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The probabil ity distribution for the end-to-end length of a polymer of N segme nts confined in a wedge of 

inte rior angl e a is obtained (27T 2:: ·a > 0). The result is used to evaluate the partition func tion, Q, for the cases: 

(1) one end free-one end tied to the ve rtex, Q is proportional to y"N--rrf'ln. both ends ti ed to each othe r at the 
vertex , Q, is proportional to yvN- 3/2 - 1T/O:, 
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1. Introduction 2. Theory 

It has been shown in previous work [1 , 2]1 that the effec ts 
of a surface on the configurational statistics of a polymer can 
be obtained by solving the following equations: 

Let us consider the specifi c surface geo metry of a wedge 
defined by fi gure 1. The polymer is attached to the point 
defined by P = Po , z = 0, cf> = 0 in cylindrical coordinates. 

where 

aw 
- = D";;Pw 
at 
w = 0 on surface 

w(t = 0) = o(x - Xo, Y - Yo, z - zo) 

D = n(lj6, t = Nln. 

(1) 

(2) 

and 0 is thp three-dimensional Dirac delta function. w(x, y, 
z, t) is the probability density of a chain end being at (x, y, 

z) after N steps, n is the number of steps per unit time , and 
[2 is the expected square of the length of an individual step. 
The above equation holds when the surface acts as a hard 

if core barrier to the passage of the polymer segments. The 
case of long and/or short range attraction of the surface for 
the polymer segments is amenable to other techniques [3 , 4] 
for some simple geometries. 

The problem of the configurational freedom of a polymer 
near a surface is relevant to the problem of determining the 
manner of incorporation of a polymer molecular during the 
crystallization process . In fact, a result of this paper (eq (28)) 
has been used to derive an expression for the contribution to 
the surface free energy arising from cilia [5]. 

* Deceased. 
I Figures in brackets indicate the literature references at the end of this paper. 

FtGURE 1. A polymer molecular confined to a wedge of 

angle a has fewer configura tions than one not so confined. 
The purpose of the paper is to calculate the effect of this 

confinement. 

It is permitted to wander anywhere within the angle ll: of the 
wedge. The impenetrable cyrstal is imagined to occupy the 
interior of the angle 27T - ll:. In the absence of the wedge the 
partition function would be 
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(3) We expect the dependence on z of the solution, w, to be 

where 'Y is a partition function per bead. Since the boundary 
condition annihilates all walks that touch the boundary the 
partition fun ction (sum over states) in the presence of the 
boundary is 

Q = 1'" J wdv. (4) 

where the integration extends over the volume of the wedge. 
This result is valid for large N because the diffusion equation 
approach of eqs (1-2) is valid for large N[l, 2]. If we let 

2 
7 = 4Dt = - [2N 

3 

then the diffusion equation becomes 

(5) 

(6) 

The complete statement of the problem, then, in cylindrical 
coordinates is 

a 
w = 0, 1> = ± "2 for all p, z, 7 (7) 

w = ° as p --;. 00 and/or z ~ 00 

WeT = 0) = o(p - Po z, 1» 

where the delta function locates the source at (Po, 0, 0). 
The problem as formulated in eq (7) is identical to the 

problem of heat conduction in a wedge. Cat·slaw [6] has 
solved the problem in this context for arbitrary angle a and 
for a source point at any location. Accordingly, we could 
have quoted his general result and derived from it the more 
special result, eq (17), on which the remainder of the paper 
is based. However, such a procedure would not have resulted 
in appreciably fewer equations than the procedure of this 
paper. Also, our procedure is simpler than the generalized 
method of images used by Carslaw. 

The Green's function of eq (7) in the absence of boundary 
conditions is 

1 (z2 (p2 + P02 - 2ppo cos 1») 
(7T7)3/2 exp - -:; - 7 . (8) 

exp (-Z2 /7). Without loss of generality we postulate 

_ 1 -(p' + Po' + r) ( (2s + 1)7T1» ( ) 
Ws - meT cos F s p, 7 . 

7 a 
(9) 

The cos ((2 s + 1) :1» forces Ws to be zero on the 

surface and any function of p, 7, and 1> which is zero at 1> 
= ± a/2 can be obviously represented by a sum of w s over 
s. The differential equation (eq (7)) becomes 

(10) 

Thus, eq (9) satisfies both the differential equation and the 
boundary condition provided only that F s is chosen to satisfy 
eq (10). We now wish to solve this equation for F s. It will 
simplify our problem if we transform the independent vari­
ables p and 7 to m = 2pPO/7 and 7. 

This equation can be solved by separation of variables. At 
this point we make the observation that if we can satisfy the 
initial condition by a sum of terms of the form of eq (9) over 
s, then we will have solved our problem. If F s depends only 
on m; i.e.; is not explicitly dependent on 7 in eq (ll), then a 
sum of terms of the form of eq (9) can be made to approach 
eq (8) in the limit of 7 = 0, and the initial condition will be 
satisfied. Equation (ll) then reduces to 

We write the solution of eq (12) as 

Fs = A 1(2s+ l)~ (m) + B K(2s+ l)~ (m) 
a a 

(13) 

where 1 and K are the modified Bessel Functions of the first 

and second kind. Now as p --;. 0, and then K(2S+1l* (m) 

diverges. Since F s must vanish as p --;. 0 for 11>1 :::::; a/2 it 
follows that B must be set equal to zero. Then our expression 
for w becomes 

) 

1 
w = r3 /2 e 

(p'+ Po'+ r) 00 

T 2: Ascos(2s 
8=0 

(14) I 

Our solution must approach the above expression as 7 --;. ° 
since in this limit both eq (8) and ware delta functions. 
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7T1> 1T (2PPO) + 1)-/(2s+1)- -- . 
a a 7 



We now must evaluate A 8 ' To do thi s we apply the require­
men t that eq (14) satisfy the initi al condition. 

