
1-

JOURNAL OF RESEARCH of the Notional Bureau of Standards
Vol. 84, No.1, January- February 1979

Enhancing Fortran to aid Manipulation of Large
Structured Matrices*

Harvey J. Greenberg

Office of Analytic Methods, Department of Energy, Washington, DC 20461

James E. Kalan

Department of Management, University of Florida, Gainsville, Florida 32611

September 21, 1978

Thi s pape r present s, fo r wide r di scuss ion by th e techni ca l communit y, sugges ted mea ns for e nha nc ing (ANS)

FORTRAN in orde r to accommod ate th e needs of opera tio ns resea rc h a na lys ts in programming tas ks invo lving

la rge, s truc tured or sparse mal ri ces. Suc h needs freq uentl y a rise in connection with la rge-sca le op timiza tio n

prob le ms. Mos t of th e tex t deals with fund a me nt a l concept s a lld desc ri ption s of sy ntax, but re la ted da ta s tructures

are a lso treated. Proposed new ca pa bi lit ies include explo itati on of repealed va lues a mo ng ma tri x entri es, s pace

sa ving "quas i-d ynam ic storage a ll ocatio n", a nd easy sel- lip for cons tru c ti on of la rge matri ces frolll s ma ll e r Oll es

(with the actua l cons truc tion de ferab le until a nd if th e need a ri ses).

Key Word s: Data poo ling; data s truc tures; malhe rnalica l programmin g; matri ces; name ge ne ra li on; ope rHtio ns

resear ch; programming la nguages ; sparse matri ces .

AMS Subject C lass ifi ca ti on: Prima ry 6800; Second a ry 90C99; 68A30

1. Introduction

The capabil iti es of presentl y ava il able genera l- purpose math emati cal softw are a re often s train ed by the

giant da ta bases a nd numerou s quantitative relationships charac te ri zing modern la rge-scal e ma thematical

models . These strain s are reflected in ineffi c ient computati ona l procedures, and in awkwa rd programming
constra ints whose sati sfac tion is time-consuming and like ly to generate errors . The re is an inc reas ing demand
for software spec ifi cally oriented toward these needs of ope rations-research mode lling appli ca ti ons, a nd a firs t

priority is an improved capability for handling very large sparse or s pec ial-s truc ture ma trices.

1.1 Purpose

This paper presents the results of a short study on means for enhan cing Standard FORTRAN, as specifi ed

by the American Standards .Association (renamed the American National Standards Institute: ANSI) , in orde r

to accommodate the needs of operations research analysts in some of the ir programming tas ks whic h deal with
large, s tru ctured and mostly sparse matrices . These needs ari se in th e widely used techniques of ma themati ca l

programming and simulation.
The present s tudy did not extend to the point of tri al implementa tion and experime nta l tes ting, and

therefore must be unde rstood as representing th e inves ti ga tors' opinions, based upon prior expe ri ence and
"armcha ir ana lys is" . In most cases alternati ves were co ns ide red before dec iding upon th e sy ntax presented

below. Some of these alte rnatives are noted because s ubsequent s tud y may involve th eir reco nside ration. It
would be premature to a im he re at th e prec is ion and co mpleteness appropri ate in a fu ll-Hedged proposal for a
candidate standa rd . Instead , our goal is to lay out ideas at a level of de tail adeq uate to enable their disc ussion

by the techni cal community.
We are aware that so me of the topics touched upon be low have been di scussed extensive ly, for ins tance, by

the ANSI FORTRAN committee on previous occasions. Some alTay computation capabiliti es have been

* Based on a report (COlllputer Sc ierlce Department , VPI, Blacksburg, VA, September 30 , 1975) prepared for the Natiollal Bureau of Standurds, under Purchase Order #600409
10 the Appli ed Muthemalics Di vision during the Summer of 1975.

21

implemented in PLfl. Our focus here, however, is on large sparse and stlUctured matrices - a class of data

s tlUctures which to our knowledge have not been discussed previously from the point of view of language
requirements . Last but not least, we aim to identify avenues for much needed researc h and development,
including experimentation (see section 9.1) , following thi s first step.

1 .2 American Standard FORTRAN

It is important to emphasize that this study is concerned with enhancing ANS FORTRAN as a s tandard and

not with versions which have been produced commercially or otherwise for different processors. Of course,
the recommendations in this report reflect processor considerations, but the primary intent is to comply with

the criteria of the American National Standards Institute of which NBS is a member. It is therefore befitting
that we bri efly review elements of ANS FORTRAN with regard to their effect on our study.

Since the inception of FORTRA N (1956), many versions appeared with different processors. In an effort to

provide the first standardized language, the Computer and Business Equipment Manufac turers Association
(CBEMA), secretariat for ANSI, formed a committee to establish a s tandard FORTRAN. Their specifications
were published in X3.9-1966 (see [2] I, and we call this ANS FORTRAN. Several errors and misconceptions

were rectified in 1969 (see [1]) . However, the ANSI FORTRAN Committee (X3J3) recently prepared a
detailed proposal for a new standard. That draft is called FORTREV 2 in this report.

Perhaps the most signifi cant enhancement in FORTREV is the allowance of cha rac ter data types plus
associated string processing capability. A second technical change, which appears in FORTREV, is to a PLf

1 type of sy ntax for specifying index ranges . To accomplish this the colon (:) has been added to the character
set, and we shall use it for similar index referencing.

The ANSI FORTRA N committee has so far decided against the use of dynami c sto rage allocation (even to
the limited extent found in ALGOL). Their decision s tems from a posture on maintaining maximal

inde pendence of the processor (viz . , the operating system). Our recommendations include a 'quasi-dynamic
storage allocation' capability which may be achieved ",hile maintaining the ANSI posture of independence.

The ANSI FORTRA N co mmittee has also adopted the criterion that compilation should be achievable in
one pass . The syntax presented in this report compli es with this requirement as well.

In general, our enhancement to represent and manipulate large, stlUctured matrices conforms with the
former ASA's criteria as lis ted in X3.9-1966. This includes " interchangeability of FORTRAN programs

between processors" and "compatibility with existing practice."
It is important to note that the spirit of ASA's criteria for enhancement included maintenance of language

style . This is perhaps a subjective and rather vague criterion, but it has influenced the syntax proposed in this
report. At least one less vague derivative from the notion of language style is that of conformance. This is

described in FORTREV, at leas t with respec t to upward compatibility (i. e . , a correct program mus t remain
so, and an incorrec t program must produce the same diagnostics) . One exception is noted dealing with
optional forms of output, and our enhancement contains a similar exception (see sec. 7).

1.3 Notation

The notation used in thi s report in describing the form of FORTRAN statements or constlUcts employs the

metalanguage described in FORTREV. This generally agrees with the metalanguages fou nd in most reference

manuals. In particular, the following conventions are used:

(1) Special charac ters from the FORTRAN character set , uppercase letters, and uppercase words are to
be written as shown, except where othelwise noted.

(2) Underlined lowercase letters and lowercase words indicate general entities for which specific entities

must be substituted in actual statements. Once a given lowercase letter or word is used in a syntac ti c
specification to represent an entity , all subsequent occurrences of that le tter or word represent the

same entity until that letter or word is used in a subsequen t syntactic specification to represent a
differen t entity.

I Figures in brackets indicah! literature references alt he end of this paper.
2 Now described in ref. 14.

22

(3) Brac ke ts ([J) are used to indicate one or more optional items.

(4) An ellipsis (...) indica tes that the preceding optional items may be ,·epeated one or more times in
successIOn.

(5) Blanks are used to improve readability , but unless oth e rwi se noted have no s ignificance.

The type of elements refe rs to th e type of va ri able acceptable in ANSI FORTRAN. Currently, there are two

types: (1) arithmetic and (2) logical. (The arithme ti c type may be furth er stratifi ed into integer , real, double
prec is ion and complex.) FORTREV admits a third type : (3) cha racter. The constru c ti on of th e na me of a

matrix identifi es its type of elements in the same manner currently appli cabl e to arrays. Since we require
eve ry element of a matrix to be of the same type , we can refe r to the ' type of ma tri x' to mean its type of
elements. We use the terms 'row' and 'co lumn' of a matrix in the usual sense, but the man ne r of access ing a

row , column or element is subj ect to furth er specification. Before we do so le t us de fin e a trivial element to be
as follows:

Data Type

a rithme ti c

logica l
character

Meaning of Tri via l

zero
fal se
blank

Then, we defin e a matrix to be tri vial if all of its elements a re trivi a l.

Next de fin e a suhmatrix of a matri x to cons ist of subse ts of, res pec tive ly, its rows and co lumns with the
associated elements . Thus, each row (o r co lumn) of a ma tri x co nstitutes an instance of a submatri x. Thi s
implies a definition of trivi al rows and trivi al co lumns.

A two dimensional array is cons ide red a matri x with an implied manne r of access whi ch retains current

usage. In particul ar, trivi al element s of a rrays a re ex pli c itly represe nted, and we have random access to
elements by index numbers.

