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A method is presented for automatically ca lculating true first orde r rat e co ns tants for gas phase and wa ll 
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1. Introduction 

Steady-s tate tubular flow reac tors are widely used in 
chemical kinetics s tudies as a means of conveliing the 
reaction time into a distance measurement. One way of 
usi ng this reactor is to injec t one reactant into a flowin g 
carrier gas which contains a seco nd reac tant whose conce n
tration is much greater than that of the first. The concentra
tion of the firs t reactant is then measured as a fun ction of 
dis ta nce down the tube. If distance is assumed to be equal 
to the product of the reac tion time and the average linea r 
flow velocity of the carrie r gas, then the concentration of the 
first species will be s imply 

( 1) 

where k is the firs t-orde r rate constant , (u) is the ave rage 
carri er flow veloc ity, and Co is the value of C when the 
distance z is ze ro. The pos ition used for the z origin is 
arbitrary si nce (1) shows that k can be de termined from the 
relat ive concentration of C. Howe ver, it must be fixed at 
some distance dow nstream from the injection point so th at 
the measurements s tart onl y after the reac tants are well 
mixed. 

Unfortunately (1) is only approximate. Laminar flow exists 
in most experiments so that the carrier ve loc ity will have a 
parabolic profile. Reactants near the tube ce nter will travel 
faster th an those near the wall. Thi s will create a radial 
gradient in the concentration ofC. The exte nt of this gradient 
is a co mplex function of the flow velocity, reaction rate , and 
molecular diffusion effects. An add itional co mplication will 
arise if C can also be destroyed by a reaction on the tube 
wall. This is a common occu rence if C is an atomic spec ies. 
In spite of these complications , C still ex hibits an ex ponential 
decay along the tube, as long as the observations a re made 
suffic iently far downstream from the mixi ng region. Instead 
of (1), we now have 

(2) 
(downstream from the mixing region) 

Here, the observed decay parameter k* is a fun ction of (u), 
the diffusion coefficient D c of species C in the carrier gas, 
the true first-ord er rate constant k, and a rate constant k w for 
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a firs t-order wall reaction ; r is the dis tance from the tube 
ce nter. Thi s equati on will hold at all points suffi c ientl y far 
downstream from the mixing region. How far downstream is 
suffi cient will be discussed la te r. The conce ntration in this 
region ex hibits a radi al distribution whi ch remains co nstant 
along the tube. To de termine k* correc tly, it is of co urse 
necessary to measure C over th e same range of r values at 
eac h particular pos ition along the tube. 

Once k* has been de termined it must be related to k , the 
ac tual first-ord er rate co nstant. Thi s problem has been 
solved by Walke r (1].' Unfortunate ly, the va lue of k* is 
given by the firs t posit ive root of a polynomial hav ing a 
fairly large number of non-negligibl e terms. Thus, it is not 
possible to give a closed ex press ion for k or k* in te rms of 
the other parame te rs. Walke r has tabul a ted a few arrays of 
k* values co rresponding to a number of ex pe rimental condi
ti ons. To use hi s res ults, however, to con-ec t ex perim ental 
k* values is tedious since interpolation is required. Furthe r
more, the accurary of the inte rpolati on has not bee n ver ified. 
The purpose of the present work is to make hi s me thod 
eas ier to use . To do this a s imple computer program has 
been written in the form of a FORTRAN subroutine called 
ROOT which will calculate k or k* when give n the values of 
the other parame ters. A number of plots are prese nted of k* 
versus k from which other values can be obta i ned by a lineal' 
interpolation whose acc uracy has bee n verified. The program 
can also be used to dete rmine hi gher order decay terms. 
Fro.m these it is possible to es tima te the extent of th e mixing 
regIOn. 

Actually , Walker's solution need be used only if a wall 
reaction is present. When kw can be neglected , there exists 
[2-4] a very s imple, and excellent approximate formula fOI' 
k*.ltis 

A* = 112 (V(1 + 4A) - 1) (3) 

where A* = Gk* j(U)2 , A = Gk j(U)2 , and G = Dc + a2(u)2j 
48Dc; a is the radius of the reactor tube. Late r, a brief 
discussion regarding the origin of thi s formula will be given. 