. { 1 _== _ (p2+Po'-2PPcPos<f» } = O. 
11m w - -( )3/2 e ". e ". 
r---+O 7TT 

(15) 

1 ip- Poi 2 

We multiply both wand - )3/2 e - - ".- by cos (2s + 
(7TT 

7Tep 
1)- and integrate ep from -a/2 to a/2 for some small but 

a 
finite T. Then we pass to the limit of T ~ O. We find 

a 1 J al2 Tep A - = lim - d ep cos - (2 s 
8 2 r---+O T 3/2 -0 12 a 

(16) 

+ 1) - ( ) 
1(25+ l~ 2~PO 

This result was obtained by using asymptotic forms for 1 and 

exp (2PP~OSep). Equation (14) becomes 

47T 00 (p2+p;+Z2) 
w = ( )3/2 L e- ". cos(2s (17) 

a TTT 8=0 

+ 1) 7Tep 1(2s+ l~( 2PPo) . 
a a T 

When we evalua te th ese series terms for arbitrarily high s, 
we find tha t the seri es converges absolutely for any fixed 
finite p, ep, and T. Eq uation (17), then, is the required 
solution since it satisfies the initial condition the boundary 
condition and the diffusion equation. 

We now will evalua te 

We can express the integral over y in terms of confluent 
hypergeometri c fun ctions. For example, if we let t = y2, the 
integral is a Laplace transform, and from Tables of Integral 
Transforms [7] , Vol. 1, p. 197 we have 

W = -±- i: (-1)8 
7Ta 8=0 2s + 1 

(22) 

r (1 + (2s + 1) ~) 
2a a' 

. e -"2 M " (a 2) 

( 
7T) - 1/ 2.(2'+1) -r 1 + (2s + 1) _ 2" 
a 

where M " (a2) is Whillaker's Function 111 the 
- 1/2,(2,+ 1);;:;-

notation of the Bateman Project. This transforms to 

r (1 + (2s + 1) ~) 
4 00 (-1)8 2a 

W = - e- a2 L --'---'----------
7T 8= 0 (2s + 1) ( 7T) r 1 + (2s + 1) ­

a 

(2+ 1)'::' ( 7T 
. a 2" <l> 1 + (2s + 1) 2a ' (23) 

where <l>(a,c,z) is Humbert's symbol for IFI(a,c,z) which is a 
ge neralized hypergeome tri c function. 

Firs t if we le t a ~ 00, we have 

4 00 (-1)" 
lim W = - L --= 1 

a---+oo 7T 8=0 2s + 1 
(24) 

J 00 J 00 a~ 
W = 0 pdp -00 dz J -a12 depw 

where we have from eq (4) 

(18) by the asymptotic expression given for <l> in the NBS 
Handbook of Mathematical Functions[81. This shows that our 
expression is properly normalized. 

Q = yNW. 

Integrating over z and ep we find 

8 00 (-1)8 f 00 

W = - L 2 +1 ydye- y2 - a2 /(2s +1}::' (2ya) 
7T 8=0 s 0 a 

where 

Po . r 
a = V T' and y = p/ VT. 

We wish to evaluate W for large N (small a). For this 
(19) purpose use the definiton of <l> = 1 F 1 given on page 373 of 

reference [7] to obtain 

(20) 

(21) 

r ( 1 + (2s + 1) ~) 

r ( 1 + (2s + 1)~) 

. (1 + (2s + 1) ~ , 1 + (2s + I)!!. , a2) 
2a a 
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(25) 



r (k + 1 + (2s + 1)~) 
00 20: a2k 

=2:------
k=O r ( k + 1 + (2s + 1)~) 

k! . 

Then 

4 00 (-1)8 00 

W = -e-a2 2:-2: 
7T 8=0 2s + 1 k=O 

r ( k + 1 + (2s + 1) ~) 

r (k + 1 + (2s + 1) ~) 

Equations (5) and (21) give 

a=~oHi· 

2k+(2J+l)~ 
a a 

k! 

(26) 

(27) 

We will let Poll = 1 which means that the polymer is pinned 
one step away from the vertex. 

We shall concern ourselves with the case N large and shall 
calculate the first two terms in the expansion in powers of a . 
The leading term (s = k =0) gives 

Q 
yN 

r (1 +~) 
4 20: 

(28) 

In considering the first correction term, we have two cases: 

First 2 7T ~.o: > 7T 

2 Q =yN _ 
7T 

r (~) (~) f.; 
r(;) 2N 

Second, when 7T ~ 0: > ° 

(29) 

(30) 

Notice that for small a , eq (26) is rapidly convergent. 

3. Discussion 

The main results of this paper are given by eq (17) for the 
probability, w, of a chain located at (p, z, <1» given that it 
started at (Po, 0, 0) and eq (26) for the contribution to the 
partition function (eq (19)) due to the confining effects of the 
walls of the wedge . 

Equation (28) proves a conjecture [9] made previously on 
the basis of knowledge of the results for a = 0, 7T/2, and 7T. 

Equation (17) can also be used to obtain the partition 
function when the terminal end is fixed at a given place. If 
we force it to the original starting point (Po, 0, 0) we obtain 
by use of the limiting form of the modified Bessel func.tion 
for small arguments. 

(31) 

where N, which is proportional to 7 , is large. 

Sincere thanks are due J. D. Hoffman for his helpful 
discussions and his continued interest in the problem, and to 
R. ]. Rubin for a helpful suggestion. 
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