In the next section we s ha ll desc ribe a sy nt ax for dec la ring oth e r mann e rs of access, in whi c h the assoc iated
(pac ked) ma trices d o not ex pli c itl y re prese nt tri via l e lement s . Bas icall y we ca n firs t spec ify wheth e r we want

to access by row, co lumn or e lement; th en we spec ify whe ther the mode is to be seque ntial or random. The

esse ntial diffe rence is in subsequent speed of computation ra th e r th an feas ibility of references . An operati ons
research programme r can acq uire a deepe r apprec ia ton for this di s tin cti on upo n exa mining the s tru ctures for
implementation (see sec ti on 8) .

In summa,)', the manner of access is by one of th e follow ing:
(1) row
(2) column

(3) element

and the mode is e i ther sequential or random. We emphas ize th at th e reference to 'sequenti al' ve rsus ' ra ndom'
is for effi ciency conside rations, and affects neithe r a program's correc tness nor its meaning.

We inteljec t the thought that (1) and (2) may be merged into one spec ifi cati on of a dim ens ion wh e n
ex tending the enhancement to higher dimensional arrays. However, there are some diffi culti es with rega rd to
la nguage style and ease-of-use.

An exa mple illustra tes the metalanguage. Given a description of the form of a s tatement as:

th e following forms are all owed:

CALL sub [(.2 [, flJ···) J

CALL s ub

CALL sub (.<0
CALL sub (Q, £!)

CALL sub (Q, fl, £!)

e tc .

23

2. Extended Terms and Concepts

This section describes the extended terms and concepts assoc iated with the proposed enhancement.

Consideraton is given to differences between the current standard and FORTREV.

2.1 Arrays and Matrices

Current (1966) ANSI FORTRAN defines an array as "an ordered set of data of one , two, or three

dimensions." FORTREV extends this range to seven dimensions.
Within the context of this study the meaning of "array" is maintained with the following characteristics

noted:

(1) s torage in linear list form,
(2) references by index numbers,

(3) no dynamic storage allocation.

Our intention is to provide a new type of array, which we may call a packed array, differing in characte ri s tics
(1) and (2); further, certain syntactical elements and use of intrinsi c func tions (cf. sec . 5.2) will provide a

"quasi-dynamic storage allocation" (whic h is processor independent with regard to feasibility) .
In this s tudy we shall confine ourse lves to packed arrays of two dimensions which we call "matrices." As

we describe some of the diffi c ulties e ncountered in achieving the stated purpose, the existence of problems to
be resolved for higher dimensions will become noticeable. (The handling of higher dimensional arrays is cited

in secton 9 as one of the avenues for further study.)
Formally, a matrix is a named collection of data whose elements are refere nced by two index values. The

exact nature of the index values, method of storage, types of elements and manners of reference are subjects
described in subsequent sections.

We may note here that the basic attributes of a matrix are:

(1) type of elements
(2) manner of access
(3) effec tive s ize .

which we shall me ntion in secton 3 wh en introducing the syntax for declaration.

The effective size of a matrix is a d ynamic entity represented by a couple, say (ill, D), where ill and n are
non-negative integers specifying the number of non-trivial rows and non-trivial columns, respectively. We

may thus think of every matrix as infinite dimensional (to have inhere nt mathemati cal conformality of
dimensions when peliorming operations) with the effective size determining storage requirements and speed of

computation. Note this would mean e very matrix is a trivial matrix (i.e. a matrix whose eleme nts are all
trivial) when first declared.

2.2 Names

It is often desirable to permit index reference by name rather than by number. Thi s is especially true in

operations research applications, notably in mathematical programming or simula ti on models. For example,
a column may correspond to an activity of transporting goods from a supplier to a warehouse, perhaps in a

particular time period . In this case it would be desirable to reference the column by th e form:

s upplier' warehouse ' time period.

Specificall y, the supplier may be identified by a city name, such as DALLAS, the warehouse may be
ide ntifi ed by a region,say SW, and the time period may be a month, say OCT. Thus, in this case a column

may be refe renced by the 3-field name

DALLAS , S W . OCT

24

We s hall assume FORTREV becomes accepted , a t leas t the a llowa nce of character variables and

ex pressions . In this case s trin g process in g will become a part of ANSI FORTRAN. The only special conce rn
for thi s enhancement is th e reference to a name of a column or row . Thi s is a set of character variables

assoc iated with every matrix. Specifically, every row and every column has an associated name . Initially, the

names are blank strings; sec tions 4 .6 and 7.1 desc ribe how names ca n be cha nged.
We point out that at least one alternative was considered for thi s report but rejec ted on s tylis tic grounds .

That is, it may be useful to the ope rations research programme r to permit names co ns is ting of n-tupl es (where
he specifies the non-n egative integer n). This would mean refe re nces to a name would appear as n

dime nsional arrays, presenting diffi c ulti es, for example, with ass ignm ent sta te me nts . Al so, s in ce FORTREV
allows any subscript range, it may be burdensome for a one-pass co mpile r to process c ha racter ex press ions
involving names . The dec ision to represent na mes as c harac te r strings (of one dime ns ion) s te ms from our

desired complia nce with ANSI c riteri a, whi c h include compa tibilit y with current processors as we ll as
la nguage style . At prese nt , ope rati ons researc h programme rs use one c ha rac te r string to name a n e ntit y (s uch

as an ac tivity) and assume th e burde n of es tabli shing a ttribute fi e lds for re port writin g.

3 . Matrix Declaration and Reference

This sec ti on de sc ri bes a nd illus tra tes the ways in whi c h ma tr ices a re dec la red a nd refe re nced. lL in c ludes

the sy ntax for the dec la ra ti ons.

3 .1 Matrix Specification Statement

FORTREV defin es nin e kinds of spec ifi cati on sta te me nts, each of whi ch is nonexec ut ab le . We propose a

tenth specification s ta te me nt to spec ify a (pac ked) matri x. The sy nt ax is as foll ows:

[d] MATRIX a [(0 r, oJ· · .) J [, . .. J

where

d is a data type dec larati on
a is th e name of the ma tri x

o is an option accord ing to th e foll owing:

O ption

NAME(n)

RANDOM ACCESS

MAX ROW = n

MAXCOL = n

Meani ng

spec ifi cs th e names of rows and C' olum ns ha ve

length s not exe N·d ing n c ha rac te r" (d e fa u lt

of n is 6)

specifies sequenl ia l mode of i:H'('e~S by row

(the d efau lt) or by ('o lumn

spec i fi es random access 10 row!ol , co lUnI lI S ur

e lemenls

spec i fi es upper lim it (11) un row index number

s pec ifics uppe r limit (n) on co lumn ind ex

num ber

Before we furth er desc ribe and illust ra te these options, conside r the s imple dec laration:

MATRIX A

which declares a matri x whose name is 'A' . Its data type is arithme ti c by s tanda rd default (in pa rti cular, A is

REAL because its na me begins with 'A'). If this were preceded by the specifica tion:

LOGICAL A

25

th en the data type of A would be logical. The mode of access is random by element (the default) . The row and
column names would be limited to six characters apiece, and no limit would be placed on the magnitudes of
row or column index numbers.

Now consider the options li sted. First, the data type may be specifi ed in the matrix specification statement
as in declaring arrays . That is, we may write:

LOGICAL A
DIMENSION A(lOO)

to declare an array of one dimension having data of type logical, or we may write

LOGICAL A(lOO)

to make the same declaration. In our case we may write

or

LOGICAL A
MATRIX A

LOGICAL MATRIX A

to declare a matrix whose elements are of the logical data type.
The remaining options may be declared in any order. The first of these (as tabulated above) is used to

specify the maximum number of characters (called the length) of the row and column names . Thus, we may
write

MATRIX A(NAME(10))

to specify a maximum of 10 characters in the names .
The next option specifi es a sequential mode of des ired accessibility. This will not limit feasibility of

random access, such as referencing an element by a random choice of indi ces in an expression, but it will
affect the consumption of time and space (see section 8). Special input and output s ta tements (see section 7)
are affected by use of this option.

If the option sp ecifying a sequential mode is not used , then a random access by element is assumed as
default. However, if the option specifying sequential mode is used , then it may be desired to specify random
access with respect to row or column identifi cation. This is the purpose of option 3 : RANDOM ACCESS. For
example, if the operations research programmer uses the matrix by proceeding sequenti ally from one column
to the nex t, then he should specify SEQUENTIAL BY COLUMN and not specify RANDOM ACCESS. This
would be the case in the "ordinary" simplex algorithm. On the other hand , if th e program uses the matrix only
by accessing a co lumn a t a time, but with the selection of the next column depende nt on th e data, then both
options, SEQUENTIAL BY COLUMN and RANDOM ACCESS, should be specifi ed. Thi s is exemplified by
the simplex algorithm modified by a data-driven pri cing tactic.

