Thus, in this case a column
may be referenced by the 3-field name

DALLAS-SW - OCT
24



We shall assume FORTREV becomes accepted, at least the allowance of character variables and
expressions. In this case string processing will become a part of ANSI FORTRAN. The only special concern
for this enhancement is the reference to a name of a column or row. This is a set of character variables
associated with every matrix. Specifically, every row and every column has an associated name. Initially, the
names are blank strings; sections 4.6 and 7.1 describe how names can be changed.

We point out that at least one alternative was considered for this report but rejected on stylistic grounds.
That is, it may be useful to the operations research programmer to permit names consisting of n-tuples (where
he specifies the non-negative integer n). This would mean references to a name would appear as n-
dimensional arrays, presenting difficulties, for example, with assignment statements. Also, since FORTREV
allows any subscript range, it may be burdensome for a one-pass compiler to process character expressions
involving names. The decision to represent names as character strings (of one dimension) stems from our
desired compliance with ANSI criteria, which include compatibility with current processors as well as
language style. At present, operations research programmers use one character string to name an entity (such
as an activity) and assume the burden of establishing attribute fields for report writing.

3. Matrix Declaration and Reference

This section describes and illustrates the ways in which matrices are declared and referenced. It includes

the syntax for the declarations.
3.1 Matrix Specification Statement

FORTREV defines nine kinds of specification statements, each of which is nonexecutable. We propose a
tenth specification statement to specify a (packed) matrix. The syntax is as follows:

[d] MATRIX af(o[, o] )], "]
where
d is a data type declaration

a is the name of the matrix

0 1s an option according to the following:

Option Meaning

NAME(n) specifies the names of rows and columns have
lengths not exceeding n characters (default

of nis 6)

SEOUENTIAL BY ROW specifies sequential mode of access by row
Q “ [BY COLUMN (the default) or by column
RANDOM ACCESS specifies random access to rows, columns or

elements

MAXROW = n specifies upper limit (n) on row index number
MAXCOL = n specifies upper limit (n) on column index
number

Before we further describe and illustrate these options, consider the simple declaration:
MATRIX A

which declares a matrix whose name is “A’. Its data type is arithmetic by standard default (in particular, A is
REAL because its name begins with ‘A’). If this were preceded by the specification:

LOGICAL A
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then the data type of A would be logical. The mode of access is random by element (the default). The row and
column names would be limited to six characters apiece, and no limit would be placed on the magnitudes of
row or column index numbers.

Now consider the options listed. First, the data type may be specified in the matrix specification statement
as in declaring arrays. That is, we may write:

LOGICAL A
DIMENSION A(100)

to declare an array of one dimension having data of type logical, or we may write
LOGICAL A(100)

to make the same declaration. In our case we may write

LOGICAL A
MATRIX A

or
LOGICAL MATRIX A

to declare a matrix whose elements are of the logical data type.

The remaining options may be declared in any order. The first of these (as tabulated above) is used to
specify the maximum number of characters (called the length) of the row and column names. Thus, we may
write

MATRIX A(NAME(10))

to specify a maximum of 10 characters in the names.

The next option specifies a sequential mode of desired accessibility. This will not limit feasibility of
random access, such as referencing an element by a random choice of indices in an expression, but it will
affect the consumption of time and space (see section 8). Special input and output statements (see section 7)
are affected by use of this option.

If the option specifying a sequential mode is not used, then a random access by element is assumed as
default. However, if the option specifying sequential mode is used, then it may be desired to specify random
access with respect to row or column identification. This is the purpose of option 3: RANDOM ACCESS. For
example, if the operations research programmer uses the matrix by proceeding sequentially from one column
to the next, then he should specify SEQUENTIAL BY COLUMN and not specify RANDOM ACCESS. This
would be the case in the “ordinary” simplex algorithm. On the other hand, if the program uses the matrix only
by accessing a column at a time, but with the selection of the next column dependent on the data, then both
options, SEQUENTIAL BY COLUMN and RANDOM ACCESS, should be specified. This is exemplified by
the simplex algorithm modified by a data-driven pricing tactic.

The next two options specify automatic testing of effective row and/or column dimensions. If the effective
size would violate this limit during execution, then an ‘index-out-of-range’ error condition would be set.

EXAMPLE 1: MATRIX A(NAME(10)), K

Assuming the program uses no other specification statements, this specifies two matrices. The first has
been named “A’; its data type is arithmetic (REAL), and its mode of access is random by element. The second
matrix has been named ‘K’; its data type is arithmetic (INTEGER), and its mode of access is random by
element. A allows up to 10 characters in a name, but K only allows 6 (the default).

EXAMPLE 2: LOGICAL Y
COMPLEX C
MATRIX Y (SEQUENTIAL BY ROW), C(MAXROW = 100)
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In this example two matrices are specified. The first has been named ‘Y’; its data type is logical, and its
mode of access is sequential by row. The second matrix has been named ‘C’; its data type is arithmetic
(COMPLEX), and its mode of access is random by element; it has an effective row size limit of 100.

3.2 Index and Matrix References

A matrix may be referenced in its entirety by using its name, and this constitutes the simplest matrix
reference. To permit references to submatrices, notably to its rows, columns or elements, an index reference is
used which may be explicit or implicit.

An explicit index reference is of the following form:

(a[:b], ¢[:d])

where
a and ¢ are integer or character expressions or “*’
b is the same type of expression as a or is “*’

d is the same type of expression as ¢ or is ¥

The colon (:) is used for ranging, and the asterisk (*) is used to denote extremes.

In the case of a name range, comparisons are based on collating sequence (as in FORTREV). For example,
if a set of names is {ARK, ALA, LO, TS} then the range ‘ALA:TS’ would reference the entire set, and the
range ‘LO:TS” would reference the subset: {LO, TS}. This same subset would be referenced by ‘L:TZ’ because

it is not necessary that a and b be in the set of names.
EXAMPLE 1: AR*I + 1, )

This references an element of A by evaluating the row number 2*I + 1 and the column number J. (Both are

integer expressions.)
EXAMPLE 2: A(l:K, J)

This references a submatrix by specifying a column number (evaluation of J) and a range of row numbers

(1 to the value of K).
EXAMPLE 3: A(BHABC, 3)

This references the element identified by the row whose name is “ABC” and column number 3. (The same

reference can be made by A(ABC’, 3).)