A simplified derivation of Walker's solution is presen ted 
next. This will provide the basi s for the discussion of the 
computer program. Following that an example demonstrating 
its use will be presented . 

I Figures in brac kets indicate the literature references at the end of this ptl pcr. 



2. Solution of Diffusion Equation With 
First-Order Kinetics 

The partial differential equation which describes the 
tubular reactor with first-order kinetics under laminar flow 
conditions in the steady-state is 

2 (u) (1 

(4) 
- kC. 

The first-order rate constant kw for the wall reac tion appears 
in the boundary condition , 

Dc (aaCr) 
r=a 

-kwCr~a· (5) 

From elementary kine tic theory, k10 = 1/4yc, where "I is the 
fraction of molec ules of C which are destroyed on striking 
the surface, and c is the mean molec ular speed of spec ies C. 
(A more accurate formula for k 10 is given in ref. 5 . ) 

With the following dimensionless paramete rs, R = ria, Z 
= z/a, D = Dc /2a(u), K = ak/(u), Kw = kw /(u), (4) and (5) 
become 

(6) 

D (:~) 
R~l 

(7) 

In terms of these parameters, Walker's dimensionless param
ete rs are r* = R, z* = Z, u = 1/ 2 D, B2 = K/2 D, 0 
= 2D/Kw 

The solution of (6) for the region downstream from the 
mixing point is 

C = L A;g;(R)e - KTZ. (8) 
i= l 

Values of the decay parameters Kt are fixed by the boundary 
condition (7). The appropriate mixture of the radial functions 
g;(R) could be determined if the radial concen tra tion profile 
at the mixing point were known. However, if the measure
ment of C is begun at az value such that exp (-Kt) » exp 
(-Kt), for i ~ 2, then only the first term in (8) will be 
significant. The tm first-order rate parameter K can thus be 
determined from the observed decay parameter Kt provided 
the functional relationship between the two can be deter
mined. 

To establish thi s relationship, begin by eq uating (2) to the 
first term in (8). This gives C(r) = Co(r) exp (-k*z/(u) = 
A1g1(R) exp (-KtZ) = A g(R) exp (-K*Z), which defines 
the dimensionless decay parameter K* = k*a/(u). Substitut
ing this into (6) and (7) yields a differential equation and 
boundary condi tion which must be sati sfied by g(R) . These 
are, 
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(9) 

(~~) 
R~l 

2D 
(10) 

This function can be expressed as a power series III even 
powers of R . 

g(R) = L BnR2n. (11) 
n~O 

The coeffi c ien ts Bn are given by 

(12) 

where 

0' = K*t + K*/D - K/2D. 

When R = 0 , we have g = Bo, so that Bo is proportional to 
the concentration at the tube axis. Since only the relative 
concentration is of interest here, Bo will be arbi trarily given 
the value unity. To de rive (12) simply insert (11) into (9) 
and write out a few terms having differen t values of n 
starting with It = 0 , and set th e coeffi cients of like powers 
of R equal to zero. (If the more general power series 
containing both even and odd powers of R is used instead of 
(11), this proced ure will show that only even powers of R 
have non-zero coeffi cients.) 

Equation (11) must also satisfy the boundary condi ti on 
(10). Subs titutin g it into (10) gives 

F(K* ,K,Kw,D) = L Bn(2 n + K1O/2D) = F(x) = 0. 
n~O (13) 

F is a funct ion of K*, K, K W' and D. If the latter three 
quantities are spec ified , then the K* value of interest will be 
the first positive root of F conside red to be a function of K*. 
Alternatively, if K*, Kw , and D are given, then K will be a 
positive root of F , but not necessarily the smallest one. In 
ex periments where C is destroyed on the wall , K 10 can be 
determined by measuring K* in the absence of the second 
reactant. Then K = ° and (13) can be solved direc tly for K 10 

in terms of K* and D to give 

-2D L Bn(2n) 
Kw = __ -'.:nc-~':"'o _ _ _ (14) 

The subroutine ROOT uses the Newton-Raphson method 
[6] to determine the roots of (13). If Xj is an approximate 



value of x, then a better valuex j+1 is given by the rec unence 
relation 

(15) 

where F'(xj) is the derivative of F with res pect to x at the 
value x = Xj. The sequence Xo, Xl> •.• wi ll co nverge to the 
correct root if the initial value is reasonably c lose to the 
correct value. 