The next two options specify automatic testing of effec tive rowand/or column dimens ions. If the effec tive
size would violate this limit during execution, then an ' index-out-of-range' error conditi on would be set.

EXAMPLE 1: MATRIX A(NAME(lO)), K

Assuming the program uses no other specification sta tements, thi s specifies two matri ces. The first has
been named 'A'; its data type is arithmetic (REAL), and its mode of access is random by element. The second
matrix has been named ' K'; its data type is arithmetic (INTEGER), and its mode of access is random by
element. A allows up to 10 characters in a name, but K only allows 6 (the default).

EXAMPLE 2: LOGICAL Y
COMPLEX C
MATRIX Y (SEQUENTIAL BY ROW), C(MAXROW = 100)

26

In thi s example two matrices are specified. The first has been named 'Y'; its data type is logical, and its
mode of access is sequential by row. The second matrix has been named 'C' ; its data type is arithmetic
(COMPLEX), and its mode of access is random by element; it has an effec tive row size limit of 100.

3.2 Index and Matrix References

A matrix may be referenced in its entire ty by using its name, and thi s constitutes th e s imples t matrix
reference. To permit references to submatrices, notably to its rows, columns O J" element s, an index reference is
used whi ch may be explicit or implicit.

An explicit index reference is of the following form:

where

i:! and .Q a re intege r o r character expressions or ,*,

..b is the same type of express ion as Q or is '*'

Q is the same type of expression as .Q or is '*'

The colon (:) is used for ranging, and the aste ri sk (*) is used to de note ex tremes.
In the case of a name range, compari sons a re based on co ll a ting sequence (as in FOHTREV). For example,

if a set of names is {ARK, ALA, LO, TS} th en the range 'ALA:TS' would reference the entire se t, and the
range 'LO:TS' would re fe rence the subset: {LO, TS}. This same subset would be referenced by 'L:TZ' because
it is not necessary that i:! and .!! be in th e se t of names .

EXAMPLE 1: A(2*I + 1, J)

This references a n ele ment of A by eva luating th e row number 2*1 + 1 and the column number J. (Both a re
integer expressions.)

EXAMPLE 2: A(I: K, J)

This references a subm atri x by spec ifying a co lumn number (evalua ti on of J) and a range of row numbers
(1 to th e value of K).

EXAMPLE 3: A(3HABC,3)

This references the element identified by the row whose name is 'ABC' and co lumn number 3 . (The same
reference can be made by A('ABC' , 3) .)

EXAMPLE 4 : A('COST', ' DALNEOCT' :' DALSWOCT')

This referen ces the submatri x consisting of the one row named 'COST' and the columns whose names fa]] in
th e ra nge ' DALNEOCT' to ' DALSWOCT'. For example, if characters 4 and 5 must be one of the strings, 'NE',
'NW', 'SE' or 'SW', th en the four columns referenced are 'DALNEOCT', 'DALNWOCT', ' DALSEOCT' and
' DALSWOCT' .

EXAMPLE 5: A(4:* , *:'DALSWOCT')

This references the submatri x cons istin g of rows 4 to th e la rges t index value (dy nami c) and co lumns whose
names are less th an or equa l to (in colla ting sequence) 'DALSWOCT' .

An implicit index reference has a t least one of the row/column index references (of form !![:h]) given by an
asterisk (*) or a pe riod (.) with the followin g meanin g:

* specifies all rows/ columns
specifies row/column name

27

Here are some examples:

A(5, *)

A(*,J+l)

A(I:lO, *)
A(*, 'DALNE':'DALSW')

A(.,5)
A(5, .)
A(. , 2:1 + 1)

references row 5 (i.e. ,*, specifies all col

umns)
references column whose index number is the

evaluation of 'J + l '
refere nces the first 10 rows of A

references all rows and those columns whose

names lie in the range 'DALNE' to

'DALSW'

re ferences name of column 5

references name of row 5
references names of columns 2 through the

value of 'J + l'

If an index name cannot be found during execution (i.e. no na me match), an ' index-out-of-range' elTor

condi tion is set. It should be noted that names are treated as charac te r variables; this constitutes a departure

from CBEMA's style s ince the data type of the entire matrix need not be of character data type.

We point out that it may be desirable to reference a collection of submatrices specified by a List. This is

exemplified by referencing a basis from a matrix with a list of column numbe rs (or names) . Technically, this

could be achieved, for example by the form:

A(i, j)

where iand j are lis ts. However, such constructs are not part of ANSI FORTRAN, and alTays would be
needed. This-would introduce the need for further identifying which elements of the array are to be used. (To
always use the entire array raises other problems.) This would cause concern over maintaining the language

s tyle. Of course, a subset of columns can be extrac ted with the use of a DO loop, one column-at-a-time.

4. Matrix Expressions and Matrix Assignment Statements

This section presents an extension of the expression types in FORTREV to permit direc t manipulation of

matrices (with two-dimensional arrays treated as matrices of special access structure). The types of matrix

expressions are arithmetic, character, logical , relational and concate nation. The s tyle of such expressions and

associated matrix assignment statements complies with the syntac ti c style of "scalar express ions" (i .e.

expressions in standa rd FORTRAN). Reasons for certain restrictions are presented; generally these are used

to resolve certain ambiguities that arise.

In each case the simplest matrix express ion is a matrix reference. More complicated matrix expressions

may be formed by use of operators and operands. These depend upon the data type (arithmeti c, logical or

character), and all data types (matrices or scalars) must be the same in a matrix expression or a matrix

assignment s tateme nt. This agrees with standard FORTRAN usage of expressions and assignment statements.

4.1 Arithmetic Matrix Expressions

An arithmetic matrix expression is used to express a numenc computation involving one or more (sub)

matrices and possibly some scalars . Evaluation of an arithmetic matrix expression must produce an arithmetic

matrix.

To form a matrix expression other than a simple matrix reference, operators are used. These may be unary

or binary, and the operands may each be scalar or matrix. In ANSI FORTRAN the fiv e arithmetic operators

are as follows:

28

Operator

**

*

+

Representing

Exponentiati on

Divi sion

Multiplication
Subtracti on
Addition

The subtraction and addition ope rators also have unary specificati o ns (e .g. - X is th e sam e as O- X) .
We shall use the same set of operator sy mbols, but th e meaning wi ll de pe nd upon the operands used . Let

'A' and ' B' denote matrix refere nces, and le t 'X' denote a scalar re fere nce in the follow i ng:

Ex press ion

A**X
A**B
X**A

A/X
A/B
X/A
A*X
A*B
X*A
A -X
X - A
A-B

A+X
A+B
X+A

Meaning

Expone nti ate every element of A by X (convention: 0**0 = 0)
UN DEFINED
UNDEFINED
Divide every element of A by X
UN DEFINED
UN DEFINED
Multipl y every eleme nt of A by X
Matrix multiplicati on
Multiply every eleme nt of A by X
Subt rac t X from every element of A
Add X to the negat i ve of every element of A
Matrix subtracti on
Add X to every element of A
Matrix addition
Add X to every e lement of A

Further, the subtrac ti on opera tor is used as a un ary ope rato r, so - A mea ns to nega te eve ry eleme nt of A.

Note tha t s ince ze roes are not re presented, th e re is no di s tin c ti on between +0 a nd - 0; thi s agrees with the
spec ifi ca ti on in FORTREV.

Wh en both operands a re matri ces (A * B, A + B or A - 8), the issue of con/ormaLity a ri ses. Mathe mati cally,

th ere is a restri cti on on the re la ti ve dim ens ions . S ince a major aspect of thi s enh ancement is to pe rmit
e ffective s izes whi ch va ry durin g executi on, it is not poss ible to chec k coformality a t compila ti on without
degrading pelforma nce, parti cul a rl y in a one-pass co mpil er. By treating th e matri ces as infinite dim ens ional

(wi th trivi al rows a nd columns not expli citl y represented) eve ry operation is co nformal. If the opera ti ons

research programmer wa nts to perform hi s own conformality chec k, he may use intrins ic fun cti ons (see secti on
5) to retrieve the effecti ve s ize and pe rform an J F tes t.

We also conside red a condition switch of the form

CONFORMALITY = .fl

where a specifi es the type of conformality test desired in all subseq uent matri x ex press ions. However, thi s
req uires further study to cons ider types of conformality chec ks and certa in s torage features (such as block ing) .

Notice that A (or B) and X in the above table of binary expressions may be replaced by ar ithme ti c matri x
ex press ions and ari thm eti c scalar expressions, respectively. Further, a matrix express ion may reduce to a

scalar value, such as th e following inner product between row (1) of A and colum n (1) of B:

A(l, *) *B(*, J).

The result is a 1 X 1 matrix (different from a scalar) but may be assigned to a scalar vari able (cf. sec. 4.5).

29

l

4.2 Logical Matrix Expressions

The logical matrix expression is form ed with logical operators and logical operands (matrix or scalar).
Evaluation of a logical matrix expression produces a matrix of type logical.

