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Uppe r and lower bounds on the the rmodynamic quant iti es of d iso rdered one·dimensiona l systems a re 
computed usi ng the spectra l moments of Dom b et ill. lJ]' and a modi fi cati on of a co mputati ona l tec h l1l que of 
Whee ler and Gordo n l2]. The heat capaci ty so prod uced is defi ned to bell e r than 0.01 pe rcen t for aJitemperatu res. 
Models for glasses in one dimension are presented. The difference in the heat capac ity between a di so rde red stat e 
and a compara ble orde red one is exam ined. Normal low temperature behav ior of heat capacit y d ifferences be tween 
glasses and crysta ls is seen. From models fo r glasses in one d imension it is a rgued that when the measured heat 
capac it y of a glass exceeds tha t of its crystal, the glass must ha~e regimes of higher densit y than tha t of the crystal. 
Various approx imati on sc hemes a nd bounds for the heat capac it y of glasses III one and lli gher d imenSions a re a lso 
proposed. 
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1. Introduction 

Differences in the heat capac ity between glasses and 
crystals of the same mate ri al have been extensively studi ed 
experimentall y (see ref. [3] for literature references and 
com pilation of data). The gene ral feature of the difference 
cu rve shows that the glasses have an excessive heat ca pacit y 
di splaying a pea k around 50 K followed by a monotonic 
increase to hi gher temperatures. In reference [3], one of us 
suggested th at the volume diffe rence be twee n the glass and 
re lated crystals caused most of the excess heat capacity 
including the low tem perature peak. In that paper we 
estimated the contribution to the low tempera ture peak du e 
to di sorder and concluded it was small compared to the 
contribution due to volume. 

As a result of that stud y, we have begun a program to 
dete rmine more prec isely the effect of di sorder on the 
vibrational thermodynami c properties of glassy systems in as 
systematic a manner as possible. Others have introduced soft 
modes or modifi ed Debye or E inste in fun ctions to estimate 
the thermal properties of glasses [4]. We shall avoid the 
introduction of such ad hoc models [or the frequency spectra 
of the glass. Rather starting from a general pic ture of 
di sordering in the solid , we shall try to dete rmine the 
thermodynamic fun ctions of the di sordered material in order 
to determine what specifi c model assumptions are necessary 
to mimic the properti es of a glass . To eliminate material 
dependent properties in the spirit of reference 3, we shall 
study the difference in the properties between the glass or 
di sordered state and the crys talline state o[ the same mate­
rial. 

A variety of models are available for th e struc ture of the 
glass . From our point of view they generally divide them­
selves into two classes (1) homogeneous glasses where one 
assumes a glass is a di sordered material with each " bond" or 

I Figures in brackets indicate literature references at the end of thi s paper. 

interaction less strong than that of the crys tal; (2) a Bernal­
type glass where one assumes, as Bernal di d for a liquid [5], 
that the glass has structures in it of higher density (and thus 
hi gher energy) than its crystal. These structures are con­
nected to each other by low energy regions. The hi gh e nergy 
struc tures do not resu lt in the stable c rys tal since these 
struc tures are non-propagating. 

We shall model both such classes of glasses; we shall 
show tha t some Bernal-like glasses have heat ca pac iti es less 
than that of thei r cl),s tals fo r a range of temperatures. 

In ord er to keep the answers quantitati ve we shall restri ct 
ourselves, in this paper, to models of glasses whi ch are 
representable by one-dimensional chains of uniform masses 
with a di stribution of force constants. Here the calculation of 
the thermodynamic fun ctions may be made. We hope the 
results will indicate what would be significant in a more 
realistic three-dimensional treatment and lead to furth er 
work on three-dimensional systems. 

There have been many studies to date of the frequency 
spectra of the one-dimensional di sordered solid , with most of 
the emphasis on the case where atoms of two different masses 
are randomly distributed along the chain [6-14]. This work 
involves analytic studies as well as computer calculations by 
root sampling techniques . Further, Dean [9] has studied 
more general di stributions of force constants, by means of 
computer calculations of the freque ncy spectra. Studies of 
the heat capac ity or thermodynamic functions are much 
rarer. Maradudin et al. [16] have obtained the differences in 
the thermodynamic fu nctions for the two-mass case using an 
expans ion in the disord ering parameter. We shall show later 
on in the paper that thi s technique predic ts too small an 
effect of disordering. A difference curve for the heat capacity 
of a randomly di stributed two mass chain with equal numbers 
of masses m and 2m was determined by Domb and Isenberg 
[8] . This calculation used Padii approximates and was of 
uncertain accuracy. 
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Since the thermodynamic quantities involve averages over 
the frequency spectrum, it is possible to compute them 
directly to good accuracy without knowledge of the entire 
freq uency distribution itself. Wheeler and Gordon [2] have 
shown that it is possible to derive rigorous bounds on 
thermodynamic quantities from the moments of the frequency 
distribution and, furthermore, that these bounds are capable 
of defining the thermodynamic quantities quite accurately 
even if there are not enough moments to define the spectrum 
itself very well. Since Domb, Maradudin, Montroll and 
Weiss [1] have given explicit expressions for the first eleven 
even moments for the random one-dimensional chain, and 
since Domb [6] has given completely the first two terms in 
the low frequency expansion of the spectrum of the same 
chain, we felt that we should be able to answer the question 
as to the contribution of disorder to thermodynamic quantities 
in a one-dimensional system to a high degree of accuracy. 

In the next section we discuss the computational method 
we use; following that, in section 3, we propose some models 
for a glass system and compute their thermodynamic proper­
ties with high precision. In section 4, we discuss various 
approximation procedures to obtain the same thermodynamic 
quantities and compare them to the exact calculations. In 
section 5 we discuss our results and how they relate to real 
glasses. 

In all of this paper our main emphasis shall be on 
computing the heat capacity . This is because most experi­
mental data available at low temperatures are on heat 
capacities; furthermore heat capacity data are the only 
experimental data we know where the properties of both 
glasses and their crystals have been measured at such low 
temperatures. 

For this paper we shall restrict our comparison with 
experiment to the range below 140 K as we did in reference 
[3]. This will allow us to consider only heat capacity at 
constant volume differences. In a future paper we shall look 
into modeling and computations where we allow the system 
to expand. 

A final note should be made. Nothing in this paper is 
directed at the problem of explaining the heat capacity of 
glasses below 1 K [16). Nothing in these models would 
explain the experimentally observed results; furthermore our 
computational procedures are not particularly good in this 
temperature range. 

