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A method is presented for automatically calculating true first order rate constants for gas phase and wall
reactions from experimentally observed decay parameters in tubular flow reactors. It includes the effects of axial

and radial diffusion and Poiseuille flow.
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1. Introduction

Steady-state tubular flow reactors are widely used in
chemical kinetics studies as a means of converting the
reaction time into a distance measurement. One way of
using this reactor is to inject one reactant into a flowing
carrier gas which contains a second reactant whose concen-
tration is much greater than that of the first. The concentra-
tion of the first reactant is then measured as a function of
distance down the tube. If distance is assumed to be equal
to the product of the reaction time and the average linear
flow velocity of the carrier gas, then the concentration of the
first species will be simply

C = CO(,—kz/ <w> (l)

where k is the first-order rate constant, (u) is the average
carrier flow velocity, and C, is the value of C when the
distance z is zero. The position used for the z origin is
arbitrary since (1) shows that £ can be determined from the
relative concentration of C. However, it must be fixed at
some distance downstream from the injection point so that
the measurements start only after the reactants are well
mixed.

Unfortunately (1) is only approximate. Laminar flow exists
in most experiments so that the carrier velocity will have a
parabolic profile. Reactants near the tube center will travel
faster than those near the wall. This will create a radial
gradient in the concentration of C. The extent of this gradient
is a complex function of the flow velocity, reaction rate, and
molecular diffusion effects. An additional complication will
arise if C can also be destroyed by a reaction on the tube
wall. This is a common occurence if C is an atomic species.
In spite of these complications, C still exhibits an exponential
decay along the tube, as long as the observations are made
sufficiently far downstream from the mixing region. Instead
of (1), we now have

C(r) = Cy(r)e*"al<w
(2)

(downstream from the mixing region)

Here, the observed decay parameter £* is a function of (u),
the diffusion coefficient D . of species C in the carrier gas,
the true first-order rate constant k, and a rate constant k , for

a first-order wall reaction; r is the distance from the tube
center. This equation will hold at all points sufficiently far
downstream from the mixing region. How far downstream is
sufficient will be discussed later. The concentration in this
region exhibits a radial distribution which remains constant
along the tube. To determine £* correctly, it is of course
necessary to measure C over the same range of r values at
each particular position along the tube.

Once k* has been determined it must be related to &, the
actual first-order rate constant. This problem has been
solved by Walker [1]." Unfortunately, the value of k* is
given by the first positive root of a polynomial having a
fairly large number of non-negligible terms. Thus, it is not
possible to give a closed expression for & or £* in terms of
the other parameters. Walker has tabulated a few arrays of
k* values corresponding to a number of experimental condi-
tions. To use his results, however, to correct experimental
k* values is tedious since interpolation is required. Further-
more, the accuracy of the interpolation has not been verified.
The purpose of the present work is to make his method
easier to use. To do this a simple computer program has
been written in the form of a FORTRAN subroutine called
ROOT which will calculate k& or £* when given the values of
the other parameters. A number of plots are presented of £*
versus k from which other values can be obtained by a linear
interpolation whose accuracy has been verified. The program
can also be used to determine higher order decay terms.
From these it is possible to estimate the extent of the mixing
region.

Actually, Walker’s solution need be used only if a wall
reaction is present. When £, can be neglected, there exists
[2-4] a very simple, and excellent approximate formula for
k*. It is

N =1V (1 +4N) — 1) (3)

where A\* = Gk*/(u)?, A = Gk/u)?, and G = D, + a*(u)?/
48D,.; a is the radius of the reactor tube. Later, a brief
discussion regarding the origin of this formula will be given.

A simplified derivation of Walker’s solution is presented
next. This will provide the basis for the discussion of the
computer program. Following that an example demonstrating
its use will be presented.

! Figures in brackets indicate the literature references at the end of this paper.



2. Solution of Diffusion Equation With

First-Order Kinetics

The partial differential equation which describes the
tubular reactor with first-order kinetics under laminar flow
conditions in the steady-state is

b.

The first-order rate constant k,, for the wall reaction appears
in the boundary condition,
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From elementary kinetic theory, k,, = /a7yé, where 7y is the
fraction of molecules of C which are destroyed on striking
the surface, and ¢ is the mean molecular speed of species C.
(A more accurate formula for k, is given in ref. 5.)

