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An explicit, practical procedure is suggested for transforming from the laboratory variables density (p) and

temperature (T') into the parametric variables r and 6, which occur in various scaled representations of equations

of state and of transport properties of fluids near critical points. A reasonably efficient and versatile computer

program illustrating this procedure is provided. With this program, the parametric equations of state which occur

in several formulations of simple, extended, and/or revised scaling are as easy to use as any other equation of state

for which 7" and p are the independent variables.
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1. Introduction

In recent years various scaling equations of state have
been developed to provide theoretically based, highly accu-
rate representations of thermodynamic data for pure fluids
and fluid mixtures near their critical points. These equations
of state are all consistent with the hypothesis that very near
the critical point the thermodynamic potential is a homoge-
neous function of its natural variables. These equations of
state have relatively few parameters which must be adjusted
to fit data for any specific fluid. This is a practical advantage
for those concerned with taking or correlating data. On the
other hand, many scaling equations of state are written in
terms of parametric variables which appear in nonlinear
equations linking together such physically relevant variables
as the pressure (P), the density (p), and the temperature (7).
The occurrence of the parametric variables is a major
practical disadvantage to any nonexpert who might otherwise
be interested in using a scaling equation of state to deal with
a limited problem. It is, of course, true that these parametric
variables can be eliminated algebraically from the equation
of state along special paths in thermodynamic space such as
the vapor pressure curve. Then, along the special paths, the
scaling equations reduce to simple power laws with noninte-
gral exponents relating directly measured quantities to each
other. For states off these special paths, a user of a scaling
equation of state must eliminate the parametric variables
numerically. The purpose of the present paper is to provide
an explicit example of one way in which this can be done. If
our method is followed, a user need not repeat the program-
ming effort required to eliminate the parametric variables in

! Figures in brackets indicate literature references at the end of the paper.

those situations in which p and T are independent variables.
In situtations in which it is convenient to designate other
physical variables as independent, the general method out-
lined here may still be followed.

In this work we discuss only those scaling equations of
state which use parametric variables. There are several
published examples of scaling equations of state which do
not use parametric variables [1,2]." Unfortunately, these
non-parametric equations of state cannot be integrated in
closed form to obtain an explicit expression for the thermo-
dynamic potential. Thus, frequently used expressions for the
entropy and for the specific heats consistent with non-
parametric equations of state contain integrals which must be
evaluated numerically. In our experience, the lack of an
explicit thermodynamic potential has been a serious handi-
cap in attempting to use these non-parametric equations for
constructing thermodynamic models for real fluids. Accord-
ingly, we now choose to deal with the numerical problems
arising from the use of parametric variables rather than the
numerical problems associated with integral representations
for the potential.

2. Simple Scaling with the Linear Model

We will consider first the “linear model” parametric
equation of state proposed by Schofield [3]. This equation
was first proposed on phenomenological grounds and was
applied with success to the insulating ferromagnet CrBrs [4].
It has since received some theoretical justification [5] and it
has been widely used to correlate equation of state and
transport property data in various fluid systems [6-9]. Most
important from our present point of view, the equations to be
solved in using the linear model parametric equation of state
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may be easily generalized to handle the more complicated
cases of extended and/or revised scaling.

To use the linear model parametric equation of state in
situations where the temperature (') and the density (p) are
the independent variables, the parametric variables r and 6
must be obtained by solving the following two equations:

T=T,+ Ta(l — b26%) (1)

p = pc + pemr®o ()

Here T, and p, are critical constants. For the simple fluids
studied by Levelt Sengers et al., [7] m is a positive constant
in the range 1.5 < m < 2.1; % is a constant falling in the
range 1.1 < b* < 1.6, and the exponent B usually falls in
the range 0.31 < 8 < 0.38. The transformation represented
by eqs (1) and (2) for the fluid xenon is sketched in figure 1.
To make this sketch, values of 7', p., m, and b were taken
from reference [7]. Once values of r and 6 are obtained by
solving (1) and (2), other quantities such as the pressure
(P) and the constant volume specific heat (C,) may be
calculated as functions of p and T by simply substituting r
and 6 into algebraic equations which can be solved explicitly
for the desired quantities [7,10]. There are many ways to
solve these equations numerically. The method described
here is reasonably efficient and reliable.