2. Computational Methods 

2.1 Method of Moments 

All the computations reported in this paper use the even 
moments of the frequency spectrum, /-tn defined as 

(1) 

n = 0, 1, 2, "', 

(2) 

g(w) is the density of states at the frequency wand WM is the 
maximum frequency for the spectra. For a one-dimensional 

chain with uniform masses m ano random force constants 
with a maximum force constant kM' by Rayleigh's theorem 

g(w) = 0, W > 2.j[;Jm, (3a) 

so that in all that follows WM will be defined as 

(3b) 

Domb, Maradudin, Montroll and Weiss [1], have shown that 
for a one-dimensional system mass disordering and force 
constant disordering are equivalent, a distribution of force 
constants being equivalent to a distribution of reciprocal 
masses. We will, therefore, speak of mass or force constant 
distributions when one or the other is convenient for compar­
ison with other results even though we are interested here in 
force constant disorder. 

We are interested in computing the thermodynamic prop­
erties of a harmonic or quasi-harmonic system which can be 
written as 

H(r) = f HE(W!r)g(w)dw, (4) 

where H is the thermodynamic property of interest, HE is the 
appropriate Einstein function and r is the normalized tem­
perature defined as 

r = kT/hwM' 

Wheeler and Gordon [18] have shown how it is possible to 
derive Gaussian integrators of the form 

H(r) = LPiHE(xJr) + R, (5) 
i 

with weights Ph points Xi and remainder R such that the 
weights and points are determined from the moments so that 
the integrators give the first n moments correctly and 
rigorously bound all possible values for H(r) for any distri­
bution g(w) having the same n moments. Furthermore, these 
bounds are sharp enough so that they define H(r) quite 
accurately even with a limited number of moments. 

For the actual computations we used the recursive methods 
developed in Wheeler and Blumstein [1 7]. We did not make 
use of the modified moments defined by them to compute the 
integrators as we had only eleven moments and the double 
precision arithmetic (18 significant figures) on the computer 
used for the calculations was adequate to avoid numerical 
problems caused by the use of the moments directly . Since 
we did not desire answers to an accuracy of more than six 
significant figures , the calculations leading to the integrators 
were essentially exact. 

For the moments of the frequency distribution, we used 
the results of Domb, Maradudin, Montroll and Weiss [1]. 
They give the first eleven even moments for the randomly 
disordered linear chain exactly in terms of the moments of 
the mass distribution with a fixed force constant. However, 
they also show that this is the same answer as for the fixed 
mass , randomly disordered force constant problem with 
distribution of force constants expressed as reciprocals. Thus 
mass disorder and force constant disorder are equivalent in 
one-dimension. 
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In the above paper by Domb, et al., the moments of the 
high frequency series are derived for only the two mass 
distribution. Their results are, in fact, applicable to a more 
generalized mass distribution. To correct a typographic error 
in the coefficient of V3V~VI of /L8, we redid their work up to 
/L8 and found that the coefficients for a generalized mass 
distribution were the same as their coefficients if we define 

using their notation. 

1 N 
~ -e 

lie = N- L.J mi 
.=1 

2.2 Low Frequency Series 

(6) 

Weare interested in the thermodynamic functions at 
low temperatures. In order to have meaningful results to five 
or six significant figures, we had to supplement the moments 
of the distribution g(w) with a low frequency expansion for 
the frequency distribution. As discussed in Wheeler and 
Gordon [2], we then can use the moments to d escribe a new 
frequency distribution 

g'.(w) = g(w) - gL(W), W < We 

g'(w) = g(w), w > We 
(7) 

where gL(W) is a polynomial in w valid for w < We such that 
it bounds g(w) from below so that g'(w) is always positive 
and as close to zero as possible below We. For gL(W), we 
used the first two exact terms in the series expansion for g(w) 
as given in Domb [6]. This is given as 

where WH is the maximum frequency for a uniform chain with 
a mass equal to the mean mass of the chain. The K j are 
defined as 

N 

Kj = 2: (Ei)j/N (9) 
i=l 

where E is given by the expression 

mi = < m > (1 + Ei). (10) 

Equation (8) represents the first two terms of a series with 
an unknown radius of convergence and with possible negative 
terms. Therefore, it is possible for a given w that g'(w) 
could be negative. Since the theory associated with the 
method of moments assumes a positive distribution, if the 
integrators can be formed, the integrators will be for only 
those distributions which are always positive and, therefore, 
the bounds obtained will not include the desired distribution. 
It should be noted that if there is no positive distribution 
possible, then an integrator cannot be formed at all [18] . 

In practice the use of eq (8) has not been too much of a 
problem. If the Ki rapidly go to zero for increasing i, then 
from a relatively rough knowledge of the spectrum which can 
be obtained from the moments themselves, We can be chosen 
such that gL(W) is less than g(w) for all w < We so that good 
accuracy is obtained. The only case where this was not true 

was for the case of two masses randomly distributed with a 
mass ratio of 6 to 1 with 0.9 of the masses being light (this 
model will be discussed later in more detail). For this case 
the Ki grow with increasing i and it was not possible to form 
integrators if We/WH > W/WH = 0.4 even though, for the 
uniform chain the series is convergent for W/WH = 1. The 
errors resulting from this problem appear mainly at low 
temperatures, do not effect our results and are d iscussed in 
appendix A. 

2.3. Thermodynamic Functions 

The functions that were evaluated were the total energy, 
free energy and heat capacity. This involved evaluating the 
integrals 

U / NhwM = 7 f [(W/27) coth (W/27)]g(w)dw, (11) 

F/NhwM = 7 f {In[2 sinh (W/27)]}g(w)dw, (12) 

I I [ (W/27) ] 2 
C/Nk = . (/ ) g(w)dw. 

o smh w 27 
(13) 

The total energy, free energy and heat capacity are all 
expressible in te rms of appropriate Debye functions, Einstein 
fun ctions and a few elementary forms. Although we had F 
and U avai lable, only C is reported in this paper. We have 
computed F and U for use in another paper where the 
systems are allowed to expand. 

3. Models and Results 

Since we are in one dimension and are only dealing with 
the thermal (vibration) properties of the glasses and their 
crystals, we do not propose here to present a detailed model 
of a glass. Rather we shall consider models which display 
the force constant differences one might expect to see 
between glasses and their crystals. 