With the following dimensionless parameters, R = r/a, Z
=zla, D = D, [2a{u), K = ak/{u), Ky, = ky [{w), (4) and (5)

become

aC PC10C  8C
Il = = —15KC (6
( ) 5z <8R2 ROR aZZ> KGR
aC
D (5?)1e = — 15K, Cper. (7)
=1

In terms of these parameters, Walker’s dimensionless param-
eters are r* = R, z¥ = 7, u = Y2D, B> = K/2D, &
= 2D/K,,

The solution of (6) for the region downstream from the
mixing point is

C = Z AgiR)e ™ 7. (8)

Values of the decay parameters Kf are fixed by the boundary
condition (7). The appropriate mixture of the radial functions
gi(R) could be determined if the radial concentration profile
at the mixing point were known. However, if the measure-
ment of C is begun at az value such that exp (—K¥) >> exp
(=K¥), for i = 2, then only the first term in (8) will be
significant. The trae first-order rate parameter K can thus be
determined from the observed decay parameter K¥ provided
the functional relationship between the two can be deter-
mined.

To establish this relationship, begin by equating (2) to the
first term in (8). This gives C(r) = Cy(r) exp (—k*z/(u)) =
Aigi(R) exp (—K¥Z) = A g(R) exp (—K*Z), which defines
the dimensionless decay parameter K* = k*a/(u). Substitut-
ing this into (6) and (7) yields a differential equation and
boundary condition which must be satisfied by g(R). These
are,

d’s  ldg

— +—— 4 [ K*% + (1 — RAK*/p — =

= TR [ ( )K*/D K/2D]g 0 (9
g S Ku'gR=1 (10)
R} 2D

This function can be expressed as a power series in even
powers of R.

gR) = 2 B (11)
The coefficients B, are given by
B, = — YaaB,
(12)
By = (2n)2 [(K*/D)Bn—2 - aBn—l:l

where

a = K* + K*/D — K/2D.

When R = 0, we have g = By, so that By is proportional to
the concentration at the tube axis. Since only the relative
concentration is of interest here, B will be arbitrarily given
the value unity. To derive (12) simply insert (11) into (9)
and write out a few terms having different values of n
starting with n = 0, and set the coefficients of like powers
of R equal to zero. (If the more general power series
containing both even and odd powers of R is used instead of
(11), this procedure will show that only even powers of R
have non-zero coefficients.)

Equation (11) must also satisfy the boundary condition
(10). Substituting it into (10) gives

F(K* K.K,.D) = >, By(2n + K,,/2D) = F(x) = 0. a3)
n=0

F is a function of K*, K, K,, and D. If the latter three
quantities are specified, then the K* value of interest will be
the first positive root of F' considered to be a function of K*.
Alternatively, if K*, K., and D are given, then K will be a
positive root of F', but not necessarily the smallest one. In
experiments where C is destroyed on the wall, K,, can be
determined by measuring K* in the absence of the second
reactant. Then K = 0 and (13) can be solved directly for K,
in terms of K* and D to give

—2D > B,(2n)
n=0

1 (14)

M s

By

n=0

The subroutine ROOT uses the Newton-Raphson method
[6] to determine the roots of (13). If x; is an approximate



value of x, then a better value x j4, is given by the recurrence
relation
%41 = x; — F(x;)/F' () (15)

where F'(x)) is the derivative of F' with respect to x at the
value x = x;. The sequence x¢, xy, . . . will converge to the
correct root if the initial value is reasonably close to the
correct value.

The subroutine ROOT, shown in the appendix, requires
the following calling statement,

CALL ROOT(ZS,Z,ZW ,D,10PT,F,B,NB.IFLAG)

where
7S = K*, the observed first order decay parameter,
/4 = K. the true first-order gas phase rate constant,
LW = K, the first-order wall decay constant,

D = D, the diffusion coefficient of species C in the
carrier gas,

IOPT = 1,2,3.4

If IOPT = 1, ROOT evaluates the function F(K* K .K,..D)

If IOPT = 2, then K* is calculated starting from an
approximate value.

If IOPT = 3, K is calculated from an approximate
value.

If IOPT = 4, K is calculated.

