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An ex plicit , practical procedure is suggested for transforming from the laboratory va ri ables densit y (p) and 

tempe rature (1' ) into the parametri c vari ables r and 0, which occur in various sca led representati ons of equ ati ons 

of s tate and of transport prope .1ies of fluids near critica l po int s. A reasonabl y effi cient and versati le computer 

p rogra m illustratin g thi s proced ure is prov ided. With thi s program, the para me tri c equa ti ons of state whi ch occur 

in seve ra l formul ations of simple, exte nd ed , and/or revi sed sc<:ding a re as easy 1. 0 use as a ny other equ ati on of Sl aLe 

for whi ch T a nd p are the independent variab les. 

Key words: Critical point; equation of state; sca ling eq uation of s tate. 

1 . Introduction 

In recent years various scaling eq uations of state have 
been developed to provide theore tically based , highl y accu­
rate representatio ns of thermod ynamic data for pure fluids 
and fluid mixtures near their c ritical points. These equations 
of state are all consistent with the hypothesis that very near 
the c ritical point the thermodynamic pote ntial is a homoge­
neous function of its natural variables. These equations of 
state have relativ e ly few parameters which must be adjusted 
to fit data for any specifi c fluid . This is a practi cal advantage 
for those concerned with taking or correlating data. On the 
other hand, man y scaling equations of state are written in 
terms of parame tric variables which appear in nonlinear 
equations linking together such physically relevant variables 
as the pressure (P ), the density (p), and the temperature (T). 
The OCCUlTence of the parametric variables is a major 
practical disadvantage to any nonexpert who might otherwise 
be interested in us ing a scaling equation of state to deal with 
a limited problem. It is, of course, true that these parametric 
variables can be eliminated algebraically from the equation 
of state along special paths in thermod ynamic space such as 
the vapor pressure curve. Then, along the spec ial paths, the 
scaling equations reduce to simple power laws with noninte­
gral exponents re lating directly measured quantities to each 
other. For states off these special paths, a user of a scaling 
equation of state must eliminate the parametri c variables 
numerically. The purpose of the present paper is to provide 
an explicit example of one way in which this can be done. If 
our method is foDowed , a user need not repeat the program­
ming effort required to eliminate the parametric variables in 

1 Figures in brackets indicate literature references at the end of the paper. 

those situations in which p and T are independent variables. 
In s itutations in which it is conveni ent to des ignate other 
physical variables as independent, the genera l method out­
lined here may still be followed. 

In this work we discuss onl y those scaling equations of 
state which use parametric variables. There a re several 
published exam ples of scaling equations of s tate which do 
not use parametri c variables [1 ,2]. I Unfortunately, these 
non-parametric equations of state cannot be integrated in 
closed form to obta in an explic it express ion for the thermo­
dynamic potential. Thus, frequentl y used expressions for the 
ent ropy and for the specific heats consistent with non­
parametric equa tions of state contain integrals which must be 
evaluated nume rically. In our experi ence, the lac k of an 
explicit thermodynamic potenti al has been a se rious handi­
cap in attempting to use these non-parametri c eq uations for 
constructing thermodynamic models for real fluid s. Accord­

ingly, we now choose to deal with the numerical problems 
arising from the use of parametric variables rather than the 
numerical problems associated with integral representations 
for the potential. 

2. Simple Scaling with the Linear Model 

We will consider first the " linear model" parametric 
equation of state proposed by Schofield [3]. This equation 
was first proposed on phenomenological grounds and was 
applied with success to the insulating ferromagnet CrBra [4]. 
It has since received some theoretical justification [5] and it 
has been widely used to cOlTelate equation of state and 
transport property data in various fluid systems [6-9]. Most 
important from our present point of view, the equations to be 
solved in using the linear model parametric equation of state 
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may be easily generalized to handle the more complicated 
cases of extended and/or revised scaling. 