The view that a glass arises from the appearance of a 
multiple minimum of an averaged molecular potential energy 
function seen by a molecul e has been discussed in some 
detail by DiMarzio and Stillinger [19] and Goldstein [20]. 
Besides the effects on heat capac ity which we shall study 
here, we note that the multiple minima model for a glass 
leads to an entropy per atom (or segment) of the glass at T = 
o K different from that of a crystal at T = 0 K. This is in 
disagreement with some thermodynamic theories of glasses 
[2Ia]. These theories are for idealized glasses and are in 
disagreement with experiment on just this point. That is, 
these theories predict a zero residual entropy per atom for 
the glass at T = 0 K while all experiments we are aware of 
where the entropy of the glass and crystal have been 
measured yield finite entropy differences at absolute zero. 
Chang and Bestul [2Ib] compiled much of the extant data 
and showed that the residual entropy is in the range 0.6 to 
6.0 joules per degree per moveable segment unit. For models 
used in this paper, the residual entropies are between 0.8 to 
8.0 joules per degree per unit. Thus, the multiple minima 
model does not seem to be in disagreement with experimental 
residual entropies. 
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In light of the above arguments and for convenience of 
modeling we shall use a multiple minima model of glasses. 
Thus the average potential energy function we consider here 
has a multiplicity of minima, generally the deepest relating 
to the crystal. Since most molecules which form a glass are 
ei ther polar or chained or three-dimensional bonded struc­
tures, a many minima energy surface describing the mean 
interaction of a molecule with its neighbors as a function of 
separation seems very reasonable. 

In figure la we display the simplest example of a potential 
energy function which allows for glassy configurations; a 
double minima or two-well model. Figure Ib shows the other 
extreme, the case of a many minima potential energy or 
multiple-well model. Any vibrational model which hopes to 
approximate the properties of real glasses needs not only the 
form of the potential energy function but also the distribution 
of molecules whic h reside in each of the minima. Thus we 
need minimally to obtain the distribution of force constants . 
(In other theories of glasses this would be connected to the 
distribution of free volume.) This we do not have for a glass. 
However, a measure of this in one dimension is given by the 
compressibility. Compressibility differences between the 
glass and its crystal have been measured or approximated; 
these range from about 125 to 400 percent. 2 All our models 
fall within this range. The models we have studied are listed 
in Table I. 
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FIGURE 1. Two possible averaged potential energy 
functions fo r well models of a glass . 

(A) shows a simple two-well model. (B, shows a multiple-well 
model. 

Figure 2 shows the effect of a choice of force constant 
distribution in a !::.C v plot where !::.C v is defined as the 
difference between the glass and crystal heat capacity at 
constant volume. In this figure and all subsequent figures 
reporting heat capacity in this paper, the heat capacity 
difference plots are given since that is the quantity in which 
we are interested for comparison with experiment. In this 
figure and the heat capacity figures, a portion of the low 
temperature part of the curves will appear doubled. These 
lines represent the correctly taken upper and lower bounds 
for the difference. Where the curve is not doubled, both 
bounds are closer than can be . represented . The force 

,2 Little data exist where moduli have been measured on glasses and crystals of the same material. 
For Si02 the ratio of the moduli between the glass (fused silica) and quartz may be estimated from 
Bridgeman's dala as 1.4 to 1. 5 (P. W. Bridgeman, Proc. Am. Acad. Arts and Sci. 76, pg. 68, 1948). 
For semicrystalline polymers an estimate of the ratio of the moduli of the glass to that of the crystal 
may be made by using the data of Broadhurst am Mopsik (M. G. Broadhurst and F. I. Mopsik . J. 
Chern. Phys. , 54, 4239, 1971), on polyethylene. Assuming the density of 100 percent crystalline 
polyethylene is 1.0 g/cm3 and 100 percent amorphous is 0.85 gjcm3 then data yie ld a moduli ratio of 
3.5 t04. 
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FIGURE 2. Heat capacity at constant volume of a glass minus 
that of a crystal. 

Curves A and B are fo r glasses defined inlable I. The dotted line is eq (16) minus 
C .. for glass 2A. The dashed line is eq. (16) minus C .. for glass 28. In thi s figu re and 
all those followi ng, doubled lines indicate upper and lower bounds. 

constant of the crystal is assigned a value of 1; all other force 
constants are then relative to the crystal force constant. 

The heat capacity displayed in these figures is normalized 
so it is in units of R, the gas constant; the maximum heat 
capacity possible for our data is by definition one. The 
temperature in the figures is scaled in units ofT/8M where 

8 M = hWM/ k 
WM = is the maximum frequency of the crystal. 

(14) 

In order to compare these calculations with the experimen­
tal data such as given in figure 1 and 2 of reference [3] the 
heat capacity needs to be multiplied by 3R, the assumed 
total maximum contribution to the lattice modes. To compare 
the temperature one needs an estimate of the Debye theta of 
the crystal of the material. Then our T/8M can be scaled 
relative to this Debye the ta for a comparable three dimen­
sional structure. A variety of arbitrary scaling factors may be 
chosen. In reference [3] , figure 3 8 M is defined so that the 
normalized heat capacity of the one dimensional crystal (the 
ordered state) at T = 8 M equals the heat capacity of the 
three dimensional Debye solid at T = 8 , the Debye theta. 
From these assumptions one then obtains the true tempera­
ture by multiplying T/8M by 1.09 times the Debye theta of 
the crystal. 

For the case of the double minima in the potential we 
assume, as is normal, that the deepest minimum, which is 
also the minimum closest to the origin, is the most stable 
state crystal; by the same reasoning the crystal for this case 
has the highest force constant. We look first at 50:50 random 
distribution of force constants, 1 and 0. 5, and 1 and 1/6. For 
these two models we do not expect long runs of either of the 
force constants. In two state models in one dimension one 
expects that there is a approximate one to one correspond­
ence between volume and forc e constant. Thus, one would 
expect the average density over the space of a few masses for 
such models. Figure 2 shows the effect of this volume 
distribution for the two choices of force constants in a plot of 
!::.C v. Notice as one weakens the non-crystalline force con­
stant the heat capacity differences for fixed force constant 
distribution increases. 
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TABLE I. 

Curve Force Constant Ratio Force Constant Mean Force Harmonic Mean 
Distribution Force Constant 

2A 1:1/6 0.5:.5 0.583 0.286 
2B 1: .5 .5:.5 .75 .667 

3A 1:1/6 .9:.1 .9167 .667 
3B 1:.5 .9:.1 .95 .909 

4A 2:1:1/12 1/3: 1/3: 1/3 1.02777 .222 
4B 2:1:1/6 1/3: 1/3: 1/3 1.05555 .4 
4C 2:1:.5 1/3: 1/3: 1/3 1.16666 .857 

5A 2:1/6 .5:.5 1.083333 .307 
5B 2:.5 .5:.5 1.25 .800 

6A 2:1/6 .25: .75 0.625 .216 
6B 2:.5 .25:.75 .875 .615 

7A 1 to 1/3 Dean (1/2-3/2) .6666 .607 
7B 1 to .6 Dean (3/4-5/4) .8 .783 

8A 1. 5 to. 5 Dean (1/2-3/2) 1 .910 
8B 1.25 to .75 Dean (3/4-5/4) t .979 
8C 1.60 to .5333 Dean (1/2-3/2) 1.06666 .970 

We also choose a two state model with 90: 1.0 distribution 
of the 1 and 0. 5 force constant glass and of the 1 and 1/6 
force constant glass. These are models of chains with 
relatively long runs of the higher force constant; thi s gives 
one a view onto a mixed amorphous and crys talline system 
or, from another point of view, a mic rocrystalline vie w of the 
glassy state. Figure 3 displays the results of the heat capac ity 
difference between thi s glass and the c rystal. The effect of 
changing the weak force constant he re is the same as in 
figure 2, while the effect of decreasing the fraction of 
molecules having the weak force constant will decrease the 
total heat capacity diffe re nce as one would expec t. 
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FIGURE 3. Heat capacity at constant volume of a glass minus that 
of a crystal. 