EXAMPLE 4: A(‘COST, ‘DALNEOCT:*'DALSWOCT’)

This references the submatrix consisting of the one row named ‘COST’ and the columns whose names fall in
the range ‘DALNEOCT’ to ‘DALSWOCT’. For example, if characters 4 and 5 must be one of the strings, “NE’,
‘NW’, ‘SE” or ‘SW’, then the four columns referenced are ‘DALNEOCT’, ‘DALNWOCT’, ‘DALSEOCT’ and
‘DALSWOCT".

EXAMPLE 5: A(4:*, **DALSWOCT)

This references the submatrix consisting of rows 4 to the largest index value (dynamic) and columns whose
names are less than or equal to (in collating sequence) ‘DALSWOCT".
An implicit index reference has at least one of the row/column index references (of form a[:b]) given by an

asterisk (*) or a period (.) with the following meaning:

*  specifies all rows/ columns

specifies row/ column name
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Here are some examples:

A(5, *) references row 5 (i.e. “* specifies all col-
umns)

A*, ]+ 1) references column whose index number is the
evaluation of J + 1’

A(1:10, *) references the first 10 rows of A

A(*, ‘DALNE’:'DALSW’) references all rows and those columns whose
names lie in the range ‘DALNE’ to
‘DALSW’

A(., S) references name of column 5

A(5, .) references name of row 5

A(.,2:J+ 1) references names of columns 2 through the

value of ] + 1’

If an index name cannot be found during execution (i.e. no name match), an ‘index-out-of-range’ error
condition is set. It should be noted that names are treated as character variables; this constitutes a departure
from CBEMA’s style since the data type of the entire matrix need not be of character data type.

We point out that it may be desirable to reference a collection of submatrices specified by a list. This is
exemplified by referencing a basis from a matrix with a list of column numbers (or names). Technically, this

could be achieved, for example by the form:

A, )

where i and j are lists. However, such constructs are not part of ANSI FORTRAN, and arrays would be
needed. This would introduce the need for further identifying which elements of the array are to be used. (To
always use the entire array raises other problems.) This would cause concern over maintaining the language
style. Of course, a subset of columns can be extracted with the use of a DO loop, one column-at-a-time.

4. Matrix Expressions and Matrix Assignment Statements

This section presents an extension of the expression types in FORTREV to permit direct manipulation of
matrices (with two-dimensional arrays treated as matrices of special access structure). The types of matrix
expressions are arithmetic, character, logical, relational and concatenation. The style of such expressions and
associated matrix assignment statements complies with the syntactic style of “scalar expressions” (i.e.
expressions in standard FORTRAN). Reasons for certain restrictions are presented; generally these are used
to resolve certain ambiguities that arise.

In each case the simplest matrix expression is a matrix reference. More complicated matrix expressions
may be formed by use of operators and operands. These depend upon the data type (arithmetic, logical or
character), and all data types (matrices or scalars) must be the same in a matrix expression or a matrix
assignment statement. This agrees with standard FORTRAN usage of expressions and assignment statements.

4.1 Arithmetic Matrix Expressions

An arithmetic matrix expression is used to express a numeric computation involving one or more (sub)
matrices and possibly some scalars. Evaluation of an arithmetic matrix expression must produce an arithmetic
matrix.

To form a matrix expression other than a simple matrix reference, operators are used. These may be unary
or binary, and the operands may each be scalar or matrix. In ANSI FORTRAN the five arithmetic operators
are as follows:
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Operator Representing
* Exponentiation
/ Division
& Multiplication
- Subtraction
4 Addition

The subtraction and addition operators also have unary specifications (e.g. —X is the same as 0—X).
We shall use the same set of operator symbols, but the meaning will depend upon the operands used. Let
A’ and ‘B’ denote matrix references, and let °X” denote a scalar reference in the following:

3

Expression Meaning

AX*X Exponentiate every element of A by X (convention: 0%*0 = ()
AX*B UNDEFINED

X¥*A UNDEFINED

A/X Divide every element of A by X

A/B UNDEFINED

X/A UNDEFINED

A*X Multiply every element of A by X

A*B Matrix multiplication

X*A Multiply every element of A by X

IARESIXS Subtract X from every element of A

X—-A Add X to the negative of every element of A
A—-B Matrix subtraction

ANEEX Add X to every element of A

A+B Matrix addition

X+ A Add X to every element of A

Further, the subtraction operator is used as a unary operator, so —A means to negate every element of A.
Note that since zeroes are not represented, there is no distinction between +0 and —0; this agrees with the
specification in FORTREV.

When both operands are matrices (A*B, A + B or A — B), the issue of conformality arises. Mathematically,
there is a restriction on the relative dimensions. Since a major aspect of this enhancement is to permit
effective sizes which vary during execution, it is not possible to check coformality at compilation without
degrading performance, particularly in a one-pass compiler. By treating the matrices as infinite dimensional
(with trivial rows and columns not explicitly represented) every operation is conformal. If the operations
research programmer wants to perform his own conformality check, he may use intrinsic functions (see section
5) to retrieve the effective size and perform an IF test.

We also considered a condition switch of the form

CONFORMALITY = a

where a specifies the type of conformality test desired in all subsequent matrix expressions. However, this
requires further study to consider types of conformality checks and certain storage features (such as blocking).

Notice that A (or B) and X in the above table of binary expressions may be replaced by arithmetic matrix
expressions and arithmetic scalar expressions, respectively. Further, a matrix expression may reduce to a
scalar value, such as the following inner product between row (I) of A and column (J) of B:

AL, *) *B(*, J).

