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The probability distribution for the end-to-end length of a polymer of N segments confined in a wedge of

interior angle « is obtained (277 = a > 0). The result is used to evaluate the partition function, (), for the cases:

(1) one end free—one end tied to the vertex, () is proportional to Y¥YN~™/%* hoth ends tied to each other at the

vertex, (), is proportional to y"N—3/2 = 7l
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1. Introduction

It has been shown in previous work [1, 2] that the effects
of a surface on the configurational statistics of a polymer can
be obtained by solving the following equations:

ad
= DV2w

ot (1)

w = 0 on surface
w(t = 0) = 8(x — %0, ¥ — ¥0, 2 — 20)

where
D = nl?/6,t = N/n. (2)

and & is the three-dimensional Dirac delta function. w(x, y,
z, t) is the probability density of a chain end being at (x, v,
z) after N steps, n is the number of steps per unit time, and
[? is the expected square of the length of an individual step.
The above equation holds when the surface acts as a hard
core barrier to the passage of the polymer segments. The
case of long and/or short range attraction of the surface for
the polymer segments is amenable to other techniques [3, 4]
for some simple geometries.

The problem of the configurational freedom of a polymer
near a surface is relevant to the problem of determining the
manner of incorporation of a polymer molecular during the
crystallization process. In fact, a result of this paper (eq (28))
has been used to derive an expression for the contribution to
the surface free energy arising from cilia [5].

* Deceased.
! Figures in brackets indicate the literature references at the end of this paper.

2. Theory

Let us consider the specific surface geometry of a wedge
defined by figure 1. The polymer is attached to the point
defined by p = pg, z = 0, ¢ = 0 in cylindrical coordinates.

(P.2.9)
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FIGURE 1. A polymer molecular confined to a wedge of

angle a has fewer configurations than one not so confined.
The purpose of the paper is to calculate the effect of this
confinement.

It is permitted to wander anywhere within the angle a of the
wedge. The impenetrable cyrstal is imagined to occupy the
interior of the angle 27 — a. In the absence of the wedge the
partition function would be
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where 7 is a partition function per bead. Since the boundary
condition annihilates all walks that touch the boundary the
partition function (sum over states) in the presence of the
boundary is

0= [ wi. (@)

where the integration extends over the volume of the wedge.
This result is valid for large N because the diffusion equation
approach of eqs (1-2) is valid for large N[1, 2]. If we let

2
r=4D=_IN (5)

then the diffusion equation becomes

Jw

ot

= Vw. (6)

The complete statement of the problem, then, in cylindrical
coordinates is

*w 1 0*w

022 p?agd?
w=0,¢p= i%forallp,z,T

w = 0as p— % and/or z = ®

w(t =0) =38(p — py z, b)

where the delta function locates the source at (p,, 0, 0).

The problem as formulated in eq (7) is identical to the
problem of heat conduction in a wedge. Carslaw [6] has
solved the problem in this context for arbitrary angle o and
for a source point at any location. Accordingly, we could
have quoted his general result and derived from it the more
special result, eq (17), on which the remainder of the paper
is based. However, such a procedure would not have resulted
in appreciably fewer equations than the procedure of this
paper. Also, our procedure is simpler than the generalized
method of images used by Carslaw.

The Green’s function of eq (7) in the absence of boundary

conditions is

1 (_ 2 (p* + po® — 2ppy cos d>)>‘ @®

T L.l
(7r7)3"2 P T T

Our solution must approach the above expression as 7 — 0
since in this limit both eq (8) and w are delta functions.

We expect the dependence on z of the solution, w, to be
exp (—z%/7). Without loss of generality we postulate

1 —(p*+p’+2)

Wy = mef COS(@>F‘S(1)7 T)' (9)

The cos <(25 +1) 71'_([)) forces wg to be zero on the
a

surface and any function of p, 7, and ¢ which is zero at ¢
= % a/2 can be obviously represented by a sum of w over
s. The differential equation (eq (7)) becomes

L0 TF,

B { 4p,2 N (2s + 1)2772} .
72 o?p?

Thus, eq (9) satisfies both the differential equation and the
boundary condition provided only that F'; is chosen to satisfy

10
or ap (10)

eq (10). We now wish to solve this equation for F;. It will
simplify our problem if we transform the independent vari-
ables p and 7to m = 2ppy/7 and 7.

o’F 1 oF 2s + 1)%x?
Ja =24 1+(S—L7L T
am?* mam

22
This equation can be solved by separation of variables. At

po® o1

(11)

am

this point we make the observation that if we can satisfy the
initial condition by a sum of terms of the form of eq (9) over
s, then we will have solved our problem. If F; depends only
on m; i.e.; is not explicitly dependent on 7 in eq (11), then a
sum of terms of the form of eq (9) can be made to approach
eq (8) in the limit of 7 = 0, and the initial condition will be
satisfied. Equation (11) then reduces to

1 dF, {
S

m dm

F,

dm?

(25 + 1)%m?

o’*m?