Curves A a nd B are for glasses de~ned in table I. The dashed line is eq (16) minus Cv 
for gluss 3A. The dotted line is eq (16) minus Cv for glass 38. 

Another view of glasses comes from the Bernal's consid­
e rations on the liquid or amorphous state [5]. In Bernal's 
models of the liquid state small groups of molecules are 
bound in a deep energy minimum but geometric considera­
tions leading to this structure do not allow for the structure to 

propagate. In thi s view the energy mIllimum related to the 
crystal is not th e mosl a ttractive potential ene rgy minimum; 
rather it is the most attractive minimum which allows for a 
propagating struc ture. ]n s implest te rms appli cable to one 
dimens ion this would cause a glass to have three available 
force constants, kJ the force constant for the stable but non­
propagating structure, k2 the force consta nt for th e c rys tal , 
chosen he re as 1, and k3 the force constant for the region 
between the two stru ctured regimes. By the view that the 
most stable potenti al e nergy state also yields th e hi ghest 
force cons tan t we have k, > k2 > k3 . In fi gures 4 to 6 we 
di splay some results of the 6,C v calculation for thi s model. 
The reader should note that some of the Bernal mod el glasses 
in figure 4-6 display negative heat capaci ty differences 
between glasses and th e ir c rystals; that is, the glass has a 
lower heat capac ity a t constant volu me th an th e c rys tal for 
some temperature range. This unusual phenomenon is exper­
imentally observed for some measured differences of heat 
capacity at constant pressure [22]. We shall discuss the 
meaning of this result later on in this section and in section 
5. 

Here we only discuss the effects of the changing of the 
force constants on the 6,C v' If we compare figure 2 curve B 
with figure 4 curve C we see the effect of adding a force 
constant greater than that of the crystal to the glass. Figure 2 
curve B shows 6,C v for a 50:50 distribution of 1. and 0 .5 
force constants while figure 4 curve C shows the 6,C v of a 
0.33:0.33:0.33 distribution of force constants 2, 1, and 0.5. 
The effect of adding the stronger force constant is to lower 
the magnitude of the low temperature peak as well as to 
introduce a negative 6,C v regime. 

In figure 4 we see the effec t of changing the weak force 
constant as we hold the other two force constants fixed and 
keep the distribution of force constants the same. As the 
weak force constant drops from 0.5 to 1/12 the size of the 
first peak increases while the size of the negati ve region 
decreases. In figure 5 we leave out the crystal-like force 
constant of relative magnitude 1 showing that this trend is 
not changed by the loss of such a force constant. In both 
figures 4 and 5 we see negative heat capacity difference 
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FIGURE 4. Heat capacity at constant vo/nme oj a glass minas that 
oj a crystal. 

Cunres A, Band C are for glasses defined in table I. The dashed curve is eq (16) minus 
C" for glass 4A. The dotted line is eq (16) minus C\. for glass 4C. 
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FIGURE 5. Heat capacity at constant vo/nme oj a glass minas that 
of a crystal. 

Curves A and B are for glasses dehned in table l. The dashed line is eq (16) minus C" 
for glass SA. The dotted line is t!q (16) minus C\. for glass 5D. 

regimes and peaks at low temperatures. Inspection of Table 
I shows that all those curves with negative heat capacity 
difference regimes have mean force constants greater than 
that of the crystal (that is, greater than 1). 

In figure 6 we show the effect of decreasing the fraction of 
the strong force constant in a Bernal-like model so as to get 
no negative heat capacity regime. This is seen in curves A 
and B. Inspection of Table I shows for these cases the mean 
force constant is less than 1. In fact , in all those cases where 
the harmonic mean force constant is less than 1 and the 
mean force constant is greater than 1 the /j.C v curve shows 
both a positive and negative regime. When the harmonic 
mean force constant is less than 1 and the mean force 
constant is less than 1 we only have the normal low 
temperature peak. 
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FIGURE 6. Heat capacity at constant volnme oj a glass minas that 
of a crystal. 

Curves A and B are for glasses defined in table I. The dashed line is eq (16) minus C" 
for glass 6A. The dottedline is for eq (16) minus C" for glass 68. 

The potential energy function leading to a multiple state 
model of a glass is shown in figure lb. Here many equivalent 
minima are seen with one minimum, that relating to the 
crystal, being somewhat deeper. Here also we have allowed 
for a minimum closer into the origin than the crystal. In the 
extreme, the many-minima model leads to a continuous 
distribution of force constants; such a model is like the model 
Dean [9] used in his computation of the frequency distribu­
tion of a glass-like structure. We have calculated /j.C v for two 
of the Dean distributions of force constants. In figure 7 we 
display the heat capacity difference for a uniform distribution 
of force constants between the force constant limits of 1 to 
3/5 and 1 to 1/3 to be compared with Dean's distributions 
designated as 3/4-5/4 and 1/2-3/2 but with the strongest 
force constant of the distribution chosen to be that of the 
crystal. In this case we see only a normal low temperature 
peak in /j.C v' In figure 8 curves A and B we display heat 
capacity differences for Dean's distribution 1/2-3/2 and 3/ 
4-5/4. Here we still allowed the force constant of the crystal 
to be 1, i. e. , have a value in the center of the force constant 
distribution of the glass . Notice we still have only the low 
temperature peak even though the mean force constant of 
these cases are identical to that of the crystal. In figure 8, 
curve C we have allowed the 1/2-3/2 Dean distribution to be 
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FIG URE 7. Heat capacity at conStant volume of a glass minus 
that of a crystal. 

Curves A and B are for glasses defined in table l. 
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FIGU RE 8. Heat capacity at constant volume of a glass 
minus that of a crystal. 

Curves A, Band C are for glasses defined in lablc I. 

shifted to pick up a stronger force constant and we immedi­
ately pick up a pronounced negative regime at higher 
temperatures. 

The de v peaks displayed in all the curves in figures 2-8 
show low temperature curves s imilar to those obtained from 
experiment. By using the scaling constants discussed earlier 
in the section the order of magnitude of the heat capacity 
difference displayed in figure 3 is smaller than one sees 
experimentally, while those in fi gures 2 and 4 are about the 
right order of magnitude. In general we see by a proper 
choice of ei ther di stribution or force constants we may pick 
up the generally observed heat capacity differe nces . 

