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A paper by Shie r (J. Res NBS 80B) shows how to pa rtition the graph of a ma trix into a tree so as to minimi ze the 

number of ope rations requi red to inve rt the matri x. The present paper shows how to economi ca ll y so lve a s pa rse 

system of linear eq uations afte r the app lica tion of Shie r's me thod to the coeffi c ient matrix. 
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1 . Introduction 

In [U Shie r poi nts out that if: (a) the graph corresponding to a sparse matrix A is partitioned into subgraphs 
which themselves can be regard ed as nodes of a tree , and (b) the nodes of thi s tree a re suitably numbered; 
then A can be partitioned as (A ii) where A jj are submatri ces and the ith row of A is 

.:I.i = (Ai " .. , Aii , 0, 0 , . . ' , 0, Ai ,ru), 0, . . · , 0), i = 1, . . . , n (1) 

and where node r(i ) is the "father" of i in the tree . Also, Aik = 0 (k < i) unl ess r(k) = i and A is bloc k 
incidence-symmetric . He then describes a relatively effi cient way of fin d ing A - t , in volving the computa tion 
of A ii- I and simila r sub-matrices by standard methods for dense matrices combined with recursive appli ca ti on 
of hi s algorithm . He also describes a method for carrying out the tree partitioning in (a) above . 

Unfortunately he does not describe in de ta il how his method can be applied to the muc h more common 
problem of solving spa rse equa ti ons, although he does mention (p. 252, lines 3-5) that it ca n be so appl ied. 
This will now be done. 

2. Solution of Equations 

We have to solve: 

where A is partitioned as in (1) and x and b are partitioned conformably into sub-vec tors 

We may ve ry effi ciently solve (2) by Block Gaussian Eli mination as follows: 
(A) (Elimination of sub-diagonal sub- matrices) 

For i = 1, . . . , n - 1 do: 

(I) Form multipliers mr(i) ,i = Ar(i), jAii - 1 
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Eliminate A r(i), i by subtracting Inn i), iX (row i) from row r(i), i.e. 

(S) 

(6) 

(B) (Back-Substitution) 

(IV) !n = Ann-1Qn (7) 

(V) For i = n - 1, " , 1 do: 

(8) 

(The above simply constitutes Gaussian Elimination with coefficients consisting of submatrices instead of 
scalars.) The great advantage of this method is that there is no fill-in except within the blocks, i.e., a zero 
sub matrix always remains zero. 

3. A More Economical Method 

Further economy can be obtained by omitting the explicit calculation of In in (4). Rather we can perform 
triangular decomposition 

(9) 

Then (6) can be replaced by: 

(I), Solve Lii Ei = Qi (10) 

(II) Solve Vii~i = Ei (11) 

(12) 

(III) Form Y!r(i) = A r ( O,i~i (13) 

(IV) Qr(O ~ Qr(O - Y!r(O (14) 

(S) Can be replaced by similar calculations with each column ofAi ,r( i) taking the place, in turn, of Qi. 

(7) Can be replaced by (9), (10), (11) with i = n. 
(8) Can be replaced by: 

(IS) 

(II) Solve Lii Ei = Qi (16) 

(III) Solve Vii!i = ~)i (17) 

4. Operation Count 

(1) If the explicit inverse A ii- l and Inr(i),; are employed as in §2, using dense matrix techniques, the 
operation count would be as follows, assuming A ii is order PiXP;, and Pi = P for all i: the formation of 
Aij- I , /11"(O,i and equation (S) each require O(p3) multiplications, for a total of O(3p 3); while eq (6) 
requires O(P2), (7) requires O(p 3 + p2) and (8) requires O(2p2). Thus, the total number of multiplications 
is approximately 
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(II) 

(18) 

If the method of §3 is used we have: equation (9) requires O(p3/3) multipli cations; equations (10), (ll) 
and (13) togethe r need O(2p 2). The so lution of equa tions (10) , (ll) and (13) with any column of A.i,r(i) 

in place of Q; requires O(2p 2) for each column , i. e . O(2p3) in a ll. Equations (15)-(17) require O(2p2). 

( 
3 

Equations (9) , (10) and (ll) for i = n require 0 ~ + p2) . Thus, the total number of multipli cations 

required for this method is approximately 

(19) 

Thus the me thod of §3 IS more effi cient for large Pi = P, when we may Ignore multiplicative and 
overhead factors. 

(Ill) If the equations a re solved direc tly without any partItIOning, as if they were full , the number of 

1 7 
multipli cations required is = - (npyl + (np)2 , whi ch for large n is much greater than - np3 

3 3 

5. Labelling of Tree Nodes 

The nodes of the tree must be numbered in such a way that its incidence matrix has the form (1). Thi s can 
be accomplished for example by a modifi cat ion of the " Reverse Cuthill-Mc Kee Al gorith m" l2]. (This wa 

originally devi sed as a band-width minimization technique , although that aspec t has no re levance in the 
present context.) Simplified and re-worded for our purposes the algorithm may be desc ribed thus: 
A. Suppose there are N nodes in the tree . Choose an arbitrary nod e and number it N (thi s is defin ed as the 

only member of "level" 1). Set! = 1 and J = N - l. 
B. Consider all nodes adjacent to nodes in leve l! bu t as yet unnumbered (they will be defin ed as members of 

level! + 1) . Suppose the re are K such nod es in all. If K = 0 te rminate. Otherwise ass ign to them the 

numbers J, J - 1, " , J - K + l. 
Set J = J - K and ! = ! + l. 
Repeat s te p B until K = O. 

It is simple to prove that the incidence matrix of a tree thus numbered has the form (1) , I. e . each node 
(numbered i , say) is adjace nt to on ly one nod e having a hi gher number (say r(i)). 
PROOF: Suppose if poss ibl e a nod e numbered i is adjace nt to two nod es numbered rt and r 2 such that rt > i, 
r2 > i. Then the nodes rt and r2 belong to lower levels than node i. Hence they a re both connec ted , via paths 

not including node i, to nodeN. Thus we have two separate paths connecting nodes i and N, i. e. we have a 
loop. But this contradicts the assumption that the graph is a tree. Hence there must be onl y one node adjace nt 
to i with number> i. Q.E. D. 
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