The result is a 1 X 1 matrix (different from a scalar) but may be assigned to a scalar variable (cf. sec. 4.5).
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4.2 logical Matrix Expressions

The logical matrix expression is formed with logical operators and logical operands (matrix or scalar).
Evaluation of a logical matrix expression produces a matrix of type logical.
The logical operators are:

Operator Representing Priority
.NOT. Negation Highest
.AND. Conjunction Intermediate
.OR. Disjunction Lowest

The operation is element-by-element. Thus, A.AND.B produces a matrix with element (i, j) equal to the
logical value of A(i, j).AND.B(i, j). Similarly, .NOT.A negates A. Use of a logical matrix and a logical scalar
is permitted with the following meaning:

A.OR.X (or X.OR.A) = A.
A.AND.X (or X.AND.A) = A if X = .TRUE. and null matrix if X = .FALSE.

4.3 Character Matrix Expressions

The character matrix expression is formed with character operators and character operands (matrix or
scalar). Evaluation of a character matrix expression produces a matrix of type character.

The only operator is the concatenation, denoted by two slant characters (//). This is to be performed
element-by-element. Thus, A//B produces a matrix whose (i, j) element is A(i, j)//B(, j). If A//X (or X//A) is
used, then the resulting matrix has (i, j) element equal to A(i, j)//X (or X//A(i, j)), respectively.

4.4 Relational Matrix Expressions

A relational matrix expression is used to compare two arithmetic expressions or two character expressions.
In each case at least one must be a matrix expression.

As in FORTREV, relational matrix expressions may appear only within logical expressions. Evaluation of
a relational matrix expression produces a (scalar) result of type logical.

The relational operators are:

Operator Representing
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

Operations are on the elements. Thus, the logical value of A.LT.B. is . TRUE. if A(i, j).LT.B(, j) for all (i, j)
such that either A(i, j) or B(i, j) is nontrivial and .FALSE. otherwise.

One of the operands may be a scalar. For example, the logical value of A.LT.O is .TRUE. if every
nontrivial element of A is less than zero; otherwise it is .FALSE.

4.5 Concatenation Matrix Expressions
A concatenation expression 1s used to concatenate two or more matrices of the same type. This is the basic

method by which matrices may be built from smaller matrices. There are three forms of concatenation: row,
column and diagonal.
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The concatenation operators are:

Operator Representing
ADDCOL. Add new column(s)
.ADDROW. Add new row(s)
ADDIAG. Add new (block) diagonal

Both operands must be matrices. A schematic is as follows:

A .ADDCOL. B produces A| B
|
A
A .ADDROW. B produces B
A .ADDIAG. B produces AT
T| B

where T is a trivial matrix. The rows and/or columns of B are renumbered as appropriate in forming the new
matrix.

Notice that conformality always prevails with missing elements interpreted as trivial (O for arithmetic,
.FALSE. for logical and blank for character). This stems from viewing the matrix as quadrant IV with index
numbers for rows and columns running from 1 to infinity. We now describe how negative indices may be
similarly interpreted, resulting in a more flexible construct.

Suppose we wish to form a staircase of the form

where T is a trivial matrix, and n is a positive integer. Let us further suppose we know the contents of N is n.

Then, we could perform
A.ADDCOL.B(—N:*, *)

The matrix reference, B(—N:*, *), says we want the submatrix of B consisting of rows numbered from —N to
the highest row index number and all columns. By interpreting negative row and column values as containing
trivial elements only, this forces renumbering to produce the desired result.

This places some burden on the processor because a negative (numerical) index value ordinarily results in
an “index-out-of-range” error condition (although FORTREV allows negative index numbers in arrays). For
this use in the concatenation operators, negative index values do hold meaning.

We view the “body” of the matrix as having finite effective size, but the matrix implicity has infinite size
from minus infinity to plus infinity in both dimensions. A schematic of this view is as follows:
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% +tg % + Column index

+ A
T T~ Body of A

v )
Row index

Outside the body all elements are trivial.
Thus, the elements in quadrants 1, IT and III may be referenced in the manner just described even though
their values are trivial.

4.6 Matrix Assignment Statement

The matrix assignment statement is of the form
a=e
where a is a scalar variable or a matrix reference and e is a matrix expression. The data types of a and e must
conform as in FORTREV assignment statements.
The matrix assignment statement may be used to convert from one structure to another. For example, if A
is a matrix and X is an array (of two dimensions), then
A=X
packs X (eliminates trivial elements). The reverse is possible with
X=4A4
Similarly, if X has been declared as a column by
DIMENSION X(100, 1)
then this could be augmented to A by

A = A.ADDCOL.X

If a is a scalar variable, then the evaluation of € must produce a matrix whose effective size does not exceed
(1, 1). For example, we may compute the inner product between a row array declared by

DIMENSION PI(1, 100)
and column (J) of matrix A by
DJ = PI(1, *)*A(*, )
In a less obvious situation we may have

D] = PI*X
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At execution time, after PI*X is evaluated, it is determined if this assignment is correct. If the evaluation
of e produces a matrix whose effective size exceeds (1, 1), then an error condition is set by the processor.

The names of the rows and columns of a (when a is a matrix reference) are not determined by e. This
reflects the fact that the operations are on bodies of matrices, and no naming is inherited. Of course, a simple
assignment statement of the form:

assigns the column names of B to the column names of A.
It is appropriate to point out why a matrix expression was defined to require at least one matrix reference.
Consider the assignment

A = B*C

where A is a matrix. If B and C are both scalars, we could interpret the result as a 1 X 1 matrix. However, in
keeping with ANSI FORTRAN style this would overwrite A. We believe this poses a danger in that the
programmer probably did not intend to perform such an overwrite.

One way the programmer could achieve the intended result is to reinitialize A as trivial (see, for example,
sec. 6.2). Then he could name the first row and column, thereby making its effective size (1, 1). Finally, he

could write:
A = A + B*C
5. Functions and Subroutines

FORTREV identifies four categories of procedures: statement functions, intrinsic functions, external
functions and subroutines. Our proposed enhancement extends the references made in FORTREV to ‘variable’

and ‘expression’ to permit ‘matrix’ and ‘matrix expression’ plus some added features.
5.1 Statement Functions

A statement function is defined internally to the (sub) program unit in which it is referenced, and it is of the
following form:

f(alal) =

where f is the function name, a is an argument and e is an expression. In the enhancement f, a or e may be
matrices with the stipulation that if f is a matrix, then e must be a matrix expression (i.e. must contain a
matrix reference).