F = F(K* K.K,.D), defined by (13),
B = B, the coefficients defined by (12). It is an array
which must be dimensioned to 30 in the calling program.

NB = the number of terms in (13) or (14) used by ROOT
for a particular calculation.

IFLAG = 1 if the number of iterations in the Newton-
Raphson procedure exceeds the number IMAX. IFLAG = 0
otherwise.

To implement the Newton-Raphson method, ROOT cal-
culates the derivative of F from the formula

0o

> B,(2n + K,/2D).

n=0

F' = (16)

For IOPT = 2, we want the derivative with respect to K*;
here, the Bjare given by

B
B, = —aa’
1
By = (Bp-s/D + K*By /D —a'B,_,  (17)
(2n)?
- aB,n—])

o' =2K* + 1/D.
For 10PT

needed; in

= 3, the derivative of F' with respect to K is
this case, the B', are

By =0

B, = — Yax'

Bym o KBysfD - a'Bes— B
(2n)?

a' = — 1faD,

ROOT continues to add terms to F' until its absolute value
changes by less than the number PREC1. Up to 30 terms
are allowed by the dimension of the B array, but fewer than
10 usually suffice for calculating the low order roots. (If the
dimensions of B are changed in ROOT, it is also necessary
to change the dimensions of the array BN which contains the
derivatives of the B, values.) ROOT continues iterating until
the absolute value of K* (or K) changes by less then the
number PREC2. A value of 1 X 10 for both PREC1 and
PREC2 has been used. The maximum number of terms used
for calculating F' is specified by the number NMAX, which
must not exceed the dimensions of B. The values of PRECI,
PREC2, NMAX, and IMAX are assigned in the DATA
statement.

For ROOT to be automatic, i.e.. for it to calculate K or
K*, given the other parameters, it is necessary to specify
suitable starting values for the Newton-Raphson calculation
in terms of these parameters. When K* is desired, (IOPT =
2), a satisfactory initial value is 0.9 K. For a determination
of K (I0PT = 3). the initial value 1.2 K* is satisfactory.
These starting values have been checked and found to give
convergence to the correct root over the following ranges of
parameter values;

0=K*=0.68
0=K=0.58 .
0=K, =02 (19)
0.01=D=1.0

They may also be satisfactory outside these ranges, but
verification of this would require further investigation.

To show the functional dependence of K* on the other
parameters, a series of plots of K* versus K is given in
figures la through 6b. The plots are arranged in pairs. Each
pair contains plots having the same value of K. The first
figure in the pair contains plots for different D values
running from D) = 0.01 to 0.07, and the second contains
these where D = 0.10 to 1.00. The six values of K, were
0.0, 0.01, 0.02, 0.06, 0.10, and 0.20. Values of K*
corresponding to K, values lying between those given, can
be obtained by a linear interpolation whose accuracy is
better than 1%. This probably exceeds the accuracy with
which K* can be determined from the figures. The ranges
covered by the parameters in these plots are the same as
those given by (19) and should be sufficiently large to
encompass the conditions encountered in the majority of low
pressure, high flow velocity experiments.

3. An Example lllustrating the Use of ROOT

To demonstrate the use of ROOT, consider the following
experiment. There is the reaction A + B — products, with a
second order rate constant ky and with [A] << [B] so that a



first order rate constant k& = ky [B] can be defined. The
reactants are contained in a carrier gas flowing through a 2
cem [.D. tube with an average linear velocity of 200 cm/s.
The measurement of the concentration of A is begun 5 ¢m
downstream from its injection point and is found at 20 ¢m to
have decayed exponentially to 0.1 of its value at 5 cm.
When species B is removed from the carrier, A is observed
at 20 c¢m to have decayed to 0.3 of its value at 5 cm. Since
A decays in the absence of B, it is assumed to be undergoing
a first order wall reaction. Thus, £* (total) = 30.7 s7!, and
k* (wall) = 16.05 s~ 1. If the diffusion coefficient of A in the
carrier gas at the prevailing pressure is 20 cm® s, then
the values of the dimensionless parameters used by ROOT
are, K* (total) = 0.1535, K* (wall) = 0.0803, and D =
0.05.

The first task is to use ROOT to determine K, from the
value of K* observed in the absence of B. The following
calling program will accomplish this.