To solve (1) and (2) we first introduce the dimensionless
variables AT* = (T — T,)/T., and Ap* = (p — pc)/pe to

obtain
0 = AT* — (1 — b%6?) 3)
0 = Ap* — mrP0 (4)

We then eliminate r from (1) and (2) to obtain
b .
0=—Ap*—|AT*| + b0 |1 — b6*|* (5
m

Note that absolute value signs had to be introduced because
we have chosen to raise to powers the separate quantities
AT* and (1 — b6%6) rather than their quotient which always
remains positive. By introducing two new symbols, Z and C

Z = b8
(6)

b
C = —Ap* 2| AT*|
m

we obtain a compactly written transcendental equation in one
variable

f@)=0=Cc+2z|1-22|* (7)

Numerical approximations to its roots may be found effi-
ciently by Newton’s method. This is particularly easy to

implement because the derivative, f'(Z), may be calculated
analytically. In Newton’s method, the (n + 1)'th estimate for
Z is found from the n'th estimate by the rule

Znt1 =Zn_@ (8)

@)

In the present case this rule takes the form

(A= Z)Zn+ Cal1 = Z315)
(1 — Z2) + 2B72

Loy1 =2, (9)

Equation (9) is quite satisfactory for computation if suitable
precautions are taken to handle the singularity at Z = 1.
Each iteration requires only a single exponentiation. A
reasonable initial estimate for Z is obtained by looking at the
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FIGURE 1. Sketch of the transformation from p and T to r and 6 in the
linear model (eqs (1) and (2)) with parameters appropriate for xenon from
reference [7].

physically important special curves, namely: the critical
isochore above T, for which Z = 0, the critical isotherm for
which Z = % 1 and finally or coexistence curve on which Z
= + b in the liquid phase and Z = — b in the vapor phase.
An estimate which has the appropriate limits near the special
curves is:
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(1 —b)AT* | m | 1B :
ZO:l_-l——_—b?Y AF Sfor AT* < 0
(10)
m | s
Z,=(1+ AT* bAp* )B for AT* > 0

We have applied this approach to the solution of eqs (3) and
(4) with the double precision Fortran program listed in
appendix I. For all of the physically reasonable values of
input parameters we have tried, at most five iterations
were needed. The resulting values of r and 6 satisfy eqs (3)
and (4) to 12 or more significant figures. (When |Ap*| and/or
|AT*| are smaller than 107'2, an “unphysical” situation, the
sample program yields fewer significant figures). If a sub-
stantial amount of computation were to be done with a single
value of B, a program could be written in which the time-
consuming step of raising a floating point number to a
floating point power occurs less frequently than the 2-7
times it occurs with the present program.

In concluding this section we note that solutions to (3) and
(4) in the range 1 < 6* < 1/[b*(1 — 28) | may be interpreted
as either two phase states (for which 0 should be set to = 1)
or metastable extensions of the single phase isotherms [11].
Very little is known about the accuracy of the linear model
when it is used in the metastable region.

3. Additional Examples Using Simple Scaling

Other familiar parametric versions of simple scaling can
be handled in the same way as the “linear model”. For
example, the “cubic model” introduced by Ho and Litster
[12] uses two parametric variables which may be considered
to be defined by the equations:

0 = AT* — r(1 — b%6?) (11)

0 = Ap* — mrPO(1 + ¢,60?) (12)
Again we have used r and 6 as the parametric variables while
m, b, B, and ¢y are constants. If the same substitutions are
made in (11) and (12) as those used above in connection with
the linear model, one may obtain:

c

f@Zy=0=c+ 20 +b—§z2)[1—z2|-ﬂ (13)

In practice, ¢3Z/b* is much less than unity so that (13) is
very similar to (7). Initial estimates for the solution to (13)
may be obtained from eq (10), just as for the “linear model”;
then the solution by Newton’s method proceeds exactly as
outlined above except that the “cubic model” function for
fiZ) is used instead of the linear model function.

A parametric scaling equation of state was introduced by
Wilcox and Estler [13] to deal with data from diffraction
experiments in fluids near critical points. Their scheme has
been used by Estler et al. [14] and by Hocken and Moldover
[15]. For a given fluid state, the parametric variables in the
Wilcox-Estler scheme have numerical values which are quite
different from those which appear in the “linear model” or
the “cubic model”. One may consider the variables to be
defined by the equations:

0 =|Ap*| = [Y,R(1 - 6/6,)) (14)
/j Il = O
Y [1 T _%]

0 = AT* — RO (15)

Here, following Wilcox and Estler, the parametric variables
are “R” and “0” while Y,, 6,, 6, B and y are all constants,
and A is a combination of constants: A = 1 — 0,/6,. (Note:
Because the absolute value of Ap* appears in (14), the
inverse transformation from R and 6 to Ap* and AT* is not
unique). Once again one of the parametric variables, say R,
may be eliminated from (14) and (15) to yield an equation in
one variable which may be solved by Newton’s method.