We also introduce another form of function definition similar to the statement function. Its form is as

follows:
NOTE: {[ (a[, a]-**)] = e

where f is the function name, a is an argument and e is an expression. The form following ‘NOTE: is the same
as a statement function, except it is not necessary to have any arguments. However, the meaning differs as
follows.

In the NOTE statement (just defined) matrix references and variables appearing in e need not appear as
arguments. The processor merely uses e wherever f[ (a[, a]:-*) ] is referenced in the source program.

For example, to use a statement function that expresses a matrix product we would write

PROD(A, B) = A*B
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where the arguments are necessary. However, in the NOTE statement we may write
NOTE: PROD = A*B

Then, wherever ‘PROD’ appears, ‘A*B’ will be used.

5.2 Intrinsic Functions

Certain functions of repeated use by many programmers have been specified by FORTREV to be intrinsic.
There are two ways this idea is exploited in our proposed enhancement: (1) extension of scalar functions to
allow matrix arguments, and (2) specification of new intrinsic functions for matrices.

5.2.1 Extension of Scalar Functions

If f is a function of a scalar, then this extends to F(A), where A is a matrix reference, and F now becomes
a matrix reference. This is to be interpreted by defining the (i, j) element of F(A) by f(A(i, j)). For example,
ABS(A) defines the matrix (of arithmetic type) whose elements are the absolute values of the associated
elements of A.

5.2.2 Matrix Intrinsic Functions

In the table below a list of matrix intrinsic functions is given with associated meanings. ‘A’ and ‘B’ are used
to denote matrix references, ‘X’ denotes an arithmetic scalar, and ‘N’ deontes an integer scalar.

Table of Intrinsic Matrix Functions

name input output meaning
TRANS A B B = transpose of A
DIAG A B B = diagonal of A
TRACE A X X = trace of A for arithmetic type
IMAGE A B B = boolean image of A (non-trivial elements re-

placed by 1)

MIN A X X = maximum value for arithmetic type (inside body
of A)

MAX A X X = minimum value for arithmetic type (inside body
of A)

NCOL A N N = number of non-trivial columns of A

NROW A N N = number of non-trivial rows of A

MAXCOL A N N = maximum column index number

MAXROW A N N = maximum row index number

NWORDS A N N = number of words of storage used to represent A

INDEX A N N = latest key index number of A referenced for

sequential mode

Some illustrative programs using these intrinsic matrix functions are as follows.
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ExAMPLE 1: Pricing routine for simplex method obtaining first candidate.

SUBROUTINE PRICE (M, PI, A, *) 1l
DIMENSION PI(1, M) 2
MATRIX A (SEQUENTIAL BY COLUMN) 3
COMMON/TOL/DJTOL 4
N = MAXCOL (A) 5)
DO10J =1, N 6
DJ = PI(1, *)*A(*, J) 7
IF (DJ.GT.DJTOL)RETURN 8
10 CONTINUE 9
RETURN 1 10
END 11
EXPLANATION:
Line 1:  Subroutine identification passing the number of rows (M), price vector (PI), matrix (A) and
statement number (*) for transfer of control if there are no candidates.
Line 2:  Standard specification statement.
Line 3:  Matrix specification statement.
Line 4: Passes a tolerance through named COMMON.
Line 5:  Use of intrinsic function MAXCOL to obtain largest column index referenced (i.e. number of
activities in problem).
Line 6: DO loop over column numbers.
Line 7:  Inner product between the price vector and column (J) which is assigned to *DJ’ (denoting reduced
cost).
Line 8: Test for candidacy. If the value of DJ exceeds the tolerance (DJTOL), a RETURN to calling
program unit occurs.
Line 9:  End of DO loop.

Line 10: Alternate RETURN (if no candidates are found).

Now suppose the calling program is re-entered after the CALL statement, and a candidate is found (normal
RETURN). To identify the index number the intrinsic matrix function, INDEX, is used as

= INDEX (A)

This retrieves the latest column number referenced. To expand column (J) in preparation for a row selection

routine, the programmer merely writes

ALPHA = A(*, ])

where ALPHA has appeared in a specification statement such as

DIMENSION ALPHA (M, 1)

with M equal to the row dimension.

EXAMPLE 2: The scalar product of two matrices is:

2 a ij[)ij

(1,3)

It is not difficult to show this is equal to

trace(a*(b")).
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Thus, if C is a matrix of costs and X is a matrix of activity levels, the total cost,

E Cini.i7

(i,J)
may be computed by specifying:
MATRIX X, C
COST = TRACE(C*TRANS(X))

where COST is a scalar.
Additional examples will be given in section 7 to illustrate input and output statements.

5.3 External Functions

An external function is defined externally to the (sub) program unit that references it, and its form is:
[t] FUNCTION f(a[, a]- - *)
where:

Lis a data type,
f is the name of the function,
ais a dummy argument.

In the enhanced FORTRAN we allow t to be MATRIX (in addition to INTEGER, REAL, etc.).
The basic external functions described in X3.9-1966 are not part of FORTREV, which placed them into
the category of intrinsic functions.

5.4 Subroutines

A subroutine is defined externally to the (sub) program unit that references it and is of the form:
SUBROUTINE s[(al, a]--)]
where

s is the name of the subroutine
a is a dummy argument.

We require no ammendments of FORTREV with respect to an (external) subroutine, except that matrix
constructs may be passed as dummy arguments.