To use the linear model parametric equation of state in 
si tuations where the temperature (T) and the density (p) are 
the independent variables, the parametric variables rand () 
must be obtained by solving the following two equations: 

implement because the derivative , f' (Z), may be calculated 
analytically. In Newton's method , the (n + l)'th estimate for 
Z is found from the n' th estimate by the rule 

(8) 

(1) In the present case this rule takes the form 

P = Pc + pcmrIJ () (2) 

Here Tc and Pc are critical constants. For the simple fluids 
studied by Levelt Sengers et aI. , [7] m is a positive constant 
in the range 1. 5 < m < 2.1; b2 is a constant falling in the 
range 1.1 < b2 < 1.6, and the exponent {3 usually falls in 
the range 0. 31 < {3 < 0 .38. The transformation represented 
by eqs (1) and (2) for the fluid xenon is ske tched in figure 1. 
To make this sketch , values of T c, Pc, m, and b2 were taken 
from reference [7] . Once values of rand () are obtained by 
solving (1) and (2), other quantities such as the pressure 
(P) and the constant volume specific heat (C v) may be 
calculated as functions of p and T by simply substituting r 
and () into algebraic equations which can be solved explicitly 
for the desired quantities [7 ,10]. There are many ways to 
solve these equations numerically. The method described 
here is reasonably efficient and reliable. 

To solve (1) and (2) we first introduce the dimensionless 
variables I1T* = (T - Tc)/ Tc, and I1p* = (p - Pc)/ Pc to 
obtain 

(3) 

o = I1p* - mrIJ() (4) 

We then eliminate r from (1) and (2) to obtain 

Note that absolute value signs had to be introduced because 
we have chosen to raise to powers the separate quantities 
I1T* and (1 - b2(J2) rather than their quotient which always 
re mains positive. By introducing two new symbols, Z and C 

Z = be 
(6) 

b 
C = -l1p* - II1T* I-IJ 

m 
we obtain a compactly written transcendental eq uation in one 
variable 

feZ) = 0 = C + Z 11 - Z2 I -IJ (7) 

Z = Z _ (1 - Z~)(Zn + C nil - Z~ I IJ) 
n+1 n (1 - Z~) + 2{3Z~ (9) 

Equation (9) is quite satisfactory for computation if suitable 
precautions are taken to handle the singularity at Z = 1. 
Each iteration requires only a single exponentiation . A 
reasonable initial estimate for Z is obtained by looking at the 
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FIGURE 1. Sketch of the transformation from p and T to rand (J in the 

linear model (eqs (1) and (2)) with parameters appropriate for xenon from 
reference [7). 

physically important special curves, namely: the critical 
isochore above T c for which Z = 0, the cri tical isotherm for 
which Z = ± 1 and finally or coexistence curve on which Z 
= + b in the liquid phase and Z = - b in the vapor phase. 

Numerical approximations to its roots may be found effi- An estimate which has the appropriate limits near the special 
cientl y by Newton's method. This is particularly easy to curves I S : 
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(1 - b)t.. T* I m ! 1/13 Z = 1 - - for t..T* < 0 
o 1 - b2 t..p* 

1
m 1

1/13 Zo = (1 + t..T* bt..p* )-13 for t..T* > 0 

(10) 

We have applied this approach to the solution of eqs (3) and 
(4) with the double precision Fortran program listed in 
appendix I. For all of the physically reasonable values of 
input parameters we have tried, at mos t five iterations 
were needed. The resulting values of r and 8 satisfy eqs (3) 
and (4) to 12 or more significant figures. (When It..p*1 and/or 
It..T*1 are small el- than 10- 12 , an " unphysical" situation, the 
sample program yields fewe r s ignificant fi gures) . If a sub­
stantial amount of computation were to be done with a single 
value of {3, a program could be written in which the time­
consuming step of ra ising a floatin g point number to a 
fl oating point power occurs Jess frequentl y than the 2-7 
times it occurs with the present program . 

In concluding thi s section we note that solutions to (3) and 
(4) in the range 1 < ()2 < I/W(l - 2(3)] may be interpreted 
as ei ther two phase states (for which 8 should be set to ± 1) 
or metas table exte nsions of the single phase isotherms [11]. 
Very little is known about the accuracy of the linear model 
when it is used in the metastable region. 

