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The Wiener integral (path integral, functional integral) technique is used to determine the equation descri
the probability distribution of a polymer molecule immersed in a non-uniform distribution of monomer uni

bing
This

result should be useful whenever there is a spatial variation of polymer density such as at an interface or surface.
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1. Introduction

Let us suppose that there is a region of space in which a
spatially varying concentration of segments, ¢(r) exists. We
ask; what is the number of conformations and the shape of a
polymer molecule confined to the same space (see fig. 1).
Certain qualitative features are immediately apparent. The
polymer segments will seek out the regions of low segment
concentration (c(r) small). In this way, the entropy will be
maximized. Further, even if we pin the two ends of the
polymer in high density regions the interior segments of the
chain will tend to seek the lower density region. Thus, an
effect exists and its results in distortions in polymer shape as
well as a reduction of the number of conformations.

The effect exists whenever there is a spatial density
variation of concentrated polymer. This is because any given
polymer molecule can be viewed as immersed in a bath of
the segments of the other polymer molecules that surround
it. The solution of the problem of density variation in
concentration polymer should proceed in two steps. The first
step would be to solve the problem proposed here for an
isolated polymer in a field of unconnected segments ¢(r).
Then, armed with this solution one would perform a (as yet
unspecified) self-consistent calculation on the interacting
molecules.

When polymers adsorb onto a surface from solution, they
crowd each other and compete for space near the surface.
Thus, the questions raised in the preceding paragraphs are
of paramount importance for the surface adsorption problem.
The treatment of isolated non-interfering polymers on a
surface has been extensive and rather complete [1]. The
treatment of interfering polymers on a surface is probably in
its infancy, although several useful treatments on the problem
exist [2]. Not many treatments exist which discuss shape
changes at an interface [3, 4]. Hoeve argues for exponential
decay of individual chain density, but he has restricted
himself to theta conditions [4]. For non-theta conditions the
problem proposed here must first be solved.

2. Solution to the Problem

We shall solve the problem stated in the caption to figure
1 by relating it to a problem the solution of which is already
known. This latter problem is that of a polymer immersed in
. l . 7 I S - .
a space with a potential V (r) per segment so that for a given
path specified by r (7) the total energy is given by

E,= f V(r(7))dr (1)

where ¢ is the upper limit of 7 which is a parameter labeling
the segments of the macromolecule. The probability of a
chain of length ¢ beginning at ry, and ending at r, is

P(r, t;ry, 0)

dw(o. ret, )% (2)

l 0
fexp ﬁITT ) V(r(7))dr

where the operation [d Oyt ) F indicates an integration
over all paths with ro, 0 and ry ¢ as end points. Equation (2)
is nothing more than the Boltzmann weighting factor. Since
it is d]h() the Wiener integral, a connection between the
statistical mechanics of a polymer molecule and a wealth of
mathematical techniques is immediately made. The work of
Brush contains Ll useful introduction to functional integral
techniques [5]. Kac [6] has shown that eq (2) is the solution
(Green’s function, propagator) to the following equation

oP V(r)
—=DV?Pp — —P 3
at kT ®)

where at ¢t = 0 we have

P(r, 0,; 10) = 8(r — 1) (3a)
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FIGURE 1. A polymer molecule of length tis placed into a region of space with a monomer concentration c (r) which is a function of position.
The problem is to determine the effect of ¢ (r) on the probability distribution of the various allowed shapes of the polymer.

Equation 3 is recognized as the diffusion equation with
annihilation except that ¢ represents the contour length of the
chain as well as time and D = €?/6. Although the above
relations were derived for the case of boundary conditions at
infinity, for a boundary at finite places we have [7, 8]
=10 on surface (3b)
This boundary condition has the effect of annihilating (and
removing from further consideration) any chain that wanders
across the surface. The conditions 3 completely define the
problem and the solution P(r, ¢; r(, 0) gives the probability
of a chain of length ¢ whose end points are r, and r.
Let us now set up a correspondence between the volume
fraction ¢ and V for the case of no dependence on r.

V(l') = C(l‘) = Co- (4)

It is easily verified by substitution that

P = Py exp (—Vt/kT) (5)

solves eq 3 when P is the solution for V(r) = 0 (the ordinary
diffusion equation). Now P, is also a solution when ¢ = 0.
The solution for the case of ¢, a constant is

P = Py1 — Co)t (6)

where we have used the ansatz that for each step the polymer
has a success rate of 1 ¢y (the volume fraction of
emptyness). Note that the polymer is imagined to be infini-
tesimally thin since we are ignoring excluded volume.
Equating (6) and (5) gives immediately

1 — ¢co = exp (—V./kT). (7)
Thus, one solves the problem of a uniform distribution of

segments by simply defining a V. by means of eq (7) and
then using egs (3) to find the probability distribution P.
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Having demonstrated the validity of the prescription for a
constant distribution of segments we can easily demonstrate
it is also valid when the distribution is non-uniform viz,

1 — c(r) = exp (—V(x)/kT). (8)

To see this, observe that the weighting factor for a given path
is

QA — e(x(7))
= exp <+ f In (1 — c(r(T)))d’r). 9)

Comparing with the weighting factor of eq (2), we see that eq
(8) immediately follows. Thus, the distribution of a polymer
molecule in a field of a non-uniform distribution of segments
is formally solved.

If one has both a potential V,(r) and a field of segments
¢(r) then one solves the problem by using eqs (3) with a
potential V' given by

V(r) = Ve(r) — kT In (1 — ¢(r)). (10)
Ve can, for example, represent a gravitational or centrifugal
field.

De Gennes [9] and especially Edwards [10] have written
extensively on the path integral approach to the solution of
various polymer problems. The above result is contained
implicitly in what they have done, but an explicit statement
was never given. There are several persuasive reasons for an
explicit display of eqs (3) and eq (8) as an exact prescription
for solving a problem which may or may not be a subproblem
in a larger effort (such as for example a self-consistent
approach to the excluded volume problem.)

First, there is a strong intuitive appeal to the use of a term
—¢(r)P as an annihilation term in the diffusion equation.
Several people have done it [8, 11]. Because of its strong
intuitive appeal, the realization of its approximate nature is
sometimes forgotten.

Second, the approximation

In(1 — ¢(r)) = —c(r) (11)

has been used implicitly in self-consistent approaches to the
derivation of a spacially dependent Flory-Huggins-like cal-
culation [3, 12]. For high densities, this is not an adequate
approximation.

Third, it enables us to attack the self-consistent field
problem(s) as a two step problem thus simplifying matters.
The effect of approximations are more readily assessed,
especially since the part that we have given here is the exact
part of the self-consistent approach. Also, there is pedagogi-
cal value in the above approach for those who are perhaps
intimidated by the formalism of Edwards and De Gennes.
Paths integral techniques are not usually included in the
mathematical tool bag of most polymer scientists.

Finally, if the potential energy of eq (2) is time dependent
as well as position dependent, eq (3) follows. This can be
seen by examining the proof of Kac [6] and ascertaining that
no step in the proof is invalidated by an assumed ¢ depend-
ence. This means that eq (3) is immediately generalized to
the case of time dependence of ¢(r).
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