On occasion, T and p are not the most convenient
independent variables. For example, the analysis of flow
calorimetry data [16] requires the computation of the en-
thalpy as a function of 7" and P. Each of the simple scaling
equations of state mentioned above will lead to two equations
relating P and T to parametric variables. The numerical
problem of solving these equations for r and 6 is quite similar
to the problem we have discussed above, namely of solving
the equations in p and 7' for r and 6. In particular, when P
and 7" are known it is still possible to eliminate one of the
parametric variables from the two equations algebraically.
Thus a single equation in one unknown remains which may
be efficiently solved with Newton’s method.

4. Extended and/or Revised Scaling

In more complicated versions of scaling, the conversion
from the laboratory variables p and T to the parametric
variables r and 6 requires the numerical solution of two
simultaneous equations. One parameter can no longer be
eliminated algebraically. An efficient and versatile approach
is to use simple scaling to obtain a first approximation to the
values of the parametric variables. The approximation may
then be improved by using Newton’s method for the solution
of simultaneous equations.

The same first approximation (simple scaling) may be used
with a variety of more complicated models. Where the
derivatives required for the use of Newton’s method are
computed numerically, it becomes quite easy to change from
one model to another.
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We illustrate this approach by considering the form of
extended and revised scaling used by Balfour et al. [10] to
study the equation of state of steam near its critical point. In
this scheme the defining equations may be written in a form
analogous to eqs (3) and (4) above:

U(r,0) = 0 = AT* — r(1 — b*6?) (16)
[roef)
V(r,0) = 0 = Ap% — mr®0
5% {1 + 1:1” + qar'™*# S54(6)/0 (17)

Sl gal Eaacatas 51(6)/(m6)}

Here, the variable Ap} is the scaled density deviation from
the “rectilinear diameter” (In the notation of Balfour et al.
Ap} = A¥, AT* + Ap*). This contrasts with Ap* used
above which is the scaled density deviation from the critical
density. In (16) and (17) the exponents & and A are about
0.1 and 0.5, respectively. The constants ¢ and k,/m are
small compared with unity, and So(6) and S,(6) are rational
polynomial functions of 6.

To consider the transformations (16) and (17), we recall
that both revised and extended scaling may be cast in the
form of an expansion about the critical point. Thus the small
“revision” coefficient ¢ is a measure of the lowest order
departure of the isotherms from antisymmetry and the small
“extension” coefficient k;/m is a measure of the strength of
the second most singular term in the free energy expansion
about the critical point. We expect that if the expansion is to
make sense, the terms with these coefficients should be
small compared with the leading terms. Thus, for physically
meaningful values of Ap} and AT*, good initial estimates
for the parametric variables r and 6 in revised and/or
extended scaling can be found by setting k,/m and ¢ equal to
zero. This, of course, reduces eqs (10) and (11) to eqs (3)
and (4) which we have already solved in dealing with simple
scaling.

Then, the initial estimates for r and # may be improved
efficiently by using Newton’s method for the solution of
equations in two variables. The (n + 1)'th estimates for r
and 6 are obtained from the n'th estimate by the rules [17]

14 U
Tn+1 = Tnm — |:U(rn70n) 6_0 - V(rmon) 6_0] /D (18)

oU 14
Oni1 = 0, — [V(rn’en) a_ - U("nson) _] /D (19)
r ar

ar 60 96 or

The partial derivatives in eqs (18), (19), and (20) are
understood to be evaluated near (r,, 6,). In practice we have
computed approximations for them from divided differences.
Thus, for each iteration, one must evaluate U and V at three
sets of coordinates: (r,6), (r + 8,60), and, (r,0 + 6). The
small difference, 8, used for estimating the derivatives is
chosen to be 107 in the sample program in the appendix.
This value is satisfactory for all the physically reasonable
values of AT* and Ap}§ we have examined. The singularity
at AT* = Ap} = 0 does not cause numerical problems
because, near this point, simple scaling gives quite accurate
values of r and 6, and the iteration of eqs (18-20) is not
used.

If one wished to alter the scheme of Balfour et al., say by
adding an additional extension to scaling term with a new
coefficient, ko, the only change needed in this computational
scheme woud be the addition of that term to the functions
U(r, 0) and V(r,0).

It is economical to evaluate U and V in the same
subprogram to minimize the number of exponentiations
required in each iteration.
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6. Appendix |

The subroutine RTHETA solves eqs (3) and (4) of the text
for the parametric variables r and 6. The argument list of the
subroutine corresponds to the symbols in those equations in
the order: r, 6, Ap*, AT* B, m, b2 This version treats
thermodynamic states for which 1 < | 6 | < 1.00234 as
though such states were metastable. (The number 1.00234 is

arbitrarily chosen. It must fall within the range indicated in
the text). States for which 1.00234 < ] 0 | are treated as two
phase states. In other words, 6 is assigned the value +1 or
—1 which is appropriate for an equilibrium liquid or vapor

state at coexistence conditions.