3. Additional Examples Using Simple Scaling 

Other familiar parametric vers ions of simple scaling can 
be handled in the same way as the " linear mod el" . For 
example, the "cubic model" introduced by Ho and Litste r 
[12] uses two parametric variables which may be considered 
to be defined by the equations: 

(11) 

(12) 

Again we have used rand 8 as the parametric variables while 
m, b, (3 , and C2 are constants. If the same substitutions are 
made in (11) and (12) as those used above in connection with 
the linear model , one may obtain: 

feZ) = 0 = C + z(l + :! Z2) 11 - z21-13 (13) 

In practice, C2 Z/b2 is much less than unity so that (13) is 
very similar to (7) . Initial estimates for the solution to (13) 
may be obtained from eq (10), just as for the "linear model"; 
then the solution by Newton's method proceeds exactly as 
outlined above except that the "cubic model" function for 
j(Z) is used instead of the linear model function. 

A parametric scaling equation of state was introduced by 
Wilcox and Es tler [13] to deal with data from diffraction 
experiments in fluid s near c ritical points. Their scheme has 
been used by Estl eI' e t al. [14] and by Hocken and Moldover 
[IS]. For a given fluid state, the parametric variables in the 
Wilcox-Estl eI' sche me have numerical values wh ich are quite 
different from those which appear in the " linear model" or 
the "cubic model". One may consider the variables to be 
defin ed by the equations: 

0= I t..p* I - [YoR(1 - 8/ ( 0 )6] 13 (14) 

X 1 + - ----'---'" [ {31 - 8/ 8x] 
y 1 - 8/80 

o = t..T* - R8 (15) 

Here, following Wilcox and Estl e r, the parametric va ri ables 
are "R" and "8" whil e Yo, 80 , 8x, {3 and yare all consta nts, 
and t.. is a combination of constants: t.. = 1 - 8J 8x. (Note: 
Because the absolute value of t..p* appea rs in (14), the 
inverse transformation from R and 8 to t..p* and t..T* is not 
unique). Once aga in one of the parametric variables, say R, 
may be eliminated from (14) and (15) to yield an equation in 
one variable which may be solved by New ton's method. 

On occasion , T and p are not the most convenient 
independent variables. For example, the anal ys is of fl ow 
calorimetry data [16] requires the computation of the en­
thalpy as a fun ction of T and P. Each of the s imple scaling 
equations of state mentioned above will lead to two eq uations 
relating P and T to parametric variables. The nume ri ca l 
problem of solving these equations for rand 8 is quite similar 
to the problem we have di scussed above, namely of solving 
the equations in p and T for r and 8. In particular, when P 
and T are known it is still possible to eliminate one of the 
parametric variables from the two equations algebraically. 
Thus a single equation in one unknown remains which may 
be effi c iently solved with Newton's method. 

4. Extended and/or Revised Scaling 

In more compli cated versions of scaling, the convers ion 

from the labora tory variables p and T to the parametric 
vari ables r and 8 requires the numerical solution of two 
simultaneous equations. One parameter can no longer be 
eliminated algebraically. An efficient and versati le approach 
is to use simple scaling to obtain a first approximation to the 
values of the parametric variables . The approximation may 
then be improved by using Newton's method for the solution 
of simultaneous equations. 

The same firs t approximation (simple scaling) may be used 
with a variety of more complicated models. Where the 
derivatives required for the use of Newton's method are 
computed numerically, it becomes quite easy to change from 
one model to another. 
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We illustrate this approach by considering the form of 
extended and revised scaling used by Balfour et al. [10] to 
stud y the equation of state of steam near its critical point. In 
this scheme the defining equations may be written in a form 
analogous to eqs (3) and (4) above: 

k{t. 
+ - + qarl - a - f3 So(e)/e 

m 

+ qak1r1- a -/3+t. SI(e)/(me)} 

(16) 

(17) 

Here, the variable I1p~ is the scaled density deviation from 
the "rectilinear diameter" (In the notation of Balfour et al. 
Ap~ = A tl AT* + Ap*). This contrasts with Ap* used 
above which is the scaled density deviation from the critical 
density. In (16) and (17) the exponents a and 11 are about 
0.1 and 0.5, respectively. The constants q and k tim are 
small compared with unity, and So(e) and SI(e) are rational 
polynomial functions of e. 