However, as was discussed in reference [3] the upswing 
seen in most measured heat capacity difference curves is not 
seen here. This is due to the fact that we are computing the 
heat capacity at constant volume and not allowing the system 
to expand. In a later paper we shall compute the heat 
capacity at cons tant pressure; for such models we will in fact 
see such an upsweep. 

4. Approximations to the Heat Capacity of 
the Disordered State 

In this section we shall look at various schemes to 
approximate the heat capacity of the disordered state. We do 
this with the view that approximations which work well in 
one dimension should be extendable with some validity into 
higher dimensions where it is not possible to compute 
rigorously the heat capacity of the di sordered state . 

The difference in a thermodynamic fun ction between a 
glass and its crystal may be computed by the following cycle: 

H°(Vx, T) 

1 
expand al 

~"~ ",(V,,1) 

disordering at 
constant vo lume 

(1 5) 

H°(V, T) is any thermodynamic property of the material 
which is in the ordered state at volume, V, and temperature 
T; Hd(V, T) is the thermodynamic quantity of a disordered 
material at volume V and temperature T. V x is the volume of 
the c rystal, V g is the volume of the glass. 

Thus to compute the difference in thermodynamic fun c­
tions between a glass and its crys tal we compute the 
difference in thermodynamic fun cti ons between the c rystal 
and an "expanded" crystal which has a force constant which 
is the same as the mean force constant of the glass; then we 
compute difference in thermodynamic fun ctions at fixed 
mean force constants between the glass and the "expanded" 
c lystal. 

Guttman [3] proposed that the first step was easy to 
compute us ing a Grue neisen type theory; the second term he 
found difficult to compute. However, using estimates from 
some calculations of Dean [9] Guttman argued that the 
contribution of the second step was small compared to the 
first. We are able to test that assumption here . 

Before we test hi s assumptions a few words are necessary 
concerning the cycle itself. The cycle is not unique, as one 
would expect. In fac t the "expanded" crystal could have had, 
just as sensibly, a force constant whose value was the 
harmonic mean of the force constants of the glass. This leads 
to a "expanded" crystal with the same bulk modulus as the 
glass . Either choice of models is suitable for describing the 
heat capacity of the glass . Therefore, we performed calcula­
tions for both models. In fact each model has a temperature 
regime where its heat capacity is identical to that of the 
glass . The mean force constant model has the same heat 
capacity as the glass at high temperatures; the harmonic 
mean force constant yields low temperature heat capacities 
identical to that of the glass. This is discussed further in 
appendix C. 

In figures 9 to 11 we display heat capacity differences 
between the glass and the "expanded crystal" approximation 
to the glass. The curves show the effect of the second step of 
the process discussed previously; the change in heat capacity 
at constant volume due to a change in order. The negative 
heat capacity difference curve is always the difference in the 
heat capacity between the "expanded" crystal with the same 
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FIGURE 9. Curve A is the heat capacity of an "expanded" 
crystal with a harmonic mean force constant of glass 2A minus 

that of glass 2A. 
Curve 0 is the heat capacity of an arithmetic Illean force constant crystal minus 

that of glass 2A. Curves Band C are the same as curves A and 0 but referred to glass 
2B. The dashed curve is the Maradudin el al. [15} approximation heat capacity for 
glass 2A minus that of glass 2A. The dotted line is the same for blass 28. 
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FIGURE 10. Curve A is the heat capacity of an "expanded" 
crystal with a harmonic mean force constant of glass 3A minus 

that of glass 3A. 
Curve 0 is the heat capac ity of an arithmetic Illean force constant crystal minus 

that of glass 3A. Curves Band C are the same as curves A and D but referred to glass 
38. The dotted curve is the Maradudin et a!. (I5] approximation heat capac ity for 
glass 38 minus that of glass 38. 

mean force constant as the glass and the glass; the posItIve 
heat capacity difference is always the difference between the 
"expanded" crystal with the same harmonic mean force 
constant as the glass and the glass. 

We first note that when there are two force constants, no 
matter which of the two choices we make for the "expanded" 
crystal, the magnitude of the heat capacity difference dis­
played for the force constant case in figures 9 and 10 for step 
2 of the cycle is always much less than the heat capacity 
difference between the glasses and their crystals displayed in 
figures 2 and 3. (The reader should note the scale changes 
on the graphs). In fact this disordering heat capacity is less 
than the total heat capaci ty difference often by a factor of 3 
or 4. Thus for these glasses Guttman's assertion that volume 
changes dominated the heat capacity differences is, in the 
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FIGURE 11. Curve A is the heat capacity for a crystal with a harmonic 
meanforce constant of glass 4A minus that of glass 4A. 

Curve F is the heat capac it y for an arithmetic mean force consta nt crystal minus that of glass 4A. 
Curves Band E are the same as curves A and F but referred 10 glass 4B. Curves C and D are the 
same as curves A and F but referred to glass 4C 

main, true. However, significant and measurable effects due 
to disordering at constant volume seem to be apparent from 
the above data. This is especially true when one compares 
figure 2 curve A with figure 9 curve A for the 50:50 ratio of 
force constants 1 and l/S. Here the heat capacity due to 
disordering is about 30 percent of the total heat capacity 
difference between the glass and the crystal. 

For three force constants, shown in figure 11, the heat 
capacity difference between the "expanded crystal" and the 
glass is much larger then observed in figures 9 and 10 for 
two force constants. In the case of 2:1:1/12 glasses, the 
approximation to the heat capacity by using its "expanded" 
crystal gives no better an estimate than the crystal heat 
capacity to the heat capacity of the glass. 

Inspection of figures 9 to 11 shows immediately another 
significant fact. As long as one goes to temperatures where 
our bounds are good, the mean force constant "expanded" 
crystal has a heat capacity which is always less than that of 
the glass, and the "expanded" crystal with the same mean 
modulus as the glass always has a heat capacity greater than 
that of the glass. One is an upper bound to the heat capacity 
of the glass and the other a lower bound for all cases we have 
looked at. We have not as yet been able to prove the above 
fact rigorously but this data leads one to believe the hypoth­
esis. Certainly in any extension or in any description of 
glassy properties in three dimensions this hypothesis should 
be considered. In fact, one might consider that a good 
approximation to the heat capacity of the disordered state is 
the average of the two above approximations. We shall 
present a different and considerably better approximation 
later on in this section. 