The subroutine ROOT , shown in the appendix, requires 
the following calling statement, 
CALL ROOT(ZS,Z,ZW,D,IOPT,F, B,NB,IFLAG) 

where 

ZS = K* , the observed first order decay parame ter. 
Z = K, the true first-ord er gas phase rate co nstant , 
ZW = K lL' the first-order wall decay co nstant, 
D = D, th e diffus ion coeffi c ient of ::;pecies C in the 

carn e r gas, 
IOPT = 1,2,3,4 

If [OPT = 1, ROOT evaluates the fun ction F(K* ,K,Kw,D) 
If IOPT = 2, then K* is calculated starting from an 

approx ima te value. 
If IOPT = 3, K is calculated from an approximate 

value . 
If lOPT = 4, Kw is calculated. 

F = F(K* ,K,Kw, D), de fined by (13), 
B = B n th e coeffic ients defined by (12). It is an array 

whi ch must be dimensioned to 30 in the calling program. 

NB = the number of te rms in (13) or (14) used by ROOT 
for a particular calculation. 

IFLAG = 1 if the number of iterations in th e Newton
Raphson procedure exceeds the number IMAX. IFLAG = 0 
othe rwise. 

To implement th e Newton-Raphson me thod , ROOT cal
culates the derivative of F from the formula 

F' = 2: B~(2n + Kw/2D). (16) 
n~O 

For IOPT = 2 , we want the derivative with respect to K*; 
here, the B~ are given by 

B~ = 0 

B~ = ~)2 (Bn- 2/D + K*B;'_2/D - ex'Bn_1 (17) 
(2n 

ex' = 2K* + l/D. 

For IOPT = 3, the derivative of F with respect to K IS 

needed; in thi s case, the B ' n are 
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B~ = 0 

B' - _ 1_ (K*B' /D - 'B - B' ) 
n - (2 n)2 n- 2 ex n-1 ex n-[ 

(18) 

ex' = - 1fill . 

ROOT continues to add terms to F until its absolute value 
changes by less than the number PREC1. Up to 30 terms 
are allowed by the dimens ion of the B array, but fewer than 
10 usually s uffi ce for calculating the low mder roots . (If the 
dimens ions of B are changed in ROOT, it is also necessary 
to change the dimens ions of the array BN wh ich contains the 
derivat ives of the B n values .) ROOT co ntinues iterating until 
the absolute value of K* (or K) changes by less then the 
number PREC2. A value of 1 X 10- 4 for both PRECI and 
PREC2 has been used. The maximum number of te rms used 
for calc ulating F is spec ified by the number NMAX, whi ch 
must not exceed the dimensions of B. The values of PRECl , 
PREC2, NMAX. and IMAX are assigned in the DATA 
statement. 

For ROOT to be automatic, i.e., for it to calculate K or 
K* , given th e othe r paramete rs, it is necessa ry to spec ify 
su itable starting values for the Newton-Raphson cal culation 
in te rms of these paramete rs. When K* is desired, (IOPT = 
2), a sati sfac tory initial value is 0 .9 K. For a dete rmination 
of K (lOPT = 3), the ini tial value 1.2 K* is sati sfactory. 
These starting values have been chec ked and found to give 
co nverge nce to the correc t root over the followin g ranges of 
parame te r values; 

o ~ K* ~ 0.68 
0 ~ K ~ 0. 58 
o ~ Kw ~ 0.2 
O.OJ ~ D ~ 1.0 

(19) 

They may also be sati sfac tory outs ide these ranges, but 
verification of thi s would req uire furth er investigation. 