6. Storage Control

Since the effective sizes of matrices are dynamic, it is possible to consume all available space, yet attempt
to execute a statement which requires additional storage. (This includes scratch space needed for intermediate
matrix generation during the evalution of a matrix expression.) When there is not sufficient storage to execute
such statements, a state of OVERFLOW is said to exist. The operations research programmer may be able to
take certain remedial action such as permanently or temporarily removing a matrix to make storage available.
This section describes the “OVERFLOW statement” and statements to achieve a degree of control over
storage. In this sense the enhancement admits a quasidynamic storage allocation capability, not dependent on

whether the processor uses dynamic storage allocation.
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6.1 OVERFLOW and RESUME Statements

The form of an overflow statement is:

OVERFLOW = s

where s is a statement label of an executable statement that appears in the same program unit as the overflow
statement. This defines the transfer of control when an overflow condition is reached.

It should be noted that this form is analogous to the “error specifier” in FORTREV, except the
OVERFLOW statement may be used at any time as an executable statement.

After the control transfers, which results from an overflow condition, the (sub) program unit may take
certain remedial action (to be described shortly). If the programmer has included an appropriately-placed
statement,

RESUME,

this will then transfer control back to the place overflow occurred.

6.2 ERASE Statement

The ERASE statement is used to delete a matrix or a submatrix. The name of the matrix remains valid and

may be reconstructed or still used in any matrix expression (treated as a trivial matrix). Its form is:
ERASE a |, a]-**

where a is a matrix reference.

For example, a mathematical programming routine may declare two matrices as:
MATRIX A(NAME(15)), BSEQUENTIAL BY COLUMN)

The first matrix, named “A’, is to be used for the matrix generation phase, facilitating declaration of nonzeroes
randomly (by name up to 15 characters). The second matrix, named ‘B’, represents the same mathematical
model, but it is stored by column to facilitate execution of the primal simplex method.

Once A is constructed, we may convert by the assignment statement:

B=A

At this point both A and B are nontrivial, and it may be necessary to make room for another matrix in order to
represent the basis (as another matrix, possibly in a factored form). We may thus reach an overflow condition.
In anticipation of that possibility, the program unit may contain the OVERFLOW statement:

OVERFLOW = 100

and there may appear the statements:

100 ERASE A
OVERFLOW = 200
RESUME

200 CALL EXIT

Another use of the ERASE statement is to remove a submatrix. For example, suppose we have

MATRIX A, B, C
B = A(1:10, 1:10).ADDCOL.A(1:10, 100:200)
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If the statement,
ERASE B(1:10, 1:10),

is executed, then B equals A(1:10, 100:200), except that the columns would be renumbered.
Notice that the ERASE statement complements the assignment statement for matrix reduction. For
example, if we write

ERASE A(11:*, 11:¥)

then the (10, 10) principal minor of A is retained, and the remainder of A becomes trivial. On the other hand,
if we write

A = A(11:*, 11:%)

then the (10, 10) principal minor is removed from A, and the remaining nontrivial portion is renumbered.
6.3 DEACTIVATE and ACTIVATE Statements

The DEACTIVATE statement removes a matrix from working storage and saves it on an auxiliary memory

device. Its form is:
DEACTIVATE a

where a is a matrix name.
In our former example it may be desirable to save the matrix A (e.g. for report writing) rather than delete it
entirely. One way is to replace the ERASE statement by:

100 DEACTIVATE A
The ACTIVATE statement retrieves a matrix previously deactivated. Its form is:
ACTIVATE a

where a is a matrix name.
In our example we may execute the following statements after the simplex algorithm terminates:

ERASE B
ACTIVATE A

It is interesting to see how these statements permit both row and column forms to be used efficiently. For

example, consider the specification:
MATRIX C(SEQUENTIAL BY COLUMN), R(SEQUENTIAL BY ROW)

Let a part of one program unit build a matrix by rows using R. Later it is desired to process sequentially by
column (as in the primal simplex method). Then we simply convert by the assignment

€=

and may use the DEACTIVATE or ERASE statements if R is no longer needed. In fact, whenever a row-

driven algorithm is to be executed, we can

DEACTIVATE C
ACTIVATE R
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and proceed to use R. In this manner (use of ACTIVATE and DEACTIVATE statements) the efficiency of row

versus column data structures could be employed in each segment of the master algorithm.

6.4 PRESERVE and RESTORE Statements

The PRESERVE statement saves a matrix by writing it to a specified unit. (The unit’s disposition is under
the control of the operations research programmer.)
Its form is:

PRESERVE (cilist) a [, a]’ - - -

where cilist is a control information list, and a is a matrix name.
The RESTORE statement restores a matrix which was preserved. Its form is:

RESTORE (cilist

Dl elle o e

In our former example we may wish permanently to save the A matrix. Then we could write

100 PRESERVE (6) A
ERASE A

where ‘6" identifies the disposition. Later, if A is needed (e.g. for report writing), then we could write

RESTORE (6) A

7. Data Transfer Input/Output Statements

This enhancement specifies a special READ interpretation when referencing a matrix. The declared mode
I I I 2

of access determines the meaning of the statement. Further, an output statement, PICTURE (which is

available in mathematical programming systems, e.g. MPSX), is introduced.

7.1 READ Statement

The READ statement is the data transfer input statement. Its proposed special form for matrices is:

READ (ci

list) a

where cilist is a control information list and a is a matrix name.
The format of data cards is free except that the first column contains an asterisk (¥) or a blank. The first
data card is one of the following:

Mode Form of Card 1
BY COLUMN *m] [, NAME = n]
BY ROW [ﬂ][ NAME = n]
BY ELEMENT *i, jINAME = n][, NAME = n]

where m, 1 and j are positive integers and n is a name.
If the name options are not used, the current name (possibly none) remains in effect. If the index numbers
(e.g. m is the column number in mode BY COLUMN) are not used, then the next highest index number is

used. Thus, to simply create two columns named ‘C1” and ‘C2’ respectively we may write

MATRIX A(SEQUENTIAL BY COLUMN)
READ A
READ A



The data cards would appear as

*, NAME = C1
*, NAME = C2

The column numbers 1 and 2 would automatically be used.
On the other hand, to create only column 2 (before column 1) we may have the statement ‘READ A” appear
once, and the data card would be:

*2, NAME = C2

After card 1 the values appear. In the case of BY ELEMENT the input consists of one index pair (by name,
number or both) and the value. (No real gain in ease-of-use for input appears in the BY ELEMENT manner of
access.) However, for BY COLUMN and BY ROW manners of access, the nontrivial elements are declared
with column 1 blank and card k (for (k-1)st element) as follows:

where n is a name, v is a value conforming to data type, and m is an index number. For example, suppose we
have:

MATRIX A(SEQUENTIAL BY COLUMN)
Do 10I=1,3
10 READ A

Then, 3 columns of A will be read in. Suppose the data cards are as follows:

CASE 1:
*, NAME = Cl }column 1
R1 = 1.0, R3 = 5.0
* NAME = C2 }column 2
R1 = —20.0, R2 = 4.0
*, NAME = C3 }column 3
R2 = 3.0, R3 = 6.0

The matrix will be:
column names

A Cl1 C2 C3
R1 1.0 =240,
row names R3 5.0 6.0
R2 4.0 3.0
CASE 2:

*(1, 1.0), (2, 5.0) column 1
* (1, —20.0), (3, 4.0) column 2
* (3, 3.0), (2, 6.0) column 3

This produces the same matrix except without names for rows and columns.
We see that the last column read needs an end-of-data marker to separate it from the next input. Thus, we
add that the last card must be an asterisk(¥*). In general, the contents of a column lies between 2 asterisked
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cards, so there will be & + 1 asterisks if £ columns are to be read. All but the first and last asterisked cards
serve to separate columns and specify end-of-column-record simultaneously with top-of-column-record for
successive columns.

7.2 PICTURE Statement

The PICTURE statement is used to output matrix structure. Its form is:
PICTURE a [(¢[, o] - )]

where a is a matrix reference and o is an option. The list of options are:

Option Meaning

NOSORT Use index numbers, not names, to determine order of

printing rows and columns.

SORT(1) Sort and print names for first i characters only (where
ils a nonnegative integer).

NOLEGEND Suppress printing of legend.

HEADING = ¢ Print heading described by the character expression c.

Before illustrating the use of the PICTURE statement and the options, let us comment on the defaults.

If the NOSORT option is not used, the rows and columns are printed in their name sort order. The SORT
option allows the name sorting and printing to be truncated. (For example, the name may have maximum
length of 15 characters, while every name used has length not exceeding 5. In that case the 10 trailing blanks
would be outputted unless the option SORT (5) were used. This would produce a neater printed output;
however, permitting the retention of all characters, including trailing blanks, is needed to allow the output to
be read by a program with format field lengths data independent.) It should be noted that both NOSORT and
SORT (i) options may be used. This would mean the index numbers are to be used, but when printed, the
names are truncated.

If the NOLEGEND option is not used, the output includes a legend to describe the output (see example 1
below).

If the HEADING option is not used, the heading will be:

MATRIX: a
where a is the matrix reference with values of the index reference (if used) printed. For example, if we write
I=1
J =10
PICTURE A(I:], *)
then the heading will be:

MATRIX: A(1:10, *)

To illustrate the PICTURE statement let us consider the following arithmetic type matrix used earlier:

€l 2 C3
R1 1.0 —20.0
R3 S0 6.0
R2 4.0 3.0
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EXAMPLE 1:

PICTURE A

QuPUE \ ATRIX: A
¢ C© €
1 2 3
}4 trailing blanks in column names
R1 1-B
R2 A A
R3 A A
vzi~~tr21iling
blanks in
row names
Legend
Symbol Range
A (1, 10]
B (10, 100}
C (100, 1000]
D (1000, 10000]
E .GT.10000
' [.1, 1)
W [LOL, .1)
X [.001, .01)
Y [.0001, 001)
7% .LT.0001

ExampLe 2: PICTURE A(SORT(2), NOLEGEND)

Output:

ExampLE 3: B = IMAGE(A)

MATRIX: A

G €
2 &

1—-B

A A
A

PICTURE B(SORT)(0), NOLEGEND, HEADING='IMAGE OF A’)

Output:

This section describes internal data structures subordinate to the features of the ANSI FORTRAN
enhancement, notably to the features described in sections 3 and 4. The purpose is to provide a more
complete understanding of matrix operations. Further, the data structures are designed to: (1) effect economic
utilization of space and time in handling matrices, and (2) insure room for future extensions in the language as

well as in structure.

MATRIX: IMAGE OF A

2 3
111
21 1
3 11

8. Data Structures
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8.1 Explicit Structure

A matrix is represented internally as a base linked to a body and a handle:

BASE

BODY HANDLE

The body is equivalent, regarding information content, to an array (cf. sec. 2.1). The handle contains the row
and column names. The base not only connects the handle and body, but also contains other information
about the matrix important to processing.

8.1.1 Base
The base of a matrix is a contiguous, fixed-length list containing data, including the following six items:

I. matrix name

2. matrix type and access mode

3. effective and maximum row size

4. effective and maximum column size
links to handle and body

6. reference value

The matrix name, type, access mode, maximum row size and maximum column size are declared by the
matrix specification statement (see section 3.1). (It should be noted that PICTURE uses the matrix name in
the default heading (see section 7.2), so its presence is desirable. Further, the processor may use the matrix
name and other characteristics for debugging utility.)

The effective row and column sizes and the links (item 5) are initially null and may change during
execution. The reference value (item 6) depends on the access mode. For sequential access, it contains the
key (column or row) index number most recently referenced; for random access it contains a pointer to the

most recently referenced element.

8.1.2 Body Substructure

The body of a matrix is a substructure which logically consists of two entities: indicial information and
elemental information. Each is a list with a correspondence between them. The reason for this structure is to

provide a variety of compact forms frugal with space and time against a background of expected demands.

The basic compact form is based on the supersparsity [8] that prevails in operations research models which
involve large, structured matrices. Supersparsity pertains to replication of nontrivial elements plus a
distinguished set of element values.

For logical data types only .TRUE. is nontrivial, so supersparsity abounds, and the need for elemental
information disappears.

For arithmetic types, the distinguished values are +1 and — 1; other nonzeroes are put into a list without
replication. The idea is to reference them in the indicial information list, and it takes less space to store an

index (pointer) than to replicate the nonzero value. This list of nonzeroes is called the literal pool.