The logical operators are:

Operator Representing Priority

.NOT. Negation Highest

.AND. Conjunction Intermediate

.OR. Disjunction Lowest

The operation is element-by-element. Thus , A.AND.B produces a matrix with element (i, j) equal to the
logical value of A(i, j).AND.B(i, j). Similarly, .NOT.A negates A. Use of a logical matrix and a logical scalar
is permitted with the following meaning:

A.OR.X (or X.OR.A) = A.
A.AND.X (orX.AND.A) = A if X = .TRUE. and null matrix if X = .FALSE.

4.3 Character Matrix Expressions

The character matrix expression is form ed with character operators and character operands (matrix or
scalar). Evaluation of a character matrix expression produces a matrix of type character.

The only operator is the concatenation , denoted by two slant characters (! I). This IS to be pelformed
element-by-element. Thus, AIlE produces a matrix whose (i, j) element is A(i, j)//B(i , j). If AI/X (or XI/A) is
used, then the resulting matrix has (i, j) element equal to A(i, j)//X (or X/IA(i, j)), respectively.

4.4 Relational Matrix Expressions

A relational matrix expression is used to compare two arithmetic expressions or two character expressions.
In each case at least one must be a matrix expression.

As in FORTREV, relational matrix expressions may appear only within logical expressions. Evaluation of
a relational matrix expression produces a (scalar) result of type logical.

The relational operators are:

Operator

.LT.

.LE.

.EQ.

.NE .

. GT.

.GE.

Represe nti ng

Less than
Less than or equal to

Equal to
Not equal to
Greater than
Greater than or equal to

Operations are on the elements . Thus, the logical value of A.LT.B. is .TRUE. if A(i, j).LT. B(i, j) for all (i, j)
such that either A(i, II or B(i, 1) is nontrivial and . FALSE. otherwise.

One of the operands may be a scalar. For example, the logical value of A.LT.O is .TRUE. if every
nontrivial element of A is less than ze ro; otherwise it is . FALSE .

4.5 Concatenation Matrix Expressions

A concatenation expression is used to concatenate two or more matrices of the same type. This is the basic
method by which matrices may be built from smaller matrices. There are three forms of concatenation: row,
column and diagonal.

30

J

The conca te nation ope ra tors are :

Operator

.A DDCOL.

.ADD ROW .

.ADD IAG.

Represent i ng

Add new colum n(s)
Add new I"Ow(s)
Add new (b lock) diagona l

Both ope rands mus t be ma trices . A sc he mat ic is as foll ows:

0 .ADDCOL. 0 produces

G .ADDROW. 8 produces

G .ADDIAG. 8 produces

OJ
rn rn

whe re T is a trivial matri x. The rows and/or columns of B a re re numbe red as a ppropriate in formin g the new

matri x.
Noti ce that conformality a lways prevails with mi ss ing e le me nt s intc rpre ted as trivial (0 for arithmeti c,

.FALSE. for logical and blank for charac te r). Thi s s tems from viewing th e matrix as quadrant IV with index

numbers for rows and columns running from 1 to infinity. We now describe how negative indices may be

s imilarly inte rpre ted, res ulting in a more nex ibl e construct.

Suppose we wish to form a s taircase of the form

~I
~

where T is a trivi al matrix, and n is a positive integer. Let us further suppose we know th e co nt ent s of N is n.

Then, we could perform

A.ADDCOL.B(-N:* , *)

The matrix refe re nce, B(- N:*, *), says we want th e submatrix of B cons istin g of rows numbered from - N to

the hi ghest row index number and all columns . By interpre ting negative row a nd column values as containing

trivial e lements on ly, thi s forces re numbe ring to produce the des ired resu lt.

This places some burden on th e processor because a negative (numerical) index value ordinarily results in

an "index-out-of-range" error condition (although FORTREV allows negative index numbers in arrays) . For

this use in the concatenation operators, negative index values do hold meaning.

We view the "body" of the matrix as having finite effective size, but the matrix implicity has infinite size

from minus infinity to plus infinity in both dimensions. A schematic of this view is as follows:

31

Column index

~ __ A __ -,I ______ B •• ,
of A

Row index

Outside the body all elements are trivial.
Thus, the elements in quadrants I, II and III may be referenced in the manner just described even though

their values are trivial.

4.6 Matrix Assignment Statement

The matrix assignment statemen t is of the form

where .i! is a scalar variable or a matrix reference and ~ is a matrix expression. The data types of £! and ~ must

conform as in FORTREV assignment statements.
The matrix assignment statement may be used to convert from one structure to another. For example, if A

is a matrix and X is an array (of two dimensions), then

A =X

packs X (eliminates trivial elements). The reverse is possible with

X =A

Similarly, if X has been declared as a column by

DIMENSION X(lOO, 1)

then this could be augmented to A by

A = A.ADDCOL.X

If f! is a scalar variable, then the evaluation of ~ must produce a matrix whose effective size does not exceed

(1, 1). For example, we may compute the inner product between a row array declared by

DIMENSION PI(l, 100)

and column (J) of matrix A by

DJ = PI(l, *)* A(*, J)

In a less obvious situation we may have

DJ = PI*X

32

L __

At execution time, after PI*X is evaluated , it is de termined if this assignme nt is correct. If the evaluation

of ~ produces a matrix whose effective size exceeds (1, 1), then an error condition is set by the processor.
The names of the rows and columns of !! (when!! is a matrix refere nce) are not de termined by ~. This

refl ects the fact that the operations are on bodies of matrices, and no naming is inhe rited. Of course , a simple

assignment statement of the form:

A(. , *) = B(., *)

assigns the column names of B to the column names of A .

It is appropriate to point out why a matrix expression was defined to require a t leas t one matri x refere nce.
Consider the assi gnme nt

A = B*C

where A is a matri x. If B a nd C are both scalars, wt' could interpret the rt'sult as a 1 X 1 matri x. Hl1weve r, in

keeping with ANS I FORTRAN style thi s would overlVrite A. We beli eve thi s poses a da nger in tha t the
prog rammer probably did not int e nd to pe rform such an overwrite .

One way the programme r could achie ve the intended result is to reinitia li ze A as trivial (see, for example,
sec. 6.2). The n he co uld name the firs t row a nd co lumn , thereby making its e ffec tive s ize (1, I). fin a lly, he
could write:

A = A + B*C

5. Functions and Subroutines

FORTREV identifi es four categori es of procedures: s ta tement func ti ons, intr insic func tions, ex te rna l
fun cti ons and subroutines. Our proposed e nh ancelllent ex te nds th e refere nces made in fORTREV to 'va ri a ble'
a nd 'ex press ion ' to pe rmit ' matri x' and ' matri x exp re~s i o n ' plus sO llle added features .

5.1 Statement Functions

A statement/unction is dt' fin eri inte rna ll y to the (sub) program unit in whi c h it is refe ren('ed , and it is of th e

foll owing form:

1(f![, !! J ...) = !<.

where f is the func tion name, !! is an argume nt and!: is a n expression. In the enha ncemen t f, !! or ~ may be

matrices with the stipulation that if f is a matrix, then !<. must be a matrix expression (i.e. must co nta in a
matrix reference).

We al so introduce anothe r form of function defi nition si mila r to the s ta te ment functio n. lts form is as

follows:

NOTE: f[(d , i J···)] = ~

where f is the fun c tion name, !! is a n argume nt and ~ is a n expression . The form following 'NOT E:' is the same

as a sta te ment func tion, except it is not necessa ry to have any a rgume nts. However, the mea ning differs as
follows .

In the NOTE statement (just de fin ed) ma tri x refe re nces and vari ables appearing in e need not a ppear as
arguments. The processor merely uses ~ where ver f[(a [, a]···)] is refere nced in the source progra m.

Fo r example, to use a sta te me nt fun cti on tha t expresses a ma trix product we would write

PROD(A, B) = A* B

33

where the arguments are necessary. However, in the NOTE statement we may write

NOTE: PROD = A*B

Then, wherever 'PROD' appears, 'A *B' will be used.

5.2 Intrinsic Functions

Certain functions of repeated use by many programmers have been specified by FORTREV to be intrins ic.
There are two ways this idea is exploi ted in our proposed enhancement: (1) extension of scalar functions to
allow matrix arguments, and (2) specification of new intrinsic functions for matrices.

5 .2.1 Extension of Scalar Functions

If i is a function of a scalar, then this extends to f(A), where A is a matrix reference, and E now becomes
a matrix reference. This is to be interpreted by defining the (i, j) element of F(A) by f(A(i, j». For example,
ABS(A) defines the matrix (of arithmetic type) whose eleme-nts are the ab~lute value; ~f the associated

elements of A.

5.2.2 Matrix Intrinsic Functions

In the table below a list of matrix intrinsic functions is given with associated meanings. 'A' and 'B' are used
to denote matrix references, 'X' denotes an arithmetic scalar , and 'N' deontes an integer scalar.