To s how the fun ctional de pendence of K* on the other 
paramete rs, a series of plots of K* vers us K is give n in 
figures la through 6b. The plots are arranged in pairs. Each 
pair contains plots having the same value of Kw. The firs t 
figure in the pair co ntains plots for different D values 
running from D = 0.01 to 0.07 , and the second co ntains 
these where D = 0 . 10 to 1.00. The s ix values of K w were 
0.0, 0 .01 , 0 .02, 0.06, 0.10, and 0.20. Values of K* 
correspondin g to Kw values lying be tween those given, can 
be obtained by a linear inte rpolation whose accuracy is 
beller than 1%. Thi s probably exceeds th e accuracy with 
which K* can be determined from the figures. The ranges 
covered by the parameters in these plots are the same as 
those given by (19) and should be suffi ciently large to 
encompass the cond itions encoun tered in the majority of low 
pressure, high f10w velocity experiments. 

3. An Example Illustrating the Use of ROOT 

To demonstrate the use of ROOT, consider the following 
experiment. There is the reaction A + B -7 products, with a 
second order rate constant k2 and with [A] « [B ] so that a 
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first order rat e constant k = k2 [B] can be defin ed. The 
reactants are conta ined in a carrier gas flowing through a 2 
cm I.D . tube wi th an average linear velocity of 200 cm/s. 
The measurement of the concentration of A is begun 5 cm 
downstream from its injection point and is found at 20 cm to 
have decayed exponentially to 0.1 of its value at 5 cm. 
When species B is removed from the carri er, A is observed 
at 20 cm to have decayed to 0.3 of its value at 5 cm. Since 
A decays in the absence of B, it is assumed to be und ergo ing 
a first order wall reaction. Thus, k* (total) = 30.7 S - I , and 
k* (wall) = 16.05 S - I. If the diffusion coefficient of A in the 
carri er gas at the prevai ling pressure is 20 cm2 S - I , then 
the values of the dimensionless parameters used by ROOT 
are, K* (total) = 0.1535, K* (wall) = 0.0803, and D = 
0.05. 

The first task is to use ROOT to determine K w from the 
value of K* observed in the absence of B. The following 
calling program will acco mpli sh thi s. 

PROGRAM CALL 
DIME NSION B(30) 
ZS = 0.0803 
Z = 0.0 
D = 0.05 
IOYI' = 4 
CALL ROOT(ZS,Z,ZW,D, IOPT,F ,B,NB,IFLAG) 
PRINT ZW 
END 

In this case ROOT wi ll return a value of 0.05 for ZW 
(=Kw)' 

To determine K from K* (total) , use K w = 0.05, and use 
1.2 K* = 0.1842 as an approximate vallle of K. Then use 
ROOT with IOPT = 3 to determine the correct value of K. 
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The following program accomplishes this. 

PROGRAM CALL 
DIMENSION B(30) 
ZS = 0.1535 
Z = 1.2*ZS (approximate value) 
ZW = 0.05 
D = 0.05 
IOPT = 3 
CALL ROOT(ZS,Z,ZW,D,IOPT,F, 8 ,NB, IFLAG) 
PRINT Z 
END 

For this example, ROOT gives 0.0842 for the accurate value 
ofK. 

From these results . the values, k = 16.84 S- I, and kw = 
10.00 c m S - I are obta ined for the laboratolY parameters. 

It has been assumed in this experimen t tha t the reac tan ts 
are well mixed 5 cm downstream from the injec tion point of 
A. This is equivalent to assum ing that only the lead ing term 
in (8) is being observed. ROOT can be used to determine 
the higher order decay parameters in (8) . To do this for the 
above example, the values K = 0.0842, K w = O. OS , a nd D 
= 0.05 are used with rOPT = 1 to calculate F as a fun ction 
of K*. From thi s the zero crossing points which correspond 
to higher roots of (13) can be located and used with IOPT = 
2 to get acc urate values. For the present example, the next 
decay parameter is K~ = 1.3144, which yields k~ = 263 
S- I . Therefore, a t 5 c m downstream from the mixing point , 
the second term in (8) would have decayed to 0.0014 of its I 

