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This paper explores a relation between various approximation problems (arising from fitting linear models
to data) and corresponding statistical measures (norm statistics). It is established that for any optimal solution to
an approximation problem defined with respect to a norm, the resulting residuals have zero as their norm
statistic. This result holds whenever the underlying design matrix has a column of one
of arbitrary design matrices is also considered.

An extension to the case
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1.  Motivation

In a paper! discussing alternative criteria to least squares for the fitting of linear models to data, Appa
and Smith [1]* derive certain properties of solutions to L, approximation problems (i.e., curve-fitting

problems in which the sum of absolute deviations is minimized). In particular, Property 2 of [1] characterizes
m

the sign pattern of the residuals e; = y; — by — >, bv;; corresponding to an optimal solution (by, . . . , by,
=,

to an L, approximation problem with independent variables x;, . . . , x,, and dependent variable y. The
result of Appa and Smith states that [N, — Na| =m + 1, where N; and N, denote, respectively, the number
of positive residuals and the number of negative residuals corresponding to any optimal L, solution.

This observation admits of a slight generalization [4]: namely, [Ny — Ny| = Z, where Z indicates the
number of zero-valued residuals in the given optimal solution. (The assumption employed in [1] to eliminate
degeneracy insures that Z = m + 1, and thus the result of Appa and Smith follows immediately from the
above inequality. )

It is straightforward to show that |/V, — Ny| =7 is equivalent to the statement that the residuals in an
optimal L; solution have a median of zero. Recall that a median of some set of observations is any value that
exceeds at most half the observed numbers, and is exceeded by at most half the observed numbers. From
this definition it immediately follows that a median of the numbers w,, . . . , uy, (not necessarily distinct) is
any value & such that

Ni(€) + Z(§) = Na(§) (1)

and

No(€) + Z(§) = Ny(§), (2)

where N,(&) = card{i: u; > &}, No(§) = card{ic u; < &}, and Z(§) = card{i: u; = &}. Hence, zero is a
median of the residuals ey, . . ., e, if and only if Ny + Z =N, and Ny + Z = N;. But the latter two
inequalities are clearly equivalent to [N, — Ny| =Z.

The point to be emphasized here is that the sign pattern result® |[V; — N,| = Z is equally a statement
about zero being a median of certain residuals. Such a result brings to mind a related statement about the
residuals for solutions to Ly (least squares) approximation problems: namely, the mean of the residuals,
derived from an optimal L, solution, is zero. Likewise for L » approximation problems (in which the object is
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¥ 1t is also easy to show that when n is odd, a slightly stronger result obtains: [V, — N 5| =Z — 1. Indeed, since N, + Ny + Z = n = odd, the parity (even, odd) of N, +
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to minimize the maximum absolute deviation), it is known that the midrange [6] of the residuals in an
optimal L solution is zero. One wonders whether these facts might not be separate manifestations of a
general relationship between approximation problems and corresponding statistical measures. Such a general
relationship indeed exists and will be explored in the subsequent sections. The proof of this relationship is
extremely simple, simpler than the proofs for the special L; and Ly cases we have found in the literature. The
results of this paper therefore provide both simplification and unification.

2. Norm Approximation Problems

Suppose that n sets of observations are available on a single dependent variable y and m = 0

independent variablesx;, . . ., x,,. Such observations can be arranged in a column vectory = (y1, . . ., y)7
and an n X m matrix X = (x45), where y;, x4, . . ., 2y represent observations in the ith set. Then the L,
approximation problem |2], 1 =p = %, is that of finding values by, by, . . . , b, that minimize

n m 1/p

. — »

> lyi — bo — X byl (3)

i=1 i=1
over all by, by, . . ., by For the case p = 1, the problem is that of minimizing the sum of the absolute
values of the deviations by choice of parameters by, by, . . . , by When p = 2, the above formulation

presents the familiar problem of curve-fitting by least squares. In the case p = %, the objective function in
(3) becomes max; |y; — by — X ™, by, and we have the linear Chebyshev approximation problem. Every
such L, approximation problem can in fact be formulated [2] as a mathematical programming problem with a
convex objective function and linear constraints.

A problem more general than that described by the objective function (3) is the weighted L,
approximation problem, where 1 = p < ©. Given nonnegative weights wy, - * -, wy, this problem concerns

finding parameter values by, by, . . . , by to minimize
n m 1/p
2 Wi |}’i — by — Z b}xij|p . (4)
i=1 =1

The inclusion of weights in the above may reflect, for example, identical observations as well as differing
degrees of confidence (or measures of importance) to be attached to the observed data points.

An even more general approximation problem can be formulated in the present context with respect to
any norm. A norm N(x) is defined on vectors x and is assumed to have the following properties [5]:

N(x) > 0 unless x = 0,
N(Ax) = NV(x), for A =0,
N(x +y) =N(x) + N(y).

