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This not e is part ly exposit ory. In eq ualities re lati ng invers ion with, respectively, extracti on of princ ipa l 

submatrices a nd the Hadama rd product in the two possible ord ers a re deve loped in a simple and unifi ed way for 

pos iti ve de finit e matrices. These inequaliti es are known , but we also c haracteri ze the cases of eq ua lity and s trict 

inequalit y. A by-prod uct is, for example, a pleasa nt p roof of a n inequa lit y due to Fiedler. In addition, it is shown 

that the Hadamard prod uct preserves inequalities in a ge ne ra li zat ion of Schur's observati on. In the process, many 

tools for dea ling with the pos itive se mi-d e finit e partial orderi n g are ex hibi ted. 
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The inequa lities we discuss are with respect to the positi ve se mi-d efin ite partial ordering on he rmitian n­

by-n matri ces. By 

we mean tha t P - Q is positive semi-de finite, and by 

P > Q 

we mean tha t P - Q is positive definite. In partic ular, P 2: 0 and P > 0 mean, respective ly, tha t P is 

pos iti ve se mi-d efinite and P is positi ve definite. See [4]' for an exposition of s ta ndard fac ts a bout posit ive 

defini te matrices used he re in. We firs t note that congruence prese J"Ves thi ordering . 

(1) OBSERVATION: If P and Q are n-by-n hermit ian matrices, the n 

P 2: Q implies T*PT 2: T*QT 

for all n -by-m complex matrices T, and 

P > Q implies T*PT > T*QT 

for all n-by-m complex matrices T of rank Tn . 

PROOF: If P - Q is posit ive sem i-definite the n y*(P - Q )y 2: 0 for all y E en. Thus, x*( T* PT -
T*QT )x = (Tx)*(P - Q)Tx 2: 0 for a ll x E em which , in turn , means that T*PT - T*Qr is positive se mi­

definit e and therefore, tha t T*PT 2: T*QT. The second statemen t is ve rified ana logous ly. 

(2) OBSERVATION: For n-by-n po iti ve definite he rmiti an matri ces P and Q, 

P 2: Q if and onl y if Q- I 2: P - 1 

and 

P > Q if and on ly if Q- t > p - t. 

1 Figures in brackets indicate ,Ilt, lil f'nt lUrc refe rences al the elld of this papd. 
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PROOF: Since P is positive definite, it may be written P = T*T where T is n-by-n and nonsingular. From 
observation 1 and P 2: Q it follows that 12: T-'*QT - ' . Since this means that f - T-'*QT - ' is positive semi­
definite, it follows that all eigenvalues of T-'*QT - ' are less than or equal to 1 and, therefore, that all those 
of TQ - 'T* are greater than or equal to 1. This is to say that TQ - 'T* - I is positive semi-definite, or that 
TQ - 'T* 2: f . Again using observation 1, this translates into Q- ' 2: T - 'T - '* = P - I. This proves the first 
statement because the two implications are equivalent. An analogous argument verifies the second statement. 

A key observation is the partitioned form for the inverse of a general nonsingular matrix. 

(3) OBSERVATION: Suppose that A is an n-by-n nonsingular matrix partitioned as 

A 1- 'A 2(A 3A I - IA 2 - A4)-I) 

(A4 - A3A I- 'A 2 )-' 

partitioned conformally. This assumes all the relevant inverses exist. 
PROOF: This may be verified by direct matrix multiplication or by solving for the blocks of A - I. 

In case the matrix is positive definite hermitian, the relevant inverses do exist and the form of observation 
3 translates into 

(4) OBSERVATION: For a partitioned n-by-n hermitian positive definite matrix, 

where the partitioning is conformal. 

A-'B(B*A - 'B - C)-I) 
(C -B*A-'B)-l 

(5) COROLLARY: For an n-by-n by hermitian positive definite matrix partitioned as in observation 4 , the 
following inequalities hold 

A > BC - 'B* and C > B*A -lB. 

PROOF: This follows from observations 2 and 4 and the facts that the inverse of and any principal sub matrix 
of a positive definite matrix must be positive definite. 

Observation (3) has been made by many authors in this and several equivalent forms . See, for example, [1] 
where many related facts are also developed. Corollary (5) has been noted also in [3] by different means and 
probably has a more extensive history. We next depart from known observations and note a fact which allows 
us to link several types of inequalities and explore more deeply and simply some observations made in [9]. 