initial value. Thi s observation does not guarantee that only 
the lead ing term in (8) is being observed. If the coefficient 
A2 were much larger than A I then the second term in (8) 
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could still be s ignificant even though its exponential factor 
were small. As mentioned earlier, the coeffic ients A i could 
be de termined from the radial distriubtion of C at the mixing 
point. This distriubtion is, however, rarely known. Pirkle 
and Sigi llito [7] have solved (4) for several cases in which 
the initial distribution of C was uniform. In none of them did 
the values of Ai, i ~ 2, exceed those of A l' Unfortunately , it 
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is difficult to say what the si tuation would be for other initial 
distributions. In practice , a logarithmic plot of the concentra
tion versus distance is usually made and only the linear 
portion (within experimental error) is used to determine k*. 
Such a procedure, coupled with an examination of the next 
higher decay parameters Iq is most likely adequate to 
ensure observation of only the leading term in (8). 
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4. Determination of k in the Absence of a 
Wall Reaction 

In th e absen ce of a ny c he mi ca l reac tions, Tay lor [2, 31 
and Aris [4] have s hown th at the couplin g of axial and rad ia l 
molec ular diffus ion with the paraboli c ve loc ity profi le can 
be described by using th e pse udo-diffus ion coe ffi c ie nt C , 
given following (3), and conside ring only ax ial diffus ion. 
The physical basis for the fun ctional de pe nde nce of C on the 
molec ular d iffus ion coeffi c ie nt Dc can be seen by cons iderin g 
a s pec ies initially di s tributed in a rad ial plane moving with 
the average veloc ity of the carrie r gas. As thi s di s tributi on 
moves down the tube it will a t first ta ke the shape of a 
paraboloid. Molecules near th e tube wall lag be hind those at 
the ce nte r. However, mol ec ul ar diffusion in the radial 
direction allows th ese mol ec ules to move away from the wall 
into the faster flowing ca rrie r. T here wi ll the re fore be a net 
move ment of the dis tribution down th e tube. For s mall 
values of Dc> the dis tribution beco mes d ispersed abou t the 
radial plane just as though it were und e rgo ing ax ia l diffu s ion 
only, with a diffusion coeffi c ie nt give n by the seco nd term in 
C. As Dc becomes larger , the ax ial di spe rsion will decrease 
until a point is reac hed where true mol ec ul a r ax ia l d iffu s ion 
su rpasses the apparent axial diffusion resulting from the 
intel'action of radial molec ular diffus ion with the veloci ty 
profile. Then the firs t term in C becomes dominant. Thi s is 
simpl y Dc, the molec ular diffusion coeffi cien t. 

When the diffus ing species is being destroyed by a first 
order gas phase reac tion , it is a good approximation [8] to 
co ns ide r only axial diffusion and use C for the diffus ion 
coeffi c ient. This yields the simple differe ntial equatio n 
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0.20 

(bl 
o 

o 0.02 K 0.04 0.60 

FI GU R E 6b. Plo/.., q( K* lIersus KJor D = 0./ , 0.2. 0.3, 0.4, 0.5, 0.6, 
0.7,0 .8, 0.9, /. 0. 

K . = 0.20. 

dC d 2C 
( u) - = C - - kC. 

dz dz 2 
(20) 

For the boundary co nditions, C(z = 0) = Co, a nd C(z ~ 00) 
~ 0 , the so lution of thi s equation may be wrillen as 

(21) 

To establi sh the rela ti onshi p between k* and k, evalua te the 
derivatives of C from (2 1.) and subs titute the m along with 
(21) into (20). Thi s yields the quadra ti c equation 

k*2 + ((u'f/CW - ((u1!C)k = 0. (22) 

Solving fo r k* gives 

k* = Ih(-(U)2/C ± V {((u'f/C)2 + 4((u';C)k}). (23) 

To ge t (23) into th e form of (3), multiple it by C/(U)2. Thi s 
yie lds 

Ck* /( U)2 = th( -1 ± V {I + 4Ck/ (u )2}) = A*. (24) 

Since A* must be pos itive to sati sfy the boundary condition 
C(z ~ 00) ~ 0, the pos itive value of the square root must be 
used. The resulting expression is (3). Values of k* given by 
(3) were compared to th e exac t ones determined by Walker's 
method for the range of parameter values s hown in figures 
l a and lb. The agreement ave raged beller than 0.2 percent 
over the whole range. 