To consider the transformations (16) and (17), we recall 
that both revised and extended scaling may be cast in the 
form of an expansion about the critical point. Thus the small 
"revision" coeffi cient q is a measure of the lowest order 
departure of the isotherms from antisymmetry and the small 
"extension" coeffic ient k l / m is a measure of the strength of 
the second most singular term in the free energy expansion 
about the critical point. We expect that if the expansion is to 
make sense, the te rms with these coefficients should be 
small compared with the leading terms. Thus, for physically 
meaningful values of Ap~ and I1T* , good initial estimates 
for the parametric variables rand e in revised and/or 
extended scaling can be found by setting kl / m and q equal to 
zero. This, of course, reduces eqs (10) and (11) to eqs (3) 
and (4) which we have already solved in dealing with simple 
scaling. 

Then, the initial estimates for rand e may be improved 
efficiently by using Newton's method for the solution of 
equations in two variables. The (n + 1)'th estimates for r 
and e are obtained from the n'th estimate by the rules [17] 

(18) 

(19) 

au av au av 
D= -- ---

ar ae ae ar 
(20) 

The partial derivatives in eqs (18), (19), and (20) are 
understood to be evaluated near (r m en). In practice we have 
computed approximations for them from divided differences. 
Thus, for each iteration, one must evaluate U and V at three 
sets of coordinates: (r,e), (r + 8,e), and , (r,e + 8) . The 
small difference, 8, used for estimating the derivatives is 
chosen to be 10- 8 in the sample program in the appendix. 
This value is satisfactory for all the physically reasonable 
values of AT* and Ap~ we have examined. The singularity 
at AT* = Ap~ = 0 does not cause numerical problems 
because, near this point , simple scaling gives quite accurate 
values of rand e, and the iteration of eqs (18-20) is not 
used. 

If one wished to alter the scheme of Balfour et aI., say by 
adding an additional extension to scaling term with a new 
coefficient, k2' the only change needed in this computational 
scheme woud be the addition of that term to the functions 
U(r, e) and V(r ,e). 

It is economical to evaluate U and V in the same 
subprogram to minimize the number of exponentiations 
required in each iteration. 
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6. Appendix I 

The subrout ine RTHETA solves eqs (3) and (4) of the text 
for the parametric variables r and 8. The argumen t list of the 
subrou tine corresponds to the symbols in those eq uations in 
th e order: r, 8, !1p*, !1T*, {3 , m , 62• Th is version treats 
thermodynamic states for which 1 < I 8 I < 1.00234 as 
though such states were metas table. (The nu mber 1.00234 is 
arbitraril y chosen. It must fall withi n the range ind ica ted in 
the text). Sta tes for which 1.00234 < I 8 I a re treated as two 
phase states . In other words, 8 is ass igned the value + 1 or 
- 1 which is appropriate for an equili briu m liquid or vapor 
state at coex istence cond itions. 

SUBROUTINE RTHETA(R,TH~TA,RHO.TEE.BETA.EM.BESQ 
IMPLICIT REAL*8 (A-H.O-Z) 
FORMAT(2X.'CATA ERROR IN ~THETA' , 7(lX. E12.6) 

IF( EM.LE. O.DO .OR. BESQ .LE. I.DO ) GO TO 600 
ABSRHO = DAeS(RHO) 

IF ( ABSRHO .LT. 1.0-12 ) GD TO 600 
BEE = DSQRT( BESQ ) 