The main result is a comparison between the inverse of a principal submatrix of a positive definite matrix 
p and the corresponding principal submatrix of P -I (both of which are necessarily positive definite). We 
denote the set {I, 2, ... , n} by N and then f, J C N are index sets. For an arbitrary n-by-n matrix A, we 
denote the submatrix of A built from the rows indicated by I and the columns indicated by J by 

A (I , j), 

and we abbreviate A (I, J) to A (I). The complement of I (with respect to N) is written f'. 
(6) THEOREM: For an n-by-n positive definite matrix P we have 

Furthermore, rank (P - '(I) - P (1)-' ) = rank P (I, f' ), so that the above inequality is strict if and only if P (I, 
I') has full row rank and equality holds precisely when P (I , 1') = o. 
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REMARK: Statement (6) may be paraphrased, "The inverse of a principa l submatrix is less than or eq ual to 
the corresponding principal sub matrix of the inverse." 

PROOF of (6): Because the statement in question is inva riant und er permutation similarity, it follows from 
observation (4) that 

p - I{I) = (P{I) - P{I , I' )P{!' )- IP(J , 1')*) - 1. 

Therefore, 

(p-I{I))- I =P{I) -P{!, I')P(l') - lP(J , 1' )* , 

and 

P(J) - (P-I{I))-I = P{!, 1')P{!')- lP{!, 1' )*. 

Since P (!') is positive definite by virtue of being a princ ipal submatrix of a positive definite matrix, the 
right-hand s ide of the equality just above is positive semi-definite {and, in fact , has rank equal to tha t of P (!, 
I' ) ). We then have that P (!) 2: (P - I (! ))- 1 and, employing observation 2, P - I (!) 2: P (I) - I. The cases of 

equality and strict inequality are, clearly , determined by P (!, I') as assel1ed, and an analogous argument 
passing from P - I to P shows that rank (p - 1(1) - P (I tl) = rank P (!, I' ). 

REMARK: We note that the inequality of theorem 6 cannot be stri ct whenever the cardinality of 1 is greater 
than ~ n. 

The Hadamard product of two m-by-n matrices A = (aij ) and B = (bij) is the m-by-n matrix 

where Cij = aijbij for i = 1, ... , m; j = 1, ... , n. FUl1her, the Kronecker product of an rn l-by-nl matrix A 
= (aij) and an m2-by-n2 matrix B is the ml m2-by-nl n2 matrix 

A 0 B =. . . (

al.IB ... a l1:'B ) 

. . 
am,IB· .. am,n,B 

(7) OBSERVATION: The Hadamard product of two matrices (for which it is defined) is a submatrix of the 
Kronecker product of those two matrices, and if the two matrices are n-by-n, the submatrix is princ ipal. 

PROOF: This is immediate, and in the n-by-n case we actually have 

AoB = (A 0 B){! ) 

where 1 = {I, n + 2, 2n + 3, . .. , n 2 }. 

(8) OBSERVATION: If H 2: (> )K are n-by-n hermitian matrices, then 

H{!) 2: (> )K{!) 

for any index set 1 C N. 
PROOF: This simply follows from the fact that H - K pos itive semi-definite (pos itive definite) implies (H 

- K)(!) = H (!) - K (!) is also [4]. Observations 7 and 8 are well known and provide a useful device for 
deducing inequalities for Hadamard products from those for Kronecker products (which, although stronger, 
are often easier to see) since H 0 K is positive definite when H and K are [8]. We note also the well-known 
result attributed to Schur that the Hadamard product of positive defin ite matrices is positive definite [6] 
(which is a classic illustration of the comment just made). See also [8] for manipulative facts relating to these 
products . 
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The next main result deals with Hadamard products and inverses of positive definite matrices. 

(9) THEOREM. For n-by- n positive definite hermitian matrices Hand K: 

Moreover, rank (H - loK - l - (HoK)- I) = rank L where 

L = [H , H, ... , H]o (K[P, p2, ... , pn- I]) 

and 

o 
o 
1 

o 

Thus, the inequality is strict if and only if rank L = n, and equality holds if and only if H oKPt = 0, t = 1, 
... , n - l. 