Before we consider this approximation we should point 
out, for historical purposes, that Maradudin et al [15) have 
computed the heat capacity of a two-well glass using an 
expansion technique for the thermodynamic functions. Their 
results are shown by the dashed and dotted curves in figures 
9 and 10. These curves display the difference between their 
approximate C v and our computed C v' It is seen that although 
their scheme yields results better than the mean force 
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constant or harmonic mean force constant approximation to 
the glass, their scheme still shows significant deviations from 
the true curve. Furthermore, for the 1 and 1/ 6 force constant 
with a force constant distribution of 0.9:0.1 their expansion 
procedure fails: thus their formulae in that case give very 
large errors. That case is not displayed here. 

Finally we propose a new approximation scheme to com­
pute the heat capacity of the disordered state. For this 
purpose let us define the heat capaci ty for an ordered 
(crystalline) system with force constant k as Cv(k, T), where 
we have explicitly displayed the force constant k for this 
monatomic system. Then for a disordered system with two 
force constants kl and k2 in the system in fractions x and I-x, 
respec tively, we define an approximate heat capacity of the 
glass, Cg(T)m as 

fhe extension of this formula to more force constants is 
obvious. In figures 2-6 the difference between the glass heat 
capacity and the approximate heat capacity is shown by a 
dotted line or dashed curves for the various models we have 
discussed earlier. The reader immediately sees by inspection 
of figures 2-6 that this approximation is amazingly good . 

Why such a " mean fi eld" approximation sche me works to 
give such precise values of the heat capacity is itself not 
clear. One should , however, note that the approximation 
scheme yields the same high temperature limiting behavior 
as the exact heat capac ity. This is hown in appendix C. 

5. Discussions and Conclusions 

The models and approximation schemes presented here for 
the heat capacity of the disordered state lead to some 
interesting and simple conclusions about the heat capacity 
differences between glasses and their crystals . 

First, the low temperature peak around T/OM = 0.2 is 
charac te risti c of the glass-crystal differences. Much of the 
peak can be attributed to the fact that glasses have larger 
volumes than their crystals and thus larger bulk moduli as 
Guttman proposed; however, the fact that there are signifi­
cant differences between the heat capaci ty of the glasses and 
the so-called expanded crystals with the same mean or 
harmonic mean force constants as discussed in section 3 
suggests that a significant portion of the difference curves 
arises from disordering alone. 

Second, the approximation to the glass of an "expanded" 
crystal with the same mean force constant as the glass seems 
to be a lower bound to the heat capacity of the glass; the 
"expanded" crystal with a force constant which is the 
harmonic mean of the force constants of the glass seems to 
be an upper bound to the heat capacity of the glass. This 
idea is born out by all the runs we have made . Furthermore, 
these results are indicated by the methods used in this paper. 
For any distribution of force constants, the harmonic mean 
must be less than the arithmetic mean. The low temperature 
heat capacity is linearly related to the harmonic mean force 
constant from Domb's expansion and the high temperature 
heat capacity is linearly related to the arithmetic mean force 
constant by use of moment expansion. Thus while we cannot 
predict what happens in the middle, the limits are consistent 
with these bounds. While the lack of a low frequency 

expansion in three dimenions leaves part of the argument 
open, these bounds probably still will apply. 

Third, the approximation scheme presented in eq (16) is 
available for even three dimensions. As we mentioned 
before, the choice of lattice s tructures for the crystal struc­
tures which make up the approximation to the glass is open 
to question. Since there is no seri es expansion presently 
available, either for high or low temperatures for a three 
dimensional glass, we have no way presently to check such 
a scheme in three dimensions. Even with all these drawbacks 
it would seem like it is a ensible scheme to try for three 
dimensional models of glasses. 

Fourth, we propose that the negative heat capacity differ­
ences between glasses and other crystal s as displayed at 
higher temperatures in figures 4 and 5 and about 50 K 
beyond the low temperature peak in experimental data lead 
one to some hypothes is on th e structure of the glass . 
Specifically we suggest that systems which show regimes of 
negat ive heat capac ity diffe rences between th e glass and th e 
crystal following the low temperature peak must havc regions 
in the glass itself which have hi gher force constants th an th e 
crys tal. This furth ermore suggests that th ese glasses a re 
Bernal-like glasses- that is, glasses th at have non-propagat­
ing structures in the glass whi ch are of hi gher dens ity and 
stronger force constants th an th e crystal. If this proposal is 
true we a re led to th e surpri s ing conclusion that th ermal 
measurements can tell us something about th e detailed 
struc ture of th e glass . This hypoth esis follows straightfor­
wardly from the data presented in thi s paper. We shall 
develop the argument in th e following paragraphs. 

It is seen from fi gures 2 to 8 that not all th e systems wh ich 
have force constants greater than that of th e crys tal have 
negative heat capacity difference regimes. In fact we pointed 
out before that the negative heat capac ity regime at higher 
temperatures will occur only if th e mean force constant of the 
glass is greate r than that of the crystal ; th e low temperature 
peak will occur if th e harmoni c mean force constant of the 
glass is greater than that of th e crys tal. The second condi tion 
is obeyed by all our models. This is true, s ince in one 
dimension the harmoni c mean force constant is th e bulk 
modulus of th e material. Since we assume that all glasses are 
softer than their crystals, we always ass ume th e second 
condition. The first condition doesn' t necessari ly hold if the 
second holds since the mean force constant must be greater 
than the harmonic mean force constant. In fact a simple 
inspection of the harmonic mean and the mean force constant 
for the models we have used will convince the reader that the 
mean force constant may be either above or below that of the 
crystal. We are thus led to the idea that when there is no 
negative regime in heat capacity differences between glasses 
and their crystals we know little about the structure of the 
glass. However, when there is a temperature regime where 
the glass has a lower heat capacity than the crystal we may 
say that the glass has some force constants which are stronger 
than the crystal. 

Three caveats need be made about th e above arguments. 
First, the argument is only for one dimensional systems and 
might not necessarily hold for three dimensional systems. In 
a future paper we shall show that an almost equivalent 
statement may be made for three dimensional glasses . 
Second, we have not included th e effect of thermal expansion 
in the argument. As we noted previously a subsequent paper 
will discuss thermal expansion effects in one dimensional 
disordered systems to get an accurate idea of these effects. 
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Suffi ce it to say here that in general th ermal expansion 
effects on the heat capacity (either Cp or Cv ) should not affect 
the general nature of the above arguments. Finally, the above 
arguments hold only if taking the difference between the 
glass and the crystal truly subtracts out the effects of 
molecular force constants on heat capacity. Clearly these 
effects should be small at these temperatures . However, for 
the above arguments to hold, any effects from these must be 
small or In a sense similar to the effects we have computed. 

Appendix A: Computational Problems 

As in Wheeler and Gordon [2] , we find an extra difficulty 
involved in evaluating the free energy. The free energy F can 
be rewritten as [2] 

F/nfuJJM = -TinT + T J~ In(w)g(w)dw 

JI sinh (W/2T) 
+ T 0 [In (W/2T) g(w)dw]. 