Table of Intrinsic Matrix Functions

name input output meaning

TRANS A B B = transpose of A

DIAG A B B = diagonal of A

TRACE A X X = trace of A for arithmetic type

IMAGE A B B = boolean image of A (non-trivial elements re-

placed by 1)

MIN A X X = maximum value for arithmetic type (inside body

of A)

MAX A X X = minimum value for arithmetic type (inside body

of A)

NCOL A N N = number of non-trivial columns of A

NROW A N N = number of non-trivial rows of A

MAXCOL A N N = maximum column index number

MAXROW A N N = maximum row index number

NWORDS A N N = number of words of storage used to represent A

INDEX

I
A N N = latest key index number of A referenced for

sequential mode

Some illustrative programs using these intrinsic matrix functions are as follows.

34 J

1_

EXAMPLE 1: Pricing routin e for simplex me thod obtaining first candidate .

10

EXPLANATION:

SUBROUTINE PRICE (M, PI, A , *)
DIMENSION PI(l, M)

MATRIX A (SEQUENTIAL BY COLUMN)

COMMON/TOL/DJTOL

N = MAXCOL (A)
D0 10 J = 1, N
DJ = PI(l , *)* A(*, J)

IF (DJ.GT.DJTOL)RETURN

CONTINUE

RETURN 1

END

1
2

3
4
5
6
7

8
9

10
11

Lin e 1: Subroutin e ide ntifi cation passin g the numbe r or rows (M), price vec to r (Pl), matri x (A) a nd

s tate ment numbe r (*) for transfe r of control if the re are no ca ndidat es.

Line 2: S tanda rd s pec ifi cation s tate me nt.

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 8:

Line 9:

Line 10:

Matrix spec ification s tate me nt.

Passes a tole ra nce throu gh named COMMON.

Use of intrin sic fun c tion MAXCOL to obtain la rges t co lumn index rere re nced (i.e. number or

activities in probl em).

DO loop ove r co lumn numbe rs.

Inne r product betwee n the pri ce vector and co lumn (J) wh ic h is ass igneclto ' DJ' (de noting redu ced

cost).

Tes t fo r candidacy . If the value of DJ exceeds the to le ra nce (DJTOL), a I,{ET URN to ca lling

program unit occurs.

End of DO loop.

Alternate R E TURN (ir no candidates a re found).

Now s uppose the calling program is re-e nte red afte r th e CALL s tate me nt , a nd a candida te is round (norma l

RETURN) . To identify the ind ex numbe r th e intrin s ic matrix fun c ti on, INDEX , is used as

J = INDEX (A)

This retrieves the la tes t column numbe r refe re nced . To expand column (J) in pre pa ration for a row se lec tion

routine, the programmer me rely writes

ALPHA = A(* , J)

whe re ALPHA has appeared in a specification s tatement such as

DIMENSION ALPHA (M, 1)

with M equal to th e row dime nsion.

EXA MPLE 2: The scaJar produ ct of two matri ces is :

it is not diffic ult to s how this is equaJ to

trace (a *(bTl).

35

Thus, if C is a matrix of costs and X is a matrix of ac tivity levels , the total cost,

may be computed by specifying:

MATRIX X, C

COST = TRACE(C*TRANS(X))

where COST is a scalar.

Additiona l examples will be given in sec tion 7 to illustra te input and output statemen ts .

5.3 External Functions

An external function is defined ex ternally to the (sub) program unit that references it, and its form is:

where:

[1] FUNCTION f(aI: , a] ' ..)

! is a data type,
[is the name of the fun ction,

.!! is a dummy argument.

In the enhanced FORTRAN we allow! to be MATRIX (in addition to INTEGER, REAL, etc.).
The basic external fun ctions desc ri bed in X3.9-1966 are not part of FORTREV , which placed th em into

the ca tegory of intrinsic functions .

5 .4 Subroutines

A subroutine is de fin ed externally to the (sub) program unit that references i t and is of the form:

where

SUBROUTINE ~[(g[, .!!] . ..)]

§. is the name of the subroutine

~ is a dummy argument.

We require no ammendments of FORTREV with respect to an (external) subrou tine, except that matrix
constructs may be passed as dummy arguments .

6 . Storage Control

Since the effective sizes of matrices a re dynamic, it is possib le to consume all availabJe space, yet attempt
to execute a s tatement which requires additi onal s torage . (This includes scratch space needed for intermediate
matrix generation during the evalution of a matrix ex press ion.) When th ere is not sufficient storage to execute

such state ments, a s tate of OVERFLOW is said to exist. The operations research programmer may be able to

take certai n remedial action such as permanently or temporarily removing a matrix to make storage avai lable.
This section describes the "OVERFLOW statemen t" and statements to ac hieve a degree of con trol over

storage. In this sense the enhancement admits a quasidynamic storage allocation capability, not dependent on
whethe r the processor uses dynamic s torage allocation.

36

------~~~.----

6.1 OVERFLOW and RESUME Statements

The form of an overflow stateme nt is:

OVERFLOW = §

whe re s is a statement label of an executable statement that appears in the same program unit as the overflow

statement. This defines the transfer of control when an overflow condition is reached.
It should be noted that this form is analogous to the "en'or specifier" in FORTREV , except the

OVERFLOW statement may be used at any time as an executabl e statement.

After the control transfers, which results from an overflow cond ition , the (sub) program unit may take

certain remedial action (to be desc ribed s hortly). If the programmer has included an appropriately-placed
statement,

RESUME,

thi s will th en transfe r controL bac k to th e place overflow OCC UlTer!.

6 .2 ERASE Statement

The ERASE statement is u sed to delete a matrix or a submatrix. The name of the matrix remains valid and
may be reconstru cted or s tiLi used in any mat rix express ion (treated as a trivial matrix). I ts form is:

ERASE.il r, .il]'"
where ~ is a matri x reference.

For example, a mathemati cal programming routin e may declare two ma tri ces as:

MATRIX A(NAME(l5)), B(SEQUENTIAL BY COLUMN)

The first matrix, named 'A', is to be used for the matri x gene ration phase, facilitat in g dec lara tion of nonzeroes
randomly (by name up to 15 cha racte rs). The second matrix, named 'B', represents the same mathemati cal

model , but it is s tored by coLumn to fa c iLitate executi on of the primal s implex method.

Once A is construc ted, we may convert by the assignme nt s tate ment:

B =A

At this point both A and B a loe nontrivial , and it may be necessary to make room for anothe r matri x in order to
represent the basis (as another matrix , possibly in a factored form) . We may thus reach an overflow condition.

In anticipation of that possibility, the program unit may contain the OVERFLOW statement:

and th ere may appear th e statements :

OVERFLOW = 100

100 ERASE A

OVERFLOW = 200

RESUME
200 CALL EXIT

Anothe r use of the ERASE statement is to remove a submatrix. For example, suppose we have

MATRIX A, B, C
B = A(l:lO, l:lO).ADDCOL.A(l:lO, 100:200)

37

If th e stat ement ,

ERASE B(l:lO, 1:10) ,

is executed, then B eq uals A(l:lO, 100:200), except that the columns would be renumbered .
Notice that the ERASE statement complements the assignmen t statement for matrix reduction. For

example, if we write

ERASE A(11:*, 11:*)

then the (10, 10) principal minor of A is retained , and the remainder of A becomes trivial. On the other hand,
if we write

A = A(11:*, 11:*)

then the (10, 10) princ ipal minor is removed from A, and the remai ning nontrivial portion is renumbered.

6.3 DEACTIVATE and ACTIVATE Statements

The DEACTIVATE statement removes a matrix from wo rking storage and saves it on an aux ili ary memory
device. Its form is:

DEACTIVATE .!!

where a is a matrix name .
In our former example it may be desirable to save the matrix A (e.g. for report writing) rather than delete it

entirely. One way is to replace the ERASE statement by:

100 DEACTIVATE A

The ACTIVATE statement retrieves a matrix previous ly deactivated. Its form is:

ACTIVATEl!..

where a is a matri x name.
In ou r exam ple we may execute the following statements after the simplex algori thm te rminates:

ERASE B
ACTIVATE A

It is interes ting to see how these statemen ts permit both row and column forms to be used efficiently. For
example, consider the specification:

MATRIX qSEQUENTIAL BY COLUMN), R(SEQUENTIAL BY ROW)

Let a part of one program unit build a matrix by rows using R. Later it is desired to process sequentially by
column (as in the primal simplex method). Then we simply convert by the assign ment

C=R

and may use the DEACTIVATE or ERASE statements if R is no longer needed. In fact, whenever a row
driven algorithm is to be executed, we can

DEACTIVATE C
ACTIVATE R

38

a nd proceed t.o use R. In thi s manner (use of ACTIVATE a nd DEACTIVATE s tateme nts) the effi c iency of row

versus column d ata s truc tures could be empl oyed in eac h segment of th e maste r algo rithm.

6.4 PRESERVE and RESTORE Statements

The PRESERVE s ta teme nt saves a matri x by writ ing it to a spec ifi ed unit. (The unit ' di s pos ition is under

the control of the operations research progra mm e r.)