PROGRAM CALL
DIMENSION B(30)

ZS = 0.0803
Z = 0.0

D = 0.05
IOPT = 4

CALL ROOT(ZS,Z,ZW,D,IOPT,F,B,NB,IFLAG)
PRINT ZW
END

In this case ROOT will return a value of 0.05 for ZW
(=K ).

To determine K from K* (total), use K,, = 0.05, and use
1.2 K* = 0.1842 as an approximate valye of K. Then use
ROOT with IOPT = 3 to determine the correct value of K.
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FIGURE la. Plots of K* versus K for D = 0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07.
K= 0.0.

The following program accomplishes this.

PROGRAM CALL

DIMENSION B(30)

ZS = 0.1535

Z = 1.2*ZS (approximate value)

ZW = 0.05

D = 0.05

[OPT = 3

CALL ROOT(ZS,Z.2W.D.I0PT.F.B,NB,IFLAG)
PRINT Z

END

For this example, ROOT gives 0.0842 for the accurate value
of K.

From these results, the values, & = 16.84 s™!, and k,, =
10.00 ¢cm s~! are obtained for the laboratory parameters.

It has been assumed in this experiment that the reactants
are well mixed 5 ecm downstream from the injection point of
A. This is equivalent to assuming that only the leading term
in (8) is being observed. ROOT can be used to determine
the higher order decay parameters in (8). To do this for the
above example, the values K = 0.0842, K, = 0.05, and D
= 0.05 are used with IOPT = 1 to calculate F' as a function
of K*. From this the zero crossing points which correspond
to higher roots of (13) can be located and used with IOPT =
2 to get accurate values. For the present example, the next
decay parameter is K§ = 1.3144, which yields k¥ = 263
s~ 1. Therefore, at 5 cm downstream from the mixing point,
the second term in (8) would have decayed to 0.0014 of its
initial value. This observation does not guarantee that only
the leading term in (8) is being observed. If the coefficient
Ay were much larger than A; then the second term in (8)
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FIGURE 1b. Plots of K* versus K for D = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7,0.8, 0.9, 1.0.
K= 0.0.
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FIGURE 3a. Plots of K* versus K for D = 0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07.
K, = 0.02.

could still be significant even though its exponential factor
were small. As mentioned earlier, the coefficients A ; could
be determined from the radial distriubtion of C at the mixing
point. This distriubtion is, however, rarely known. Pirkle
and Sigillito [7] have solved (4) for several cases in which
the initial distribution of C was uniform. In none of them did
the values of A4, i = 2, exceed those of A;. Unfortunately, it
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Ficure 2b. Plots of K* versus K for D = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0.
K, = 0.01.
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FicUuRE 3b. Plots of K* versus K for D = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0.
Kp= 0.02.

is difficult to say what the situation would be for other initial
distributions. In practice, a logarithmic plot of the concentra-
tion versus distance is usually made and only the linear
portion (within experimental error) is used to determine k*.
Such a procedure, coupled with an examination of the next
higher decay parameters k§ is most likely adequate to
ensure observation of only the leading term in (8).
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K, = 0.10. Ky = 0.10.
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4. Determination of k in the Absence of a
Wall Reaction

In the absence of any chemical reactions, Taylor [2, 3]
and Aris [4] have shown that the coupling of axial and radial
molecular diffusion with the parabolic velocity profile can
be described by using the pseudo-diffusion coefficient G,
given following (3), and considering only axial diffusion.
The physical basis for the functional dependence of G on the
molecular diffusion coefficient D, can be seen by considering
a species initially distributed in a radial plane moving with
the average velocity of the carrier gas. As this distribution
moves down the tube it will at first take the shape of a
paraboloid. Molecules near the tube wall lag behind those at
the center. However, molecular diffusion in the radial
direction allows these molecules to move away from the wall
into the faster flowing carrier. There will therefore be a net
movement of the distribution down the tube. For small
values of D, the distribution becomes dispersed about the
radial plane just as though it were undergoing axial diffusion
only, with a diffusion coefficient given by the second term in
G. As D . becomes larger, the axial dispersion will decrease
until a point is reached where true molecular axial diffusion
surpasses the apparent axial diffusion resulting from the
interaction of radial molecular diffusion with the velocity
profile. Then the first term in G becomes dominant. This is
simply D, the molecular diffusion coefficient.