(AI) 

In this expression , only th e second term causes any diffi­
culty, although it has to be evaluated only once. The 
presence of the logarithm causes any integrator with weight 
at x = 0 to diverge, thus only an upper bound can be 
calculated. Wheeler and Gordon 's scheme of estima ting this 
term from the other two does not work too well in one 
dimension since F = Va + 0 (T2) as T ~ 0 rather than 0 (T4) 
as in three dimensions, so that th e slope of th e sum of the 
other two does not give much help except as a check. 
Therefore, the upper bound was studi ed for diffe rent distri­
butions of two force constants of th e form of eq (7) as We was 
varied. Also the results for the monotonic chain were 
compared to the exact answer In 0. 5. For all cases but one 
the integral showed an uncertainty in the sixth signifi cant 
figure . Thus , the free energies for these cases are uncertain 
to a term proportional to T of magnitude 10- 6 T . The only 
exception was the two mass case , mass ratio 6 to 1, with 0.9 
of the masses the light ones. Here, because the series could 
not be carried for large We, the uncertainty may be as large 
as 10- 4 T. Also, for the reasons indicated below, the 
logarithmic intergral may not be a rigorous upper bound. 

The 6 to 1 mass case with 0 .9 light masses has been used 
as an example of a difficult case. Unlike the other cases 
studied, the Ki as defin ed in eq (9) do not for this case 
decrease as a function of i but rather increase . In fac t, the Ki 
become large enough so that the second term of eq (8) 
becomes negative . This raises serious questions as to the 
convergence of the series; one cannot now guarantee that 
g'(w) as defined in eq (7) is always positive. However, our 
method is such as to generate only positive g' . 

The difficulty was demonstrated when we tried to generate 
integrators for eq (7) for increasing values of We. We could 
not form an integrator for We > 0.4 and for We = 0.4, the 
weight at W = 0 was very small. When the polynomial 
expansions for g(w) were examined , gL(W) seemed to be 
greater than g(w) for w near 0 .3 but the ripple in the 
calculation made determination of the difference uncertain. 

To study a precise case with a known error, we considered 
the gL(W) for the monatomic chain with 

(A2) 

We have purposefully increased the term in w 4 as it is the 
next unknown term in g(w) for the 6 to 1 case and such a 
choice makes g'(w) negative in a known manner. The 
integrators behaved for this case in a manner similar to the 
integrator for the 6 to 1 case and the g' had a negative region 
that was similar in magnitude to the ripple displayed in the 
polynomial expansion for the 6 to 1 case. The errors in the 
thermodynamic func tions from the erroneous monoatomic 
chain distribution were used to gauge the errors we were 
making for the 6 to 1 case. 

For example, we computed the heat capacity for a mona­
tomic chain using eq (A2) and We = 0.4. This value of We is 
close to the maximum value for which we could form an 
integrator. In terms of the six significant figures we com­
puted, the lower bound was higher than the correct value of 
the heat capacity in the least significant figures by 21 , 279, 
25, 6 , 2 for T = .02, .04, .08, . 1 respectively. Above T = 
0.1, the bounds converged to six significant figures in the 
correct answer. Both the free energy and total energy were 
well behaved. If we went to We = .3 then the heat capac ity 
lower bound was high only at T = .04 by 16. Therefore , we 
restructed We to 0.3 for the 6 to 1 case and expect to commit 
errors of the same magnitude which are insignificant for our 
purposes. 

We will not display any of the results for the free energy or 
energy functions since they are very smooth functions that 
monotonically decrease and increase respectively. They will 
be displayed and used in a late r paper. 

Appendix B: The Frequency Spectra 

The purpose of the present work was to compute the 
thermodynamic func tions of di sordered syste ms, not the 
frequency spectra . However, since so much work has been 
done on frequency spectra of one dimensional disordered 
systems it is of some interest to see if these techniques 
compute the spectra properly. 

The only spectra that the moments define are delta 
fun ction spectra corresponding the Gaussian integrators that 
are derived from them [18]. Since the delta fun ction spectra 
are not too useful for giving an idea of the spectrum, we have 
used orthogonal polynomial expansions to derive representa­
tions of the spectra. These expansions will be the most 
rapidly convergent sequences possible having the proper first 
n moments . 

We used two different expansions. For the first, we used 
an expression in terms of Chebyshev polynomials of the first 
kind, following Wheeler [23]. For a monatomic cha in this 
gives the exact answer in one term since the expansion is 

where n is the shifted Chebyshev polynomial. No use of the 
low frequency expans ion was necessary or used since the use 
of Chebychev polynomials assumes the proper leading term. 
The other method used was an expansion in Legendre 
polynomials, p~ , similar in manner to Lax and Lebowitz 
[24] . Since only the even moments of the spectrum are 
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known, one actually determines G(w 2) where G(w 2) dw 2 = 2 
wg(w)dw. In one dimension there is the known singularity of 
G(w 2) at the origin. This was subtracted out by the use of eq 
(8) as 

G+(w2) = G(w2) - ~ gL(W) + 2WM gL(.25 WH/WM), 
2w Wfl (82) 

W < .25 WH/WM 

G+(w2 ) = G(w2), W > .25 WH/WM' 

This definition of G+(w 2) was used to avoid any sharp breaks 
in G+ and minimize oscillations in the fit. For all spectra the 
subsidiary conditions G+(w2) = 0 for W = 1 and G+(w 2 ) = 

2 WM gL (.25 WH) for W = 0 were employed as in Lax and 
WH WM 

Lebowitz. Only in the two mass case with a mass ratio of 6 to 
1 was this not possible due to a singularity at W = 1, as 

I evidenced by strong oscillations in the fitted spec trum. For 
this case, the subsidiary conditions were not em ployed at W 

=1. 
The results of some spectra fits are shown in figures 12 to 

14. Both the Chebyshev and Legendre fits were s imilar with 
the Legendre fits bei ng a little smoother and having a little 
less ripple. Thus we show three examples of the Legendre 
polynomial fits in figures 12 to 14. 

In figure 12, for the case of a uniform distribution of force 
constants between the relative limits of 5/3 to 1, we have 
superimposed the results of Dean [6] which were presented 
as a histogram. It can be seen that the Legendre polynomial 
expansion is as good as the his togram, which was based on 
an 8000 unit chain for most of the spectrum. Only for large 

: w where the spectrum falls rapidly does the Legendre 
• expansion have any difficulty. Since the finaJ 11 moments 

and two subsid im'y conditions use polynomials up to degree 
12, there is a limit as to the maximum decay rate of the 
spectrum. The compensation for this is shown in the small 
negative region of the ex pansion for W > 0.9. As in all the 
spectra displayed and computed, the expansions always have 

.2 .4 .6 .8 1.0 

\W / WM )' 

FIGURE 12. The spectrum for a chain with a uniform distribution of Jorce 
constant (Dean glass) between the limits oj 1 and 5/3 computed from 

Legendre polynomials. 
The points are for a chain of 8000 units obtained by Dean 19]. 

the proper first 11 moments. The spectrum in figure 13 for 
the uniform distribution of force constants with a 3 to 1 limit 
ratio has a smoother fall off at high frequencies and, while 
we do not superimpose Dean's results , the fit is now 
uniformly better. That is, the spectrum has a much smaller 
negative region at high frequenc ies . 