Its form is:

PRESE RV E (c il ist) fl [, fl]' ...

whe re c ili st is a control informati on li st, and ~ is a matrix name.

The RESTORE s tate me nt restores a matrix whi ch was prese rved. Its form is:

RESTORE (c ilis t) fl [, fl,]' ..

In our fo nn er exa mpl e we may wi , h pe rm a nentl y to save th e A ma tri x. The n we coul d write

100 PRESERVE (6) A

ERASE A

wh ere '6' identifi es th e dis position. Later, if A is needed (e.g. for re port writing), th en we co uld write

RESTORE (6) A

7. Data Transfer Input/Output Statements

This e nha nce me nt s pec ifi es a spec ia l READ int e rpre ta ti on whe n re fe re nc in g a ma tri x. The decla red mode

of access de te rmines th e meaning of th e s ta te me nt. Furthe r, a n outpu t s tat e ment , P ICT URE (w hi ch is

ava il ab le in ma th e mati ca l programmin g syste ms, e.g. MPSX), is introduced.

7.1 READ Statement

The READ state me nt is th e data tra nsfe r input state me nt. Its proposed spec ial. form for matri ces is:

REA D (c ilist) fl

where cilist is a control information list and a is a matrix name .

The format of data cards is free exce pt that the firs t column contains an as teri s k (*) ur a bla nk. The first

data card is one of the following:

Mode

BY COLUMN

BY ROW

BY ELEMENT

Form of Card 1
*[ml [, NAME = nl
*[ml [, NAME = nl
*j,l [NAME = nl [, NAME = nl

whe re !I) , i and 1 a re positive intege rs and!!. is a name.
If the name options a re not used, the c urrent name (poss ibly none) re mains in effec t. If the index numbe rs

(e .g. !I) is the column number in mode BY COL UMN) are not used , the n th e next highest index number is

used. Thus, to simply c reate two co lumns nam ed 'C1 ' and 'C2' res pec ti vely we may write

MATRIX A(SEQUENTIAL BY COLUMN)

REA D A

READ A

39

The data ca rd s would appear as

*, NAME = Cl
*, NAME = C2

The column numbe rs 1 and 2 would automatically be used.
On the other hand , to create only column 2 (before column 1) we may have the statement 'READ A' appear

once, and the data card would be:

*2, NAME = C2

After card 1 the values appear. In the case of BY ELEMENT the input consists of one index pair (by name,
number or both) and th e value. (No real gain in ease-of-use for input appears in the BY ELEMENT manner of
access.) However, for BY COLUMN and BY ROW manners of access, th e nontrivial elements are declared
with column 1 blank and card k (for (k-l)st element) as follows:

[n = v] - - [, ... J
(ill, Y)

where.!! is a name, .!: is a value conforming to data type, and!!! is an index number. For example, suppose we
have:

MATRIX A(SEQUENTIAL BY COLUMN)
D(7) 10 1= 1,3

10 READ A

Then, 3 co lumns of A will be read in. Suppose the data cards are as follows:

CASE 1:

The matrix will be:

CASE 2:

* (1, 1.0), (2, 5 .0)
* (1 , - 20.0), (3 , 4.0)
* (3, 3.0) , (2 , 6.0)

* NAME = Cl } Rl = 1.0, R3 = 5.0 column 1

*, NAME = C2 } I 2 co umn
Rl = -20 .0, R2 = 4.0

* , NAME = C3 } I 3 co umn
R2 = 3.0, R3 = 6.0

row names

column 1
column 2
column 3

A

t R3
R2

column names

Cl C2

[10 -20.0
5.0

4.0

This produces the same matrix except without names for rows and columns.

.....
C3

60J
3.0

We see that the last column read needs an end-of-data marker to separate it from the next input. Thus, we
add that the last card must be an asterisk(*). In general , the con tents of a column lies between 2 asterisked

40

J

cards, so there will be k + 1 asterisks if k columns are to be read. All but the firs t and last aste risked cards

se lV'e to separate columns and spec ify e nd-of-column-record si multa neously with top-of-column-record for

s uccess ive columns.

7.2 PICTURE Statement

The PICTURE s ta te me nt is used to output matri x s truc ture. Its form is:

PICTURE f! [(Q[, Q]' ..)]

where 1! is a matri x refe re nce and Q is an option. The li st of options are:

Opti on

NOSORT

SORT(iJ

NOLEGEND
HEADING = ~

Meaning

Use index numbers, not names, to delennine ord er of

pri nti ng rows and columns.

SOli a nd print na mes for first i c haracte rs onl y (whe re

! is a nonnegative integer).

Suppress printing of lege nd .

Print head ing desc ribed by the c haracte r express ion £..

Before illu stratin g Ihe use of th e PICT URE s ta te me nt and the options, le i us c omment on th e default s.

If th e NOSO RT option is nol used, Ihe rows and co lumns a re printed in the ir name so rt orde r. The SORT

option a ll ows Ihe nam e sorling a nd printing 10 be trun ca ted. (For exa mpl e, the na me may have max imum

le ngth of] 5 characte rs, whil e eve ry name used has le ngth nol exceeding 5 . [n tha i case th e 10 trailing bl a nks

wou ld be outpull ed un less th e opti on SORT (5) we re used . Thi s would produ ce a nea te r printed output;

however, permitting th e re tenti on of a ll c ha rac te rs, including tra iling bla nks, is needed to a llow the outpul 10

be read by a prog ram with formal fi e ld le ngth s da ta inde pende nl.) It s hould be noted that both NOSORT a nd
SO RT (i) options may be used. Thi s would mean the ind ex numbe rs are to be used , but whe n printed, the

na mes a re trun cated.

If th e NO LEGE D op tion is not used , the output includes a lege nd to descr ibe th e outpul (see examp le 1

be low).

If the H EA DI NG opti on is not used , Ih e heading will be :

MATRIX: f!

where 1! is the matrix reference with values of the index reference (if used) printed . For example, if we write

th en th e heading will be :

J = 1

J = 10
PICTURE A(I:J, *)

MATRIX: A(l:lO, *)

To illus tra te th e PICTURE s ta te me nt le t us cons ider th e fo llowing a rithmeti c Iype matrix used earli e r:

R1
R3
R2

C1

1.0
5.0

C2

- 20.0

4.0

41

C3

6.0
3.0

EXAMPLE 1:

Output:
MATRIX: A
C C C
1 2 3

R1 1-B
R2 A A
R3

Symbol

A
B
C
D
E
V

W
X
Y
Z

A A
Ttrailing

blanks 111

row names

Legend

EXAMPLE 2: PICTURE A(SORT(2) , NOLEGEND)

Output:
MATRIX: A

C C C
1 2 3

R1 1 - B
R2 A A
R3 A A

EXAMPLE 3: B = IMAGE(A)

PICTURE A

}4 trailing blanks in column names

Range

(1, 10]
(10, 100]
(100, 1000]
(1000, 10000]
.CT.10000
[.1, 1)
[.01, .1)
[.001 , .01)
[.0001 , 001)
.LT.0001

PICTURE B(SORT)(O) , NOLEGEND, HEADING= ' IMAGE OF A')
Output:

MATRIX: IMAGE OF A
123

1 1 1
211
3 1 1

8 . Data Structures

This section desc ribes internal data struc tures subordinate to the features of the ANSI FORTRAN
enhancement, notably to the features described in sections 3 and 4 . The purpose is to provide a more
comple te understanding of matrix operations. Further, the data structures are designed to: (1) effect economic
utilization of space and time in handling matrices , and (2) insure room for future extensions in the language as
well as in structure .

42

8.1 Explicit Structure

A matrix is represented internall y as q base linked to a body and a handle:

The body is equivalent , rega rding informati on cont ent , to an alTay (cf. sec. 2.1). The handle conta ins th e row
and column names . The base not only connec ts the handle and body, but also co nta ins oth er informati on
about the matrix important to process ing.

8. 1.1 Base

The base of a ma tri x is a conti guous, fi xed-le ngth li s t co ntaining data, including th e foll owing s ix items:

1. matrix na me

2. ma tri x type and access mode

3 . effec tive and maximum row s ize
4 .. effec tive and max imum column size

5. links to handle and bod y
6. refe rence value

The ma trix name, type, access mode, maximum row s ize and max Imum column s ize a re dec la red by the

ma tri x spec ifi ca tion stateme nt (see sec ti on 3. 1) . (It should be noted that PICTURE uses th e matri x name in
the defa ult headin g (see sec tion 7 .2), so its presence is des irable . Furthe r, the processor may use the matr ix

name and ot he r cha rac te ri s ti cs for de bugging uti lity.)
The effective row a nd column s izes and th e links (item 5) a re initi a ll y null and may change during

exec ution . The refe rence value (item 6) de pends on the access mode. For sequenti a l access, it conta ins the
key (column or row) index number most rece ntl y refe renced; for random access it co nta ins a pointe r to the

most recently refe renced ele ment.