SUBROUTINE RTHETA(R,THFTA,RHO,TEE,BETA,EM,BESQ )
IMPLICIT REAL*8 (A-H,0-2)
450 FORMAT (2X+*"CATA ERROR IN RTHETA®' , 7(1X, E12.6) )
IF( EM,LEe 0eD0 «0ORe BESQ «LEs 1D0 ) GO TQ 600
ABSRHO = DABS(RHO)
IF ( ABSRHO eLTe 1eD=12 ) GO TO 600
BEE = DSQRT( BESQ )
IF (DABS(TEE)el Tele0OD=12 ) GO TO 495
IF ( TEE oLTe 0.D0 ) Z = 1D0 - ( 1.D0-BEE )
1 * TEE / (1.00-BESQ) * (EM/ABSRHO)**(1.D0/BETA)
IF(TEFEGTe 0eD0) Z =(1DO0+TEE*(EM/BEE/ABSRHD)%*%*(]1D0O/BETA) ) %*%*-BETA
IF ( Z «GTe 1.00234DO0O*BEE ) GO TO 496
C = =RHO*BEE/EM/CABS(TEE )*%BETA
Z = DESIGN(Z,RHD)
100 DO SO0 N = 1, 10

2 = Z%Z

Z3 = 1.00 - Z2

DZ = Z3%(Z + Cx DABS(Z3)**BETA)/(Z3 + 2.D0*BETA%Z2)
zZ =2 - DZ

IF ( DABS( DZ/Z ) LT, 1eD-12 ) GO TO 498
500 CONTINUE
601 WRITE(6+,450) RIyTHETA JRHOL,TEE.BETAEM,BESQ
RETURN
498 THETYA = Z / BEE
R = TEE / ( 1.D0 = Z%Z )

RETURN
4G5 THETA = DSIGN( 1.D0sRHO ) / BEE
R = ( RHO 7 ( EM *x THETA ) ) *%x (1.D0/BETA)
RETURN
496 THETA = DSIGN(1.D0,RHO)
R = TEE 7/ ( 1,0D0 - BESQ )
RETURN

620 IF ( DABS(TEE) LT, 1.0-12 ) GO TC 601
IF( TEE oLTe 000 ) GO TO 496
THETA = 0.DO
R = TEE
RETURN
END
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7. Appendix Il

This subroutine, SOLVE, solves equations similar to (16)
and (17) of the text for the parametric variables r and 6, The
argument list is identical with that in appendix I. This
subroutine assumes that the subroutine RTHETA of appendix
I is available and that another subprogram, UV, is available
to evaluate the functions U(r,f) and V(r,0) defined by
equations such as (16) and (17). The UV subprogram’s
argument list corresponds to the symbols r, 6, U(r,6), V(r,0),
Ap*, AT*, as they are used in eqs (16) and (17). Statement
10 of SOLVE insures that 6 will be assigned a value of +1 or
— 1 if the values of Ap* and AT* provided are such as to lie
within the coexistence curve. Thus this version of SOLVE
does not assume the existence of metastable states.

SUBRODUTINE SOLVE(R+THETA,RHDO, TEE,BETALEM,BESQ)
IMPLICIT REAL*8 (A-+H,0-2)
IF(TEE«GEs 0D0) GO TO S5
THETA = DSIGN(1.D0,RHO)
R = TEE / (1.C0-BESQ)
CALL UV(RsTHETA,U,VRHO,TEE)
10 IF( (V*RHO) +LE. 0.DO0 ) GO TO 999
55 CALL RTHETA(RsTHETA,RHO,TEE,BETAsEM,BESQ)
CD = 1.,D-8
65 DO 75 I = 1.6
CALL UV(R,THETA sUs V,RHOLTEE)
IF(DABS(V) oL Te 1eD=5 .ANDs DABS(U) oLTse 1D-S5) GO TO 999
CALL UV(R+CCsTHETASURsVReRHO, TEF)
CALL UV(R, THETA+DD,UT,VT,RHO, TEE)
DUDR = UR - U
ouoT LT - U
DVDR = VR - V
DVDY = VT - V
D = DUDR*DVDT - DUCT%*CVDR
R = R = CO*(UXDVDT - V*DUDT)/D
THETA = THETA = CDXx(DUDR%XxV - DVDR*U)/D
75 CONTINUE
998 WRITE(6.67) RHO, TEEZE, R, THETA, BETAs, EM, BESQ
67 FORMAT(2X»s*SOLVE,,DOES NCT CCNVERGE®', 7F15.8)
999 CCNTINUE
RETURN
END
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