The limits to spectral knowledge can be seen in figure 14 
for the two mass chain with mass ratio 2 to 1. If this spectrum 
was plotted as g( w) then it would strongly resemble the 
smoothed spectrum of Domb, Maradudin , Montroll and 
Weiss [15]. As shown by Payton and Visscher [10], this 
spectrum should go to zero very steeply at W = 0. 5 and 
thereafter there are many spikes and zeros in the spectrum. 
The results usi ng Legendre polynomials cannot change so 
rapidly and he nce only dips at'w = 0.5 and gives a smoothed 
average thereafter. We did try to force a zero at w = 0. 5 by 
a subsidimy condition and the use of polynomiaJs up to 14th 
degree, but strong oscillations resulted so no meaningful 

'31.0 

FIGURE 13. The spectrum Jor a chain with a uniform distribution oj Jorce 
constants between the limits oj J and 3 computed from Legendre polynomials. 

10 

0~~--~~--~~--~~--~--L-7. o .2 .4 .6 
(W/WM)' 

FIGURE 14. The spectrum Jor a chain having equal Jractions of two 
randomly distributed masses with mass ratio 2 to 1. 
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result was obtained. This was also evidenced by the large 
coefficient for P!4. Due to the rapidly changing magnitude of 
the spectrum it would take many higher moments to even 
begin to characterize the spectrum. Fortunately, it is seen 
that this is not true for the thermodynamic quantities. 

Appendix C: Low and High Temperature 
Behavior for Heat Capacity Difference Curves 

I. Low Temperature Expansions 

Domb [6] has shown that for a one dimensional disordered 
chain the expansion in terms of frequency w of the frequency 
spectrag(w) is to zeroth order in w. 

g(w) = - - ~-2 (m N l)t 
7T N ;=1 k; 

(Cl) 

where m is the mass of the atom and k; is the force constant 
of the ith atom. Domb's equation is in fact for a mass 
disordered chain. He gives 

2 (1 N )t g(w)= - -N~m; 
7T y ;=1 

(C2) 

where m; is the mass of the ith atom and y is the force 
constant between species. As we have discussed before, 
Domb's arguments in ref. [l] show that we may interchange 
inverse mass and force constants in such one dimensional 
models. Then to lowest order in temperature the heat 
capacity of the system becomes 

Cv = 4NTmt(~ f ~\ t 
7T N ;=1 kJ 

(C3) 

For a crystal like system the lowest order term in temperature 
then is 

(C4) 

where ke is the crystalline force constant. 

A. Low Temperature DiHerences in Cv Between Glasses and Crystals 

Now from the above equations the difference between glass 
and crystal heat capacity at low temperatures, !1Cv, is 

!1Cv = 4NTmt [(~ f ~)t - (~)tl (C5) 
7T N \=1 k\ ke 

Thus at low temperatures the slope of the !1C v versus T curve 
initially depends on the difference between the square root of 
the harmonic mean force constant of the glass and the square 
root of the force constant of the crystal. In one dimension the 
modulus {3 of the glass at T = 0 is given by 

As long as the glass is viewed as being softer than the 
crystal- by softer we tend to mean that the modulus of the 
crystal is less than that of the glass-then at low temperatures 
!1C v will be positive. 

B. Approximation Scheme at Low Temperatures 

We shall now show that the approximation scheme pro­
posed in equation 16 is a lower bound at low temperatures to 
the exact heat capacity of the disordered system. The 
extension of eq (16) to many force constants can be written 
as 

N 

cg = ~ Cv(k;, T)/N (C7) 
;=1 

For low temperature each Cv (ke, T) may be written from eq 
(C4) 

4T( m~ t Cv(k;, T) = - - . 
7T k· 

(C8) 

Then the approximate heat capacity is 

(C9) 

By Schwartz's inequality [25] 

(CIO) 

then 

cg < Cv (Cll) 

Thus for low temperatures the approximation to heat capacity 
given by eq (16) is a lower bound to the exact heat capacity 
of the disordered system. 

It is obvious from the discussion in section I-A of this 
appendix that a crystal with a force constant which has the 
harmonic mean of the force constant of the glass yields the 
same low temperature heat capacity as the glass. 

II. High Temperature Behavior 

By Maradudin et al [15] the high temperature behavior 
series for C v is given by 

(CI2) 

where Wj are the frequencies for the harmonic system. But it 
is easy to show for our one dimensional model with mass m 
and force constants kj that 

N 1 N 

~ wj = -~ kj 
j=1 2m j=1 

(CI3) 

{3= -~-( IN 1)-1 
N ;=1 k; 

(C6) Thus 
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(CI4) 

In a similar manner the high temperature behavior for a 
crystalline chain is 

N 
Cv = N - --2- kc 

24T m 

where kc is again the force constant of the crystal. 

(CIS) 

A. High Temperature DiHerences in Cv from Glasses to Their Crystal 

Now by eqs C14 and CIS the difference between the heat 
capacity of a glass and its crystal at high temperatures is 
given by 

!1Cv = 24 ;2m (kc - ~ kdN) (CI6) 

When the mean force constant of the glass is less than that of 
the crystal, !lCv at high temperatures is positive; when the 
mean force constant of the glass is greater than that of the 
crystal !lCv at high temperatures is negative. Comparison of 
values of the mean force constant from table I with figures 4-
6 bear out this statement. In fact it would seem from an 
inspection of these examples and from all others we have run 
that the high and low temperature series differences dis­
cussed in this appendix completely control the appearance of 
peaks and of positive and negative regions in the !1Cv curve. 

B. Approximation Scheme at High Temperatures 

As in eq (C7) the approximation to the heat capacity from 
section 4 is given by 

N 

C~ = L Cv(ki' T)/N (CI7) 
i=1 

Now for high temperature we have then by eq (CI3) and the 
above 

1 N 
Ca-N---~ k 

v - 24 T2 ~ i m 1=1 
(CI8) 

which is again the exact result for the glass at high tempera­
tures. Thus the approximation scheme yields the correct high 
temperature heat capacities for the disordered system. 

It is obvious from the discussion in lIB of this appendix 
that a crystal with the same mean force constant as the glass 
will have the same leading term in temperature as the glass 
and will thus show the same high temperature behavior as 
the glass. 
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