8 .1.2 Body Substructu re

The body of a matrix is a substru cture which logically consists of two entit ies : indic ial information and

elemental information. Each is a list with a correspondence between them. The reaso n for this structure is to
p rovide a vari ety of compac t form s frugal with space and time against a bac kground of ex pec ted demands .

The basic compac t form is based on the supersparsity [8] that prevails in operations research mode ls whi ch
involve large, structured matrices . Supersparsity pertains to re plication of nontri vial ele ments plus a
di s tingui shed set of element values.

For logical data types only. TRUE. is nontrivial , so supe rspars ity abounds, and the need for elemental

inform a ti on disappears.
For a rithm etic types, th e dis tingui shed values are + 1 and - 1; oth e r nonzeroes a re put into a list without

re plication. The idea is to refe rence the m in th e indic ial information li s t, and it takes less space to s tore an

index (pointer) than to replicate th e nonzero value . Thi s lis t of nonze roes is called the literal pool.

For charac te r types th e applica ti on of supe rs pa rs ity requires furth e r s tud y, and we not give details here .
We s hall focus on th e arithmeti c type, particularly with mathematical programming models in mind .

One design is to have one master lite ral pool s hared by all matrices; anothe r is to have a separate literal
pool for each ma trix. While th e latter may result in more space consumption , we shall use it to faci litate

ce rtain operations . For example, the s torage control s tatements (see sec tion 6) function better with separate

43

literal pools. Moreover, a processor is beller able to manage storage by relocating a literal pool (and change

only its base address, thereby keeping the index pointe rs valid) .

8.1 .2.1 Sequential Access Mode

A matrix declared sequential is maintained in a form optimal for sequ ential access by column , by row or by
element. In many operations research models the matrix information, once completely specified, is used in

precisely the declared manner. For example, a conventional pricing scheme for implementing the simplex

algorithm is to proceed column-by-column in their natural order.
The BY COLUMN and BY ROW sequ ential access modes have a natu ral interchangeability so we shall

only describe the data s tructure for SEQUENTIAL BY COLUMN.
Each column is composed of a!~~ader a nd an indicial list. The header contains, contiguously, the following

items:

1. link to next column

2 . number of + 1 coeffi cients
3. number of -1 coeffi c ients

4. number of non-zero, non-unit values.

(A lternative schemes are possible but their relative merits are computer dependent. This is an avenue for

further s tudy.)
The column links (item 1 of each column header) form a circular list. This implies that sequential

p rocessing wraps around to the first column after the last column is referenced .
The indicial lis t immediately follows the header and contains p + m + 2c items , where p, m and c,

respectively, are the numbers defin ed in 2, 3 and 4 above. The first p items in th is list are the row index
numbers with elemental value of + 1; the next m items are the row index numbers wi th eleme ntal value of

-1; th e last 2 c items are, alternatingly, row index numbers and pointers to the lite ral pool to identify their

associated elemental value.
To illustrate the data s tructures described so far, le t us consider th e following matrix:

A

Assume the following charac teris tics :

1. no names have bee n assigned

2. it is sequential by column
3. no row or column maximum has been

specified
4. A was read in column order.

The body would have the following two lists:

i--l I
2 1
3 0
4 1

Column 1
Record

a
9

10
11
12
13
14
15
16

17
o
1
2
2
1
1
3
2

Column 2
Record

17
18
19
20
21
22

Colu.," 3
Record

~

IDENTICAL LIST

44

y---l
2

LITERAL POOL
(ELEMENTAL LIST)

The base would appear as follows (afte r the third READ s tatement):

A-"J> 1 A name
2 a sc arithmetic, sequential , by column
3 3 0 effective row size = 3 , no maximum
4 3 0 effective column size = 3, no maximum
5 o i + 16 v no handle , pointer to column 3 , base of lite ral pool
6 3 latest column number reference

The use of the body pointer and the refe rence value in the base facilitates seque nti a l processing. For example,
consider a DO loop:

D0 10 J = 1, N

DJ = PI(1 , *)*A(* , J)

10 CONTINUE

(ef. sect ion 4.6). We shal l suppose thi s IS th e onl y refe rence to A in the DO loop. Then, to execute th e
ass ignme nt statement , the processor uses th e fa c t that the pointe r to th e body is alread y positioned on th e
previous column , and its advance becomes simple.

8 .1.2 .2 Random Access Mode

If a matrix specifica tion statement includes th e RANDOM ACCESS option, this results in addit ional space
consumption to se t up effi c ient me thods to access any column, row or e lement at random. When used in
conjun ction with sequ ential mode, the data stru cture is an indexed sequential fil e . For example , if we have

MATRIX A(SEQUENTIAL BY ROW, RANDOM ACCESS)

then thi s sels up one pointe r pe r row to avoid a search through the rows unlil the desired row number is
reached.

If access is to be comple tely random (i. e . by element), then both row and column pointe rs are establi shed
as welJ as links in the body to chain columns and rows. (See for example [9]).

8.1 .3 Handle Substructure

The handle substructure is to permit e ffi c ient refe rence by name. Given by index reference (ef. sec tion 3.2)
in th e form of names (or name ranges) , the assoc iated index number(s) are needed to corres pond to th e body
information (viz . , indicial list). Conversely, the name of a particular column number, for example, may be
requested.

One basic struc ture uses binary search trees (see for example Knuth [9]) . The success that has been
reported in the use of AVL trees make them a plausible alternative. However, the conditi ons under whi ch
A VL trees pelform best typify a more general-purpose data base manageme nt environment, where references
do not adhere to any predictable struc ture . In many opera tions research models the programming, such as in
matri x generation for a mathematical program, can exploit special structures . The s tudy of diffe rent stru ctures
well suited for operations research applications is to be considered an avenue for furth er stud y.

8 .2 Implicit Structure

In executing certain assignment statements it is desirable to procrastinate explicit construction of a matrix
in th e hope it will never be necessary, thereby saving space. Implicit struc tures are intended to permit such
procrastination.

An implicit structure has no explicit handle or body. The links in the base are used to specify the implicit
s tru cture . For example, the simple concatenation matrix assignment statement

45

A = B.ADDCOL.C

produces an implicit struc ture with the link items in the base used to spec ify:

B
C
.ADDCOL.

Notice that a processor can use an implicit structure with no degradation in pelformance. In the above
example of concatenation, columns can still be processed sequentiall y with the pointer simply moving to C
when the columns of B are exhausted.

It should be noted that th e programmer may want to use a simple matrix assignment statement (e.g. A = B)
for conversion. Therefore, such assignments do not produce implicit stmctures. At the other extreme, it may
be costly to permit complicated matrix assignment statements to be represented with an implicit stmcture.
Therefore, we require that an implicit struc ture be permitted only in the form:

where ~ is a matrix name, !! and ~ are matrix names different from ::!' and ~ is an operation. Alternatively, we
can have:

or

~ =~ <p~
where ~ is a scalar.

Examples of matrix assignment statements which can be represented with an implicit s truc ture are

Examples which cannot are:

A=B+C

A = B*C
A = B.ADDCOL.C
A = 5*B
A = O-B
A = 5*B + C

A=A+B
A=B

8.3 Examples

In this section two examples are presented together with comments on the behavior of the data structure.

EXAMPLE 1: Generation of a transportation-problem pol ytope.

SUBROUTINE TGEN(COST, A, *) 1
MATRIX COST, A(NAME(12), SEQUENTIAL BY COLUMN) 2
OVERFLOW = 300 3
NS = MAXROW(COST) 4
ND = MAXCOL(COST) 5
NR = NS + ND + 1 6
ERASE A 7
NC = 0 8
DO 10 J = 1, ND 9

46

10 A(NS + 1, .) = COST(. , J) 10
A(NR, .) = 'COST' 11
DO 2001 = 1, NS 12
A(I, .) = COST(I, .) 13
DO 100 J = 1, ND 14
NC = NC + 1 15
A(., NC) = COST(I, .)//COST(. , J) 16
A(I, NC) = 1 17

A(NS + J, NC) = 1 18

A(NR, NC) = COST(I , J) 19

100 CONTINUE 20
200 CONTINUE 21

RETURN 22
300 RETURN 1 23

END 24

Explanation:

Statement 1 declares th e subroutin e (named'TGEN') and passes th e matri x named 'COST' , whose effecti ve

s ize is num be r of suppli e rs by numbe r of de ma nd point s; the ma tri x named ' A' is to be ge ne ra ted; co ntrol

trans fe rs to (*) if a velflow occurs.

Stateme nt 2 is the ma tri x spec ifi ca ti on s ta tement declaring COST (rand om access) and A (seq uenti a l by

column).

Stateme nt 3 se ts th e s tateme nt label (300) for tra nsfe r if overflow is reac hed.