5. Appendix. Listing of Subroutine ROOT 

The program is s hown here in single prec ision. To cal c u
late decay parameters higher than K~, rewrite it in doubl e 
precision and inc rease the dimensions of the arrays Band 
BN to 40. 

I SUSgOUTI NE ROOTCZS.Z.ZW.D. IOPT.F.B.NB. IFLAG ) 
2 DI ME NSIoti B(30).DBC30l 
3 D~, TC, PREC1.PREC2.NMAX.IMAX/.0013i •. 08131.313. \£l/ 
4 lFLAG=0 
5 R2D-I./C2.*D) 
b ZI.JD-Zl,h'R2D 
7 RD-!,/D 
8 lTH8=fl 
9 70 ZSD=ZS,"RD 
10 A = <~:3*ZS +ZSD-Z*R2D 
11 IF (IC PT . EO . 2) DA~2.*ZS+RD 
12 iF ': ;OPT.[O.3) DA=- .5*RD 
13 B( I) =-' .25*A 
14 D8 C1.l=- . 25'1,J:,A 
15 B(2)= . 9625*( ZSD -A>I<B (I)) 
16 iFCiOPT.EO.2) DS (2)= . 0525*CRD-DA*8C I)-A*D8(1)) 
17 IF ( lO?T.EQ.3 ) D8(2)=.0625*(-DA*BCll-A*D8(\)) 
18 F=Z lJD 
19 DF=.1'i 
20 GH= .8 
21 GD-!. 
22 DO 15 N=L2 
23 QI=2*N 
24 Q2 =Q I '·ZlJD 
25 Ic (IDPT .EQ . 4 ) GO TO 16 
26 
27 
28 
29 
30 
31 
32 
33 

35 
36 
37 
38 
39 
413 

r ",'+8 ( N) 'KQ2 
II' ( !cPT . EO. 2) .OR. C IOPT . EO .3)) DF=DF+DBCN)*02 
GO TO ~5 

16 GD-GD+8(H ) 
Gti=GI; +8 (N) "'0 1 

15 C1H-'- lN0E 
DO 10 h~3.NMAX 
N8=I'j 

02=Ql*!J~ 
RQ2:: 1. /Q2 
8 CH) 'RQ2"< (Z5D*8 (N-2) -A '"B ( fl-l)) 
GO TO (1 L 12. 13,2(3). IOPT 

12 DS (N; -RQ2,,(RD*8 (N-2) +ZSD"'DB CN -2 ) -DA>I<B (N-I) -R*D8 (N-I )) 
GO TO 11 

41 
~2 
43 
44 
45 
4i; 
47 
48 
49 
50 
'; 1 
52 
53 
54 
55 
56 
57 
53 
59 
60 
61 
62 
63 
64 
65 
66 
f'i7 
~p 

13 V~lN)-RQ2*(ZSD*DB(N-2)-DA*B(N-l)-A*D8CN-l)) 
11 Q,\-O i +ZUD 

FOLD "P 
F·F +B<r~) *03 
IF((IGPT .EQ. 2).OR . (iOPT .EQ.3)) DF-DF+DBCN1*Q3 
IF CABS(F-FOLD).LT. PREC1) GO TO 21 
GO TO 10 

213 GD-GD+BCNI 
GHOLD-GN 
G~; -GH+8 ( ~l ) *Q 1 
IF (ABS( GN- GNOLD).LT.PREC1) GO TO 21 

, 0 CONTlH~E 
21 GO TO (:39.30.32,50 I , IOPT 
30 2S0LD:::2S 

ZS-ZS-F/DF 
IF (~BS(ZS-ZSOLD).LT.PREC2) GO TO 99 
GO TO 31 

32 ZOLD"Z 
Z-Z-F/DF 
IF(HBS(Z-ZOLD).LT.PREC2) GO TO 99 

31 !TAB - !TAB+ 1 
IF ( !TAB. GT. IMAX) GO TO 41 
GO TO 70 

50 ZU--·2. ,,'D*G N/GD 
GO TO 99 

41 IFU1G-j 
99 RE ,-U",I~ 

E~~D 
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