Letb = (b, . .., bynT and form the residuals e = y —bp1l —X b, where 1 = (1, ..., 1)™. Then the

norm approximation problem is that of finding (b9, b) to minimize

Ne) = Nly — by1 — Xb). (5)
The objective function (3) is a special case of (5) with N(e) = N(ey, . . ., en) = > 2, |edfP]VP, while (4) is
also a special case with N(e) = [ &y wilef?]'”.

It can readily be shown that N(e) is a convex function of (bg, b), and thus the approximation problem
described by (5) is well behaved: any local minimum to this problem is also guaranteed to be a global
minimum.
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3. Norm Statistics

The discussion in section 1 indicated that certain statistics (namely, the median, mean and midrange)
were useful in describing properties of certain L, approximation problems. Namely, the residuals of an
optimal L; solution have a median of zero, the residuals of an L, solution have a mean of zero, and the
residuals of an L« solution have a midrange of zero. Moreover, it is well known that these three statistics
themselves solve appropriate one-dimensional L , approximation problems.

For example, the median of a set of values uy, . . . , uyis a value v that minimizes » L, |u,~ = v| over
all possible v. That is, a median solves an L, approximation problem with one parameter. Similarly, the
mean of wy, . . ., u, minimizes Y, L, |ui — vlz, and thus also [ Y, |u,' —v|2]”z. Accordingly, the mean

solves a one-parameter Ly problem. Finally, the midrange minimizes max; u; — v|, an L« approximation
problem, again with one parameter. As suggested by the above examples, we define a p-statistic of

Uy, . . ., uyto be a value v that minimizes
1/p

n
> w0 .

i=1

where 1 =p = . This definition follows that given by Rice and White [7], who refer to such a value as an

“Lp estimate.” In similar fashion, a weighted p-statistic of wy, . . ., uy is defined to be a value v that
minimizes

. 1/p

> w; Iu,- = vlp ,

=1

where the nonnegative weights w; are given and 1 = p < %. Such a concept generalizes, for example, the
idea of a weighted mean or a weighted median.

Finally, let N be a norm as defined in section 2. Then a norm statistic, or an N-statistic, for u =
(g, .. ., upTis defined to be a value v that minimizes N(u — v 1). Clearly, the concept of an N-statistic

includes as special cases both p-statistics and weighted p-statistics.
4. Norm Approximation Problems and N-Statistics

This section contains the main result relating N-statistics and norm approximation problems.

THEOREM: Let (by, b) be an optimal solution to the norm approximation problem (5), and let € =y — by 1
— X b. Then zero s an N-statistic for the residuals e.

PrROOF: Nle — 0-1) = N(e)
=Ny —bel —Xb)
<Ny —[bo+v]1 —Xb)  forallv
=Ny —bol =Xb —v1) forallv
Ne —v1l) for all v.

The third line above holds because ([;0, f)) minimizes (5). The resulting inequality N(e — 0-1) = N(e — v

1), for all v, shows that 0 minimizes N(e — v 1), and so 0 is an N-statistic for e. This completes the proof.
Notice that in the proof above, we did not at all need the norm properties of N. As a matter of fact, NV

could have been an arbitrary function; in this case, the theorem applies to a global solution (if it exists) to a

very general approximation problem.
5. Arbitrary Design Matrices

A further generalization of the above theorem is possible for weighted L, approximation problems. The

extension of interest allows an arbitrary “design matrix,” where a column of 1’s is not necessarily imposed.
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In such a problem, the object is to find b= ([;os e, [;m) such that

is minimized.

n m 1/p
l:Z wi |yi — Jgo b,-x,-j|"] (6)

=

EXTENSION: Let b be an optimal solution to (6), and let € =y — X b. Then zero is a weighted p-statistic (1
= p < ®) for the values {ei/xio:xio F 0,1 =1, ..., n} with weights wi|xi l)lp.

n n

PROOF: Y, wile; — 0 x;/”
i=1 i=1

n

i=

n

i=

n

1

Il
M=

1

wi

> wilef’
ug A
> wilyi — Y bl
T
= z] wily: = boxio — J_ZI bycyl”

m
=< ¥ wilyi — [bo + vlrio — D byxyl?
i=

e; — vx,-olp.

Thus, if we define T = {i: x;9 # 0}, the above inequality gives

or

2 ll}i|(’i - O'xiol" = E IUiI(’i - VX0 p’
ieT ieT

e; e
zr wilxiol” |x_:o —op = z; wilxiol? |27'0 — .
e 3

Upon taking the pth root (1 = p < ) of both sides, we conclude that zero is a weighted p-statistic for
{eilxio: xio # O} with weights w il ;|?.
Notice that in the proof above, the choice of the first column, corresponding to the x;’s, is clearly

arbitrary. Any column of the design matrix can be used with similar result.
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