For character types the application of supersparsity requires further study, and we not give details here.
We shall focus on the arithmetic type, particularly with mathematical programming models in mind.

One design is to have one master literal pool shared by all matrices; another is to have a separate literal
pool for each matrix. While the latter may result in more space consumption, we shall use it to facilitate
certain operations. For example, the storage control statements (see section 6) function better with separate
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literal pools. Moreover, a processor is better able to manage storage by relocating a literal pool (and change
only its base address, thereby keeping the index pointers valid).

8.1.2.1 Sequential Access Mode

A matrix declared sequential is maintained in a form optimal for sequential access by column, by row or by
element. In many operations research models the matrix information, once completely specified, is used in
precisely the declared manner. For example, a conventional pricing scheme for implementing the simplex
algorithm is to proceed column-by-column in their natural order.

The BY COLUMN and BY ROW sequential access modes have a natural interchangeability so we shall
only describe the data structure for SEQUENTIAL BY COLUMN.

Each column is composed of a header and an indicial list. The header contains, contiguously, the following
items:

1. link to next column

2. number of +1 coefficients

3. number of —1 coefficients

4.. number of non-zero, non-unit values.

(Alternative schemes are possible but their relative merits are computer dependent. This is an avenue for
further study.)

The column links (item 1 of each column header) form a circular list. This implies that sequential
processing wraps around to the first column after the last column is referenced.

The indicial list immediately follows the header and contains p + m + 2c¢ items, where p, m and ¢,
respectively, are the numbers defined in 2, 3 and 4 above. The first p items in this list are the row index
numbers with elemental value of +1; the next m items are the row index numbers with elemental value of
—1; the last 2¢ items are, alternatingly, row index numbers and pointers to the literal pool to identify their
associated elemental value.

To illustrate the data structures described so far, let us consider the following matrix:

1 2 3
111 5
A=
26 =1
& 2 -1

Assume the following characteristics:

1. no names have been assigned
it is sequential by column
3. no row or column maximum has been
specified
4. A was read in column order.

The body would have the following two lists:

i— 1 8 17 17 v—e 1 5
2 9 0 18 2 2
3 10 1 19
4 " 2 20
5 12 2 21
6 13 1 22
1 14 1

15 3
16 2
Column 1 Column 2 Column 3
Record Record Record
W
IDENTICAL LIST LITERAL POOL

(ELEMENTAL LIST)
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The base would appear as follows (after the third READ statement):

A— A name

asc arithmetic, sequential, by column

3 0 effective row size = 3, no maximum
effective column size = 3, no maximum

Oi+16v no handle, pointer to column 3, base of literal pool

QN Ut B W N~
w
=

3 latest column number reference

The use of the body pointer and the reference value in the base facilitates sequential processing. For example,

consider a DO loop:
DO 10J=1,N
DJ = PI(1, *)*A(*, J)
10 C()N';‘INUE

(cf. section 4.6). We shall suppose this is the only reference to A in the DO loop. Then, to execute the
assignment statement, the processor uses the fact that the pointer to the body is already positioned on the

previous column, and its advance becomes simple.

8.1.2.2 Random Access Mode

If a matrix specification statement includes the RANDOM ACCESS option, this results in additional space
consumption to set up efficient methods to access any column, row or element at random. When used in
conjunction with sequential mode, the data structure is an indexed sequential file. For example, if we have

MATRIX A(SEQUENTIAL BY ROW, RANDOM ACCESS)

then this sets up one pointer per row to avoid a search through the rows until the desired row number is
reached.

If access is to be completely random (i.e. by element), then both row and column pointers are established
as well as links in the body to chain columns and rows. (See for example [9]).

8.1.3 Handle Substructure

The handle substructure is to permit efficient reference by name. Given by index reference (cf. section 3.2)
in the form of names (or name ranges), the associated index number(s) are needed to correspond to the body
information (viz., indicial list). Conversely, the name of a particular column number, for example, may be
requested.

One basic structure uses binary search trees (see for example Knuth [9]). The success that has been
reported in the use of AVL trees make them a plausible alternative. However, the conditions under which
AVL trees perform best typify a more general-purpose data base management environment, where references
do not adhere to any predictable structure. In many operations research models the programming, such as in
matrix generation for a mathematical program, can exploit special structures. The study of different structures
well suited for operations research applications is to be considered an avenue for further study.

8.2 Implicit Structure

In executing certain assignment statements it is desirable to procrastinate explicit construction of a matrix
in the hope it will never be necessary, thereby saving space. Implicit structures are intended to permit such
procrastination.

An implicit structure has no explicit handle or body. The links in the base are used to specify the implicit
structure. For example, the simple concatenation matrix assignment statement
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A = B.ADDCOL.C

produces an implicit structure with the link items in the base used to specify:

B
¢
.ADDCOL.

Notice that a processor can use an implicit structure with no degradation in performance. In the above
example of concatenation, columns can still be processed sequentially with the pointer simply moving to C
when the columns of B are exhausted.

It should be noted that the programmer may want to use a simple matrix assignment statement (e.g. A = B)
for conversion. Therefore, such assignments do not produce implicit structures. At the other extreme, it may
be costly to permit complicated matrix assignment statements to be represented with an implicit structure.
Therefore, we require that an implicit structure be permitted only in the form:

a=bopec
where a is a matrix name, b and ¢ are matrix names different from a, and op is an operation. Alternatively, we
can have:
=xopc
or
a= copx
where X is a scalar.

Examples of matrix assignment statements which can be represented with an implicit structure are

A=B+C
A = B*C
A = B.ADDCOL.C
A = 5*B
A=0-B
A=5*B+C
Examples which cannot are:
A=A+B
A=B
8.3 Examples

In this section two examples are presented together with comments on the behavior of the data structure.

ExAMPLE 1: Generation of a transportation-problem polytope.