PROOF: Note that (H ® K)-l = H - 1 ® K - 1 and the proof is a direct application of theorem 6 to H ® K 
using observations 7 and 8 and the fact that (H ® K)(! , !') = L where I is as in the proof of observation 7. 

(10) CO ROLLARY. Equality holds in the inequality of Theorem 9 if and only if Hand K are both diagonal. 
PROOF: If both are diagonal, equality is clear, and, on the other hand, HoKP t = 0 for t = 1, ... , n - 1 

only when Hand K are diagonal (for positive definit e matrices), so that the converse follows from th e condition 

for equality in theorem 9. 
The inequality of theorem 9 is known (see, for example [9] for variations); but the cases of equality and 

strict inequality seem not to have been treated, and the deduction from theo rem 6 is especially simple. This, 

of course, shows the link betwee n the Hadamard type inequality (9) and the partitioned inequality (6) and in 
some sense it explains why the otherwise rather mystifying inequality (9) is true. We note that the cases of 

equality and strict inequality have nothing to do with unitary invariants but are rathe r more combinatorial. 
For a matrix A, denote the p-th Hadamard "power" 

AoAo .... 0A 

p-times 

by A (p). Several special cases of theorem (9) are worth noting. 

(11) CO ROLLARY: For a positive definite n-by-n hermitian matrix H, 

Inductively, (11) may be generalized usi ng (9) and using the fact that A 2:: B 2:: 0 and C 2:: D 2:: 0 hermitian 
imply that A 0 C 2:: Bo D. (The latter is a spec ial case of a stateme nt to be proved late r. ) 

(12) COROLLARY: For a positive definite n-by-n hermitian matrix H, 

for all p = 1, 2, 3, .... 
Taking K = H -I, and noting the commutativity of the Hadamard product, produces another inte resting 

special case of (9). 
(13) COROLLARY: For a positive definite n-by- n hermitian matrix H, 

Statement (13) is of particular interest in that it yields an immediate proof of an ineq uality due to Fied ler [2]. 
Note that (13) states that a celtain matrix is greater than or equal to its inve rse; the refore, that matrix must be 
greater than or equal to the identify. 
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(14) COROLLARY: For a positive definite n-by-n hermitian matrix H, 

(We note that this means that all e igenvalues of HoH- 1 are at least one.) Ac tually, e ithe r half of inequality 
(14) is equivalent to the other and, in tum , equivalent to (13). Fiedler's proof of HoH- ' 2: I is quite 
computational, so that the approach here in provides an attractive altemative. This inequality may be 
interpreted as saying that the Hadamard product (of H and H - I) dominates the usual product. It would be 
interesting to know if there are other instances of such a phenomenon . For another view of thi s inequality see 
[7]. 

The cases of equality in (11)-(14) are, of course, entirely covered by (10). Strict ineq uality can never attain 
in (13) or (14) because the row sums of HoH - 1 are all equal to one, and thus 

Strict inequality can occur in (11) and (12) and, in fact, is likely. (We conj ecture that stric t ineq uality holds 
in (11) and (12) unless H has a row with ( n - 1) entl'ies equal to zero.) 

Inequality (11) is of an intriguing type: two matrix operations (in thi s case inve rsion and Hadamard 
squaring) commute except for an inequality. There are other examples of thi s phenome non (e.g., see [5] ), and 
a more general und erstanding of it would be worthwhile . Inequality (6) is, of course , also of thi s type. 

We tum finall y to a different sort of Hadamard product inequality which generalizes Schur's theorem (the 
Hadamard product of two positive definite matrices is positive definite) and points out that matrices under 
Hadamard multiplication are quite analogous to complex numbers in rectangular coordinates as far as simple 
multiplicative ineq ualities. For an arbitrary n-by-n complex matrix define 

H(A) == 1/2(A +A*) 

the " hermitian pact" (or real pact) of A. A natural extension to all matri ces of the partial orde ring for hermitian 
matrices disc ussed so far is the followin g. For n-by-n matrices A, B we write 

A 2: B 

if and onl y if H (A) 2: H (B) in the positive semi-definite pa l1ial ordering on hermitian matrices. (Note that A 
2: Band B 2: A do not imply A = B , only that H (A) = H (B).) We make the analogous extension for strict 
inequality. A straightforward calculation yields 