IF (DABS(TEE).LT.l.0D-12 ) GO TO 495 
IF ( TEE .LT. O.DO) Z = 1.00 - ( I.DO-BEE 

* TfE / (I.DO-BESa) * (EM/ABSRHO'**(l.DO/BETA) 
IF(TFE.GT. O.DO) Z =(l.DO+TEE*(EM/BEE/ABSRHO)**(l.DO/BETA')**-BETA 

IF ( Z .GT. 1.OJ234DO*BEE ) GO TO 496 
C = -~HO*BEE/EM/CABS(TEE )**B~TA 
Z = DSIGN(Z.RHO} 

100 DO 50 0 N = 19 10 

500 
601 

498 

495 

496 

6')0 

Z2 = Z*Z 
Z3 = 1.00 - 12 
OZ 
Z 

-
= 

Z3*(Z + C* DABS(Z3)**BETA'/(Z3 + 2.00*BETA*Z2) 
1 - DZ 

IF ( DABS( DZ/Z ) .LT. I.D-12 , GO TO 498 
CONTINUE 
WRITE(6,~50) R.THETA.RHO,TEE,BETA.EM,BESQ 

R ETU~N 

THETA = Z / BEE 
R = TEE / ( 1.DO - z*z ) 

RETURN 
THETA = DSIGN( I.DO.RHO ) / BEE 

R = ( RHO / ( ~M * THETA) ) ** (I.DO/BETA) 
RETURN 

THETA = OSIGN(I.00.RHO) 
R = TEE / ( 1.0DO - BESQ 

RETURN 
IF (D~ BS(TEE) .LT. I.D-12) 
IF( TE E .LT. 0.00 ) GO TO 496 

THETA = O.DO 
R = TEE 

RETURN 
END 
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7. Appendix II 

This subroutine, SOLVE, solves equations similar to (16) 
and (17) of the text for the parametric variables rand {}, The 
argument list is identical with that in appendix I. This 
subroutine ass umes that the subroutine RTHETA of appendix 
I is available and that another subprogram, UV, is available 
to evaluate the func tions U(r,{}) and V(r,{}) defined by 
equations such as (16) and (17). The UV subprogram's 
argument list corresponds to the symbols r, {}, U(r,{}), V(r,{}), 
!1p*, !1T*, as they are used in eqs (16) and (17). Statement 
10 of SOLVE insures tha t {} will be assigned a value of + 1 or 
- 1 if the values of !1p* and !1T* provided are such as to lie 
within the coexistence curve. Thus this version of SOLVE 
does not assume the existence of metas table states. 

SUBROUTINE SOLVE(R.THETA.RHO,TEE,BET •• EM,BESa) 
IMPLICIT REAL*8 (A-~.O-Z) 

IF(TEE.GE. 0.00) GO TO 55 
THETA = oSIGN(l.oO.RHO) 
R = TEE / (l.eO-SESa) 
CALL UV(R,THETA.U,v.RHO,TEE ) 

10 IF( (V*RHO) .LE. 0.00 ) GO TO 999 
55 CALL RTHETA(R.THETA.qHO,T~~ .B ETA.EM.BESa) 

00 = 1.0-8 
65 DO 15 I = 1,6 

CALL UV(R.THE TA,U.V.RHO.TEE) 
IF(DABS(V) .L T . 1.0-5 .AND. oABS(U' .LT. 1.0-5) GO TO 999 
CALL UV(R+DC,THETA.UR,VR.RHO.iEF ) 
CALL UV(R.THETA+OD.UT.VT.RHO,TEE) 
DUDf< = U~ U 
DUo T == \;T U 
DVoR = VR V 
DVOT == \IT V 
o = OUD R*DVOT - OUCi*CVDR 
R = R - Co*CU*OVOT - V*oUoT)/o 
THE:T A = THET A - CO* (OUOR*V - OVDR *U) /0 

75 CONTI NUE 
998 wRITE(6.67) RHO, T~E. R. THF.TA. BEiA. EM. B~sa 

67 FORMAT(2X,'SOLVE.DOES NeT CONVERGE'. 7 F15.8) 
999 CONiINUE 

RETURN 
END 
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