When the diffusing species is being destroyed by a first
order gas phase reaction, it is a good approximation [8] to
consider only axial diffusion and use G for the diffusion
coefficient. This yields the simple differential equation

(20)

For the boundary conditions, C(z = 0) = C,, and C(z = ®)
— 0, the solution of this equation may be written as

C = Cpe ¥, (21)
To establish the relationship between £* and k. evaluate the

derivatives of C from (21) and substitute them along with
(21) into (20). This yields the quadratic equation

B+ (uP/G)k — (wp/G)k =0 (22)
Solving for £* gives
ke = 1Yo(—(u)?/G £ V {(WP/C)? + 4(w}P/CK)). (23)

To get (23) into the form of (3), multiple it by G/(u)*. This
yields

Gk (w2 = Ya(—1 £/ {1 + 4Gk/(u)®) = A*.  (24)
Since A* must be positive to satisfy the boundary condition
C(z — ®) — 0, the positive value of the square root must be
used. The resulting expression is (3). Values of k* given by
(3) were compared to the exact ones determined by Walker’s
method for the range of parameter values shown in figures
la and 1b. The agreement averaged better than 0.2 percent
over the whole range.



5. Appendix. Listing of Subroutine ROOT

The program is shown here in single precision. To calcu-
late decay parameters higher than K¥, rewrite it in double
precision and increase the dimensions of the arrays B anc

BN to 40.

1 SUBROUTIMNE ROOT(ZS.Z,2W.D, IOPT.F.B.NB. IFLAG)
2 DIMENSION B(383.DB(38)
g DATH PRECL.PREC2.,NMAX. IMAX/.2001..6801,306. 10/
4 IFLRG=0
S R2D=1./(2.%D)
6
7
8
9
1@
i 5
12 .3) DR=-.5%RD
g
i4 kDA
1S ZSD-AXB(1))
16 23 DB(2)=.0625%(RD-DAXB (1) -AXDE (1))
17 IFCIOPT.EQ.3) DB(2)=.0625%(-DA*B (1) ~AXDE (1))
18 F=2WD
19 DF=.8
28 GiN=.0
21
22
=
24
25
26 F=F+B{N)*(2
27 IFCCICPT.EQ.2) .0R. (IOPT.EQ.3)) DF=DF+DB(N)*Q2
28 GO 7O !

25 16 GD=GR+E
+3 (N)%Q 1

31 CONTINUE

3c A =3, NMAX

&

34

25 KT

36 =1./02

& B (i) =RG ZSDRBIN-2) -AXBI{N-1))
38 GO TO (1:.,12.13.20),10PT

39 12 D5 (NI =RO2%(RD*B (N-2) +ZSD*DB (N-2) -DA*B (N- 1) -A*DB (N-1))
49 GO TC 11

41

=

s
45
45
47
48
43
58
Sl
52

53

54
S5
56
57
53
S9
68
61
62
63
63
66
a7
ne

13 BB LNI =ROZ%(ZSDHDE (N~2) ~DAXE (N-1) -A%DE (N-13)
11 03=0:1+Z1D
FOLD <F
F=F+B (M) %03
IF({IGFT.EQ.2).0R. (I0PT.EQ.3)) DF=DF+DB(N)*Q3
IF (ABS(F-FOLD) .LT.PREC1) GO TO 21
GO TG 1@
20 GD=GD+B(N)
GNOLD=GN
CEN=GH+B (MR L
IFCABSCGN-GNOLD)Y .LT.PRECY) GO TC 21
1@ CONTINGE
21 GO TO ¢33.30,32,58). I0PT
30 2S0LD=2S
25=2S-F/Dr
IF(RBS(25~Z50L.D)Y.LT.PRECZ2) GO TO SS
GO 70 31
32 20Lb=2
2=2-F/DF
IF (RBS(2-20LD) .LT.PREC2) GO TO 99
31 ITAB=ITAB+1
IF{ITAB.GT. IMAX) GO TO 41
GO TO 78
50 Zu=-2.41L*GN/GD
GC TO s9
41 IFLAG=1
99 RETURN
EMD
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