} Fy=0. (12)
We write the solution of eq (12) as

Fg=A I(2s+1)§ (m) + B K(2s+1)§ (m) (13)

where I and K are the modified Bessel Functions of the first
and second kind. Now as p — 0, and then Kosin = (m)

diverges. Since F ¢ must vanish as p — 0 for || = /2 it
follows that B must be set equal to zero. Then our expression
for w becomes

1 24 p2+ %)
w=— e )2 Agcos(2s
5=0

= T (14)
¢ 2pp
+ 1)71(2s+1)2(‘7—0)-
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We now must evaluate A;. To do this we apply the require-
ment that eq (14) satisfy the initial condition.

. 1 _Z _ (p*tp—2ppicosd) |
i { e e T 00
- 1 lp=pol*
We multiply both w and W = 0 by cos (2s +

l)ﬂ—d) and integrate ¢ from —a/2 to a/2 for some small but
@

finite 7. Then we pass to the limit of 7— 0. We find

@ 1 alz T
Ay — = hm—3/§ do cosi(Zs (16)
2 =0T -2 o
2ppocosp
(. T 2

+ 1) -
Lo +1)_( ) %

This result was obtained by using asymptotic forms for I and

2pp,cos
exp (.Bp"—od)) Equation (14) becomes
T
A S Ve Y
= W 320 e g cos(2s (17)

ppa)

When we evaluate these series terms for arbitrarily high s,

+1) —d)] 2s+l)7(

we find that the series converges absolutely for any fixed
finite p, ¢, and 7. Equation (17), then, is the required
solution since it satisfies the initial condition the boundary
condition and the diffusion equation.

We now will evaluate

© o al2
W=f pdpf dzf ddpw (18)
0 —© —a/2
where we have from eq (4)
Q =y"W. (19)
Integrating over z and ¢ we find
8 (=1 (" e
W = ; = 2+1 f ydye v2-a? 1(2s+l)§ (2_')’(1) (20)
where
_ Po _ \/—
a= W’ and y = p/\V/7. (21)
3

We can express the integral over y in terms of confluent
hypergeometric functions. For example, if we let ¢ = y?, the
integral is a Laplace transform, and from Tables of Integral
Transforms [7], Vol. 1, p. 197 we have

4« (-1
W=—2 -
ma s=¢ 2s + 1
(22)
F(] + (25 + l)l>
2] @&
: e : M = (a®)
- ~1/2,@541) 5
F(] + (25 + 1) —>
«
where M (a®) is Whittaker’s Function in the

1/2,(25+ 1)
/2.(2s )2a

notation of the Bateman Project. This transforms to

w
2«

F(l+(2$+ 1)5)

F<l+(2s+1)

e dJ(l + (25 + 1)21, (23)

(44

1+ (25 + 1)

Qm

(zz> ¢

where ®(a,c,z) is Humbert’s symbol for F';(a,c,z) which is a
generalized hypergeometric function.
First if we let a — %, we have

o

iz (=my

7Ts=()28+ 1

lim W =

a—o

= 1l (24)

by the asymptotic expression given for @ in the NBS
Handbook of Mathematical Functions®. This shows that our
expression is properly normalized.

We wish to evaluate W for large N (small a). For this
purpose use the definiton of ® = | F; given on page 373 of
reference [7] to obtain

F<l+(25+1)2£a)

B (l+(2s+ 1)2)

'(1+(23+l)i,l+(2s+l)§,a2) (25)
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I‘<k+ 1+ (25 + 1)1)
20) ok

k=0 o k! ’
BRI o Sy
a
Then
W=—e?
m™ ¢ 32=:0 2s + 1 k§=:0
(26)
™
F<k+1+(2s+1)—) "
20t)  2k+@@s+1) "
a a
D )
a
Equations (5) and (21) give
Po |3
=—4/—. 27
“T 1 Nan @)

We will let po/l = 1 which means that the polymer is pinned
one step away from the vertex.

We shall concern ourselves with the case V large and shall
calculate the first two terms in the expansion in powers of a.
The leading term (s = k£ =0) gives

r (1 + 1) 2T (l)
Q _4 - e = e (—B—)zla . (28)
L ”r(ug) wr<”> =

In considering the first correction term, we have two cases:

o

First2m=a >

(29)

Second, when m = a > 0

(30)

/2

(8-l
2N 1 + /20 \ 2N

Notice that for small a, eq (26) is rapidly convergent.
3. Discussion

The main results of this paper are given by eq (17) for the
probability, w, of a chain located at (p, z, ¢) given that it
started at (p,, 0, 0) and eq (26) for the contribution to the
partition function (eq (19)) due to the confining effects of the
walls of the wedge.

Equation (28) proves a conjecture [9] made previously on
the basis of knowledge of the results for a = 0, 7/2, and 7.

Equation (17) can also be used to obtain the partition
function when the terminal end is fixed at a given place. If
we force it to the original starting point (p,, 0, 0) we obtain
by use of the limiting form of the modified Bessel function

for small arguments.

T

0Q ocyw//v3+; (31)

where NV, which is proportional to 7, is large.

Sincere thanks are due J. D. Hoffman for his helpful
discussions and his continued interest in the problem, and to
R. J. Rubin for a helpful suggestion.
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