(15) OBSERVATION: For two n-by-n complex matrices A and B , A 2: B if and only if Re(x*A x) 2: 

Re(x*Bx) for all x E en. 
Of the observations made earlier for the positive semi-definite partial ordering on he rmitian matrices, those 

which carry over to the extended partial ordering (under obvious interpretation) are (1), (2), and (5). It is 

obvious that A 2: Band e 2: D imply A + e 2: B + D. 
(16) EXAMPLE: That theorem 6 does not in general extend to all matrices satisfying H (A) > 0 is shown by 

( 1 1) 
A= 

-1 1 

Then , 

and 1/ 2 ~ 1. 
Our princ ipal observation is: 
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(17) THEOREM: Let P 2: Q be n-by-n positive semi-definite hermitian matrices, and suppose that A 2: B 2: 

o are n-by- n complex matrices. Then 

PROOF: We assume, without loss of generality , that P is positive definite because then the positive semi­

definite case follows by a continuity argument. Because of observations 7 and 8 , the desired inequality holds 

if 

P 0 A2:Q 0 B 

and, because of the extension of observation 1, this inequality holds if there is a nonsingular n 2-by-n 2 matrix 

R such that 

R*(P 0 A)R 2: R*( Q 0 B)R. 

By virtue of the assumption that P is positive definite, the re is a non-singular n-by-n matrix T such that 

T*PT = D and T*QT = E 

are simultaneously diagonal , and , again because of observation 1, D 2: E 2: 0 (i.e., d;i 2: eii 2: 0 for all i = 

1, "' , n). We now takeR = T 0 1, and, then 

R*(P 0 A)R = (T* 0 1)(P 0 A)(T 0 J) = T*PT 0 A = D 0 A 

and, s imilarl y 

R*(Q 0 B)R = E 0 B. 

Thus it suffices to show that 

D 0 A 2: E 0 B. 

n n 

x *(D 0 A) x = L diixt AXi and x*(E 0 B)x = .L eiixt BXi' 
i.= 1 1=1 

Since Re( x ;*Axi) 2: Re(xi*Bxil 2: 0 and dii 2: eii 2: 0, i = 1, ... , n, we have 

Re(x *(D 0 A)x) 2: Re{ x *(E 0 B) x) 

and D 0 A 2: E 0 B by observation 15. Thus 

and the proof is complete. 
It is clear that theorem 17 may be extended to the case of strict inequality which we mention without proof. 
(18) OBSERVATION : For n-by-n he rmitian matrices P > Q 2: 0 and n-by-n complex matrices A > B 2: 

0 , p oA > QoB. 

Finally, (17) may be extended to the case in which none of the fa ctors is hermitian unde r proper 
assumptions. This completes the analogy to multiplication of complex numbers. Defin e 
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5(A) == l/2(A - A*) 

the "skew-hermitian part" of an n-by-n complex matrix A. Then A = H (A) + 5 (A) and i5 (A) is hermitian. 
Now for four matrices, A, 8, C, D a ca lcul ati on yie lds that 

H(A oC) = H (A)o H (C) + 5(A)05(C) 

and 

H(80D) = H(8) oH(D) + 5( 8)05( D ). 

Therefore, A 0 C 2: 80 D if and only if 

H(A)oH(C) + 5(A)05(C) 2: H(8)oH(D) + 5( 8)05(D) . 

Theorem 17 treats the case in which 5 (A) = 5 (8) = 0 and may be used to exhibit several more 
circumstances in which A oC 2: 80D. We list some of these as examples and each may be proved quite 
form ally with the aid of (17). 

(19) OBSE RVATION: For n-by-n complex matrices A, 8 , C, and D, each of the foll owing sets of conditions 
is suffic ient for 

and 

(a) H(A) 2: H(8) 2: 0; H(C) 2: H(D) 2: 0; i5(8) 2: is(A) 2: 0; and is(D) 2: i5(C) 2: O. 

(b) H(A) 2: H(8) 2: 0; H(C) 2: H(D) 2: 0; 0 2: i5(8) 2: is(A); and is(C) 2: is(D) 2: O. 

(c) H(A) 2: -H(8) 2: 0; and H(C) 2: -H(D) 2: 0; 

-i5(A) 2: i5(8) 2: 0; and i5(C) 2: -is(D) 2: O. 
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