Statement 4 uses th e intrins ic fun ction MAX ROW to re tri eve the numbe r of suppli e rs a nd s ta teme nt 5 uses

the intrinsic fun c ti on MAXCOL to re tri e ve th e number of de ma nd points . Statement 6 sets the numbe r of rows

(o ne row pe r supplier plus one row pe r d emand po int and a n objective row).

Stateme nt 7 in i ti ali zes A to a tri via l matrix.

Statement 8 initi ali zes a counte r (NC) for the number of ac ti viti es (i.e. number of colu mn s in A).

The DO loop, in s ta te ments 9 and 10, sets th e row names for de mand rows . Sta te men t 11 ass igns th e las t

row of A to be named' COST'.

The two DO loops, beg innin g with s ta tement 12, are used to ge nera te th e ac ti viti es, with s uppli e r the outer

loop (s ta teme nt 12) a nd de mand poin t the inner loop (s ta te me nt 14). Sta tement 13 ass igns th e suppli e r name

to the associated s upply row in A.

Statement 15 adva nces th e column count , a nd s tateme nt 16 ass igns the co lumn na me by co nca tenating the

supplie r name with the de mand poin t name . Statements 17 , 18 a nd 19 ass ign the ones a nd cos t to the column .

(The processor can store the column conti guously even though the ass ignme nts a re by e le me nt.)

The body is construc ted effic ie ntly with the da ta structures previously described. There will be two + 1's

per column plus one general nonzero . Therefore, the indi cia] lis t will contain 4 ite ms plus the 4 ite ms in the

header. This yields a total storage requirement of 8 m n for the indicialli s t, wh e re m = numbe r of suppli e rs

a nd n = number of demand points . The s ize of the literal pool depe nds on the supe rspars ity of COST. A n

adva nced processor may take advantage of the fac t tha t the lite ral pool of A is the same as th a t of COST; there

may be merit in considerin g user co ntrol over such declaration of s haring a literal pool.

If th e handle uses a binary search tree s tru cture, th e n th e (arbitra ry) nes tin g of th e DO loops in s ta te ments

12 a nd 14 would affect th a t tree's sha pe a nd he nce the effi c iency of subsequ ent searches. For exa mple,

suppose the names are:

Suppliers

DAL

HOU

WSH

De ma nd Points

NE

SE

SW

Then , upon executing TGEN, the tree struc ture in th e handle would be:

47

Row Tree

COLUMN TREE

If we interchange the DO loops, the column tree would then be:

The processor must conside r when and how to restruc ture the trees for effi c ient processing. This is an avenue
for further s tudy.

EXAMPLE 22.: Build a s imple dynamic model having bloc k angular s truc ture.

48

Result:

SUBROUTINE T IM E (NT , B, C, A, *)

MATRIX B, C, A(SEQUENTJAL) , Al(SEQUENTIAL), A2(SEQUENTIAL)
OVERFLOW = 20

DO 10 1= 1, NT

Al = AI. ADDCOL. C

A2 = A2.ADDIAC. B

]0 CONTIN UE

A = AI. ADDROW. A2

ERASE AI , A2

RETURN

20 ERASE A

OVERFLOW = 30

RESUME

30 RETURN]

EN D

NT = number of re pli ca tio ns = numbe r of time pe ri ods

.. •
c c c 1 ... 0
B

B

~

9. Avenues for Further Study

Thi s paper has desc ribed key ele me nts of a n e nh anceme nt of ANSI FORTRA N in orde r to accomm odate

the needs of the operat ions resea rch analys t/ programme r. Several aven ues for furth e r s tud y have been c ited in

thi s re port (e .g. those of da ta s truc tures). In thi s sec tion four additional avenu es for furth e r s tud y a re noted .

They have been selected both for th e ir im porta nce and for the ir p romi se of success ful co mple ti on.

9 . 1 Processor Development

In orde r to tes t and develop th is enh ance ment a processo r is needed . A first effo rt mi ght co nsist of

de veloping a translator, perhaps by ex tending th e NBS precompiler [11] . Thi s should include a capabil ity for

ex pe rimenting with different data stru ctures. furth e r, s ince tes ting shou ld be pe/formed on large proble ms,

such as a ri se in the inte nded operations researc h applicati ons, e ffi c ie ncy of the tran s la ti on should be on a par

with th at of a high quality compiler.

A gra nder e ndeavor would permit spec ifi cation of th e computing environment (e.g. pagi ng, d yna mi c s torage

a lloca ti on, time-sha ring, etc.). Then, the processo r could provide s imula ted result s to fac ilita te ex pe rimenta

tion with d iffe rent s truc tures or sy ntaxes in a va rie ty of environm e nts.

9 .2 Environmental Effects

The ANSI FORTRA Committee has rejected dynamic storage allocation a nd urges th a t e nhanceme nts

co nform to th e one-pass co mpilation s tipulation. These two restric tions exemplify the Co mm ittee's pos ture of

49

maintaining processor independence. One reason for this posture is cost. It would therefore be useful to

measure the gains from relaxing such restric tions. Thus , one avenue for fmiher study is to develop a measure
of gain, at least relative to this enhancement, for such relaxation.

Further, one can explore environmental effec ts without attempting to measure gai n. For example, an
extension of [10] would be appropriate to study the effec ts of paging on this enhan cement.

If the processor, described in section 9.1 , were developed, the s tudy of environmental effects could include
experimentation with different scenarios.

9.3. Dynamic Attribute Recognition

To save time and space it may be desirable to identify certain attributes for matrices (e.g. symmetry). The

data structure could be ex te nded to keep an attribute identity in the base . Further, the matrix specification
s tate ment could be extended to permit declaration of special types of matrices (e.g. diagonal).

Once this notion of attributes, or special matrices, is introduced , it then becomes interesting to see if the
processor could be designed to recognize dynamically certain attributes whe n they prevail. The question of
whe ther such recognition is worth the cost would, of course , require study.

9.4. General packed Arrays

Most of the concepts and data s truc tures described in section 8 can easily be extended to highe r

dimensional tensors. The problem rests with a developm ent of syntax conformal to ANSI criteria.

1 O. References

[1] Clarification of Fortran Standards -Initial Progress, (1969) , Comm. ACM , 7, 10,590.

[2] USA Standard FORTRAN (USAS X3. 9-1966), USA Standards Institute, NY.
[3] R. Bayer and C. Witzgall (1979), Index Ranges for Matrix Ca lculi , Comm. ACM, 15(1972) , 1033- 1039.

[41 R. Bayer and C. Witzgall (1970) , Some Complete Calcu li for Matri ces, Comm . ACM, 13, 223-237.
[5] D. M. Brandon, Jr. (1974), The Implementation and Use of Sparse Matrix Techniques in Genera l Simu lation Programs, The Compo

J. , 17,165-170.
[6] M. J. Dillion , P. M. Jenkins and M. J . O' Brien (1970), An App roach to Matrix Gene rati on a nd Report Writing for a Class of large

Scale Linear Programming Models, in Applications of Mathemati cal Programming Techniques, E. M. Beale (ed .), Engli sh
Universit y Press, London.

[7] W. P. Heis ing (1964), History and Summary of FORTRAN Standardization Deve lopment for the ASA, Comm. ACM, 7, 10,590.

[8] J. E. Kalan (1971) , Aspects of Large-Scale In-Core Linear Programming, Proc. ACM, 304-313.
[9] D. Knuth (1972), The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed., Addison-Wesley.

[10] C. B. Moler (1972), Matrix Computations with Fortran and Paging , Comm. ACM , 15 , 4,268-270.

[11] D. J . Orser (1974), A POI·table General Purpose Fortran Processor, Workshop on Numerical Preprocessors for Numerical Software,
Jet Propulsion Laboratory, Pasadena, Ca.

[12] D. L. Ulery and H. M. Khalil (1974), A Survey of Language-Orient ed Systems for Numerical Linea r Algeb ra, The Compo 1., 17,
82-88.

[13] M. H. Wil son (1973), Flex ible Subarra y Faciliti es for Classical Programming Languages, IBM Houston Scientific Center, Tech.
Rep!. No. 320-2426.

[14] Ameri can National Standard Programming Language FORTRAN (ANSI X3.9-1978) , Ameri can Nati onal Standards Institute, Inc.,

New York , N.Y.

50

	jresv84n1p_21
	jresv84n1p_22
	jresv84n1p_23
	jresv84n1p_24
	jresv84n1p_25
	jresv84n1p_26
	jresv84n1p_27
	jresv84n1p_28
	jresv84n1p_29
	jresv84n1p_30
	jresv84n1p_31
	jresv84n1p_32
	jresv84n1p_33
	jresv84n1p_34
	jresv84n1p_35
	jresv84n1p_36
	jresv84n1p_37
	jresv84n1p_38
	jresv84n1p_39
	jresv84n1p_40
	jresv84n1p_41
	jresv84n1p_42
	jresv84n1p_43
	jresv84n1p_44
	jresv84n1p_45
	jresv84n1p_46
	jresv84n1p_47
	jresv84n1p_48
	jresv84n1p_49
	jresv84n1p_50