SUBROUTINE TGEN(COST, A, *) 1
MATRIX COST, A(NAME(12), SEQUENTIAL BY COLUMN) 2
OVERFLOW = 300 3
NS = MAXROW(COST) 4
ND = MAXCOL(COST) 5
NR=NS+ND +1 6
ERASE A 7
NC=0 8

9

DO 10J =1, ND
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10 ANS + ], .) = COST(., J) 10

A(NR, .) = 'COST’ 11
DO 2001 =1, NS 12
A(I, .) = COST(, .) 13
DO 100J =1, ND 14
NC=NC+ 1 15
A(., NC) = COST(, .)//COST(., J) 16
A, NC) =1 17
ANS + J, NC) = 1 18
A(NR, NC) = COST(L, J) 19
100 CONTINUE 20
200 CONTINUE 21
RETURN 22
300 RETURN 1 23
END 24

Explanation:

Statement 1 declares the subroutine (named "TGEN') and passes the matrix named 'COST’, whose effective
size is number of suppliers by number of demand points; the matrix named "A’ is to be generated; control
transfers to (*) if overflow occurs.

Statement 2 is the matrix specification statement declaring COST (random access) and A (sequential by
column).

Statement 3 sets the statement label (300) for transfer if overflow is reached.

Statement 4 uses the intrinsic function MAXROW to retrieve the number of suppliers and statement 5 uses
the intrinsic function MAXCOL to retrieve the number of demand points. Statement 6 sets the number of rows
(one row per supplier plus one row per demand point and an objective row).

Statement 7 initializes A to a trivial matrix.

Statement 8 initializes a counter (NC) for the number of activities (i.e. number of columns in A).

The DO loop, in statements 9 and 10, sets the row names for demand rows. Statement 11 assigns the last
row of A to be named 'COST’.

The two DO loops, beginning with statement 12, are used to generate the activities, with supplier the outer
loop (statement 12) and demand point the inner loop (statement 14). Statement 13 assigns the supplier name
to the associated supply row in A.

Statement 15 advances the column count, and statement 16 assigns the column name by concatenating the
supplier name with the demand point name. Statements 17, 18 and 19 assign the ones and cost to the column.
(The processor can store the column contiguously even though the assignments are by element.)

The body is constructed efficiently with the data structures previously described. There will be two +1°s
per column plus one general nonzero. Therefore, the indicial list will contain 4 items plus the 4 items in the
header. This yields a total storage requirement of 8 m n for the indicial list, where m = number of suppliers
and n = number of demand points. The size of the literal pool depends on the supersparsity of COST. An
advanced processor may take advantage of the fact that the literal pool of A is the same as that of COST; there
may be merit in considering user control over such declaration of sharing a literal pool.

If the handle uses a binary search tree structure, then the (arbitrary) nesting of the DO loops in statements
12 and 14 would affect that tree’s shape and hence the efficiency of subsequent searches. For example,

suppose the names are:

Suppliers Demand Points
DAL NE
HOU SE
WSH SW

Then, upon executing TGEN, the tree structure in the handle would be:
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Row Tree

COLUMN TREE

If we interchange the DO loops, the column tree would then be:

o)
Croune
CENCT
Cuouse)
Consw)  Cusnse)
Crovsw)
usns)

The processor must consider when and how to restructure the trees for efficient processing. This is an avenue
for further study.
ExAMPLE 22.: Build a simple dynamic model having block angular structure.
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SUBROUTINE TIME (NT, B, C, A, *)
MATRIX B, C, A(SEQUENTIAL), A1(SEQUENTIAL), A2(SEQUENTIAL)
OVERFLOW = 20
DO 10I=1,NT
Al = A1.ADDCOL. C
A2 = A2.ADDIAG. B
10 CONTINUE
A = Al. ADDROW. A2
ERASE Al, A2
RETURN
20 ERASE A
OVERFLOW = 30
RESUME
30 RETURN 1
END

Result:

NT = number of replications = number of time periods

»
>

e [eTe]...[e]

A

of
[e]

9. Avenues for Further Study

This paper has described key elements of an enhancement of ANSI FORTRAN in order to accommodate
the needs of the operations research analyst/programmer. Several avenues for further study have been cited in
this report (e.g. those of data structures). In this section four additional avenues for further study are noted.

They have been selected both for their importance and for their promise of successful completion.
9.1 Processor Development

In order to test and develop this enhancement a processor is needed. A first effort might consist of
developing a translator, perhaps by extending the NBS precompiler [11]. This should include a capability for
experimenting with different data structures. Further, since testing should be performed on large problems,
such as arise in the intended operations research applications, efficiency of the translation should be on a par
with that of a high quality compiler.

A grander endeavor would permit specification of the computing environment (e.g. paging, dynamic storage
allocation, time-sharing, etc.). Then, the processor could provide simulated results to facilitate experimenta-

tion with different structures or syntaxes in a variety of environments.
9.2 Environmental Effects

The ANSI FORTRAN Committee has rejected dynamic storage allocation and urges that enhancements
conform to the one-pass compilation stipulation. These two restrictions exemplify the Committee’s posture of
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maintaining processor independence. One reason for this posture is cost. It would therefore be useful to
measure the gains from relaxing such restrictions. Thus, one avenue for further study is to develop a measure
of gain, at least relative to this enhancement, for such relaxation.

Further, one can explore environmental effects without attempting to measure gain. For example, an
extension of [10] would be appropriate to study the effects of paging on this enhancement.

If the processor, described in section 9.1, were developed, the study of environmental effects could include

experimentation with different scenarios.
9.3. Dynamic Attribute Recognition

To save time and space it may be desirable to identify certain attributes for matrices (e.g. symmetry). The
data structure could be extended to keep an attribute identity in the base. Further, the matrix specification
statement could be extended to permit declaration of special types of matrices (e.g. diagonal).

Once this notion of attributes, or special matrices, is introduced, it then becomes interesting to see if the
processor could be designed to recognize dynamically certain attributes when they prevail. The question of
whether such recognition is worth the cost would, of course, require study.

9.4. General packed Arrays

Most of the concepts and data structures described in section 8 can easily be extended to higher
dimensional tensors. The problem rests with a development of syntax conformal to ANSI criteria.
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