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A hypergraph H = (X, &) is called a Menger System if the maximum cardinality of a family of pairwise
disjoint edges (v4(H)) is equal to the minimum cardinality of a subset of vertices which meets every edge (7o(H)).
A set S C X is defined to be enclaveless if each vertex in S is adjacent to at least one vertex in X — S. A
parameter 77, related to the formation of maximal enclaveless sets is defined, and it is shown that if H has no
singleton edges then v(H) < ((H). MK-Systems are defined to be those hypergraphs H without singleton edges
for which v,(H) = my(H); simple graphs which are Menger Systems are shown also to be MK-Systems.
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1. Introduction

Prior to his presentation of the following problems in the Graph Theory Unsolved Problem Session of the
National Meeting of the American Mathematical Society in January, 1975, Alan J. Goldman explained to me
that his motivation was to show that questions of a social-policy nature can, when given a mathematical
interpretation, lead to technically interesting problems and, perhaps, some worthwhile insights into the
motivating questions. He considered a society (be it a country, a club, a school, or a corporation) in which
there are two distinct groups of people, say black and white or mathematician and nonmathematician. It is
assumed that each individual, while being uncomfortable if he is not in contact with at least one member of
his own group, should for reasons of “integration” be in contact with at least one member of the other group.

For example, consider a corporation in which the technical staff has r mathematicians, s nonmathematicians
and r + s individual offices in which to locate them. Construct a graph G on r + s vertices corresponding to
the r + s offices in which two vertices are adjacent if the relative positions of the associated offices are such
that the occupants are likely to encounter each other. One would like to be able to partition V(G) into sets R
and S with |R | = r and | S | = s such that each v € V(G) is adjacent to some vg € R and to some vg € S,
where v is not vg or vg since we will not allow loops in G.

More generally, in the terminology of Berge [1],! if H = (X, &) is a hypergraph one might wish to partition
the vertex set X into n sets Sy, Sp, . . ., S,. If v € X, let I'(v) denote the set of neighbors of v, that is, ['(v) =
{weX:w # v, {w, v} CE; for some E; € €}. Ifv € S CX callv an isolate of S if ) NS = ¢, and call v an
enclave of S if ') N (X-S) = ¢.

The questions proposed by Goldman were the following. If G is a graph and V(G) is partitioned into sets Sy
and Sy, then let iy and i5 (respectively, e; and es) denote the number of isolates (respectively, enclaves) of S
and S,, respectively. Find an algorithm to partition V(G) into sets S; and S, with | S, | = r and | Ss | =5
(where | V(G)| = r + 5) so that

(1) iy + i, is minimized, or
(2) e; + ey is minimized, or

(3) aliy + iy) + Ble; + e3) is minimized where a and B are the positive “penalty values” associated with
each isolate and enclave, respectively.

The question concerning isolates led to the work of Maurer [7], “Vertex Colorings without Isolates,” and
indirectly to [8] and [9]. In [7] the following conjecture is made.
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CONJECTURE (Maurer): If G is an n-connected graph with | V(G)| = r =11 + 1y + . . . + 1a(x; = 1) then it
is possible to partition V(G) into nsets Sy, . . . Sy so that for all i one has | S; | = 1 and the induced subgraph
(Si) is connected.

Thus, for r; = 2, S; will have no isolates. A stronger version of this conjecture, in which for any
designated n vertices vy, vp, . . . , vy it is also required that v; € S;, was made independently by Andras
Frank [2]. This stronger version (presumably not derived from a social question) has been proven by Lovasz
[6] and Gyory [4].

To my knowledge, however, no work pertaining to the second or third of Goldman’s questions has been
submitted for publication. Call vertex set S C X enclaveless in H if there are no enclaves of S. (The
complement of S in X may, or may not, contain enclaves.) This paper will be concerned with two different
parameters arising from the construction of enclaveless sets. Following some comments about Menger and
Konig systems in the next section, section 3 deals with the obvious relation of enclaveless sets to dominating
sets and introduces the concept of an MK-System. Section 4 comprises a brief consideration of the “dual
properties” and Dual MK-Systems which will be called KM-Systems.

2. Menger and Konig Systems

Suppose H = (X, &) is a hypergraph with X = {xy, x5, . . . v} and € = {E;, E,, . . . E,}. (By the
definition of “hypergraph,” each E; # ¢, and each x; is contained in some E;.) Let v(H) denote the
maximum number of pairwise disjoint members of &; let 7o(H) denote the minimum number of elements of X
in a transversal of &, that is, the minimum size of a subset T of X such that T NE; # ¢pfor 1 =i =m; let
Bo(H) denote the maximum size of an &-independent set, that is, the maximum size of a subset I of X such
that |[I NE;| =1 for 1 =i <m; and let a;(H) denote the minimum size of an &-cover of X, that is, the
minimum number of members in a subcollection ¥ of & such that Uges Ei= X. Clearly v(H) = 79(H) and
BoH) = ay(H), and H 1is called a Menger System if vi(H) = 7o(H) and is called a Konig System if By(H) =
oy(H). An excellent survey paper on Menger and Konig systems is that of Woodall [11].

The incidence matrix M g = [a] of H is an m by n matrix witha;; = 1 ifx;€E;anda;; = 0if x; ¢ £ Thus
the columns of M g correspond to the vertices in X, and the rows of M g correspond to the edges in &. The
hypergraph H* for which My* = M}, the transpose of M, is called the dual hypergraph of H. Thus H** =
H.

Note that the maximum number of rows of M g for which no column contains a 1 in two or more of these
rows is the maximum number of columns of My« for which no row contains a 1 in two or more of these
columns. Thus v (H) = By(H*), so that v; and By are “dual parameters.” Similarly 7, and «; are dual
parameters. Thus H is a Menger System if and only if H* is a Konig System.

In [11] there are several examples of Menger Systems, three of which will be presented here. Two of these
provide the motivation for the terminology.

1. If G is a bipartite graph with vertex set V and edge set E, let H be the hypergraph with X = V and with
& comprised of the edges in E considered as pairs of vertices. Then H is a Menger System. That this H* is a
Konig System is Konig’s Theorem [5].

2. If G = (V, E) is a bipartite graph, let H be the hypergraph with X = E and with & being the family of
vertex coboundaries in G. Then H is a Menger System.

3. If G = (V, E) is a graph containing vertices u and v, let H be the hypergraph with X = V — {u, v} and
with & being the family of vertex sets of the open u-v paths. That this H is a Menger System is Menger’s
Theorem [10].

THEOREM 1: (Gallai [3]) For any simple graph G without isolated vertices let H = (X, &) with X = V(G) and
€= {{u, v}:(u, v) is an edge ofG}. Then 7o(H) + Bo(H) = ay(H) + »(H) = | X |.

For contrast with the later Theorem 2, observe that Theorem 1 is not true for all hypergraphs. This can be
seen by letting H, = (X, &) with X, = {1, 2, . . ., p}and &, = {X,}. (Thatis, | X,| =p and | &, | =
1.) Consider p = 3. To show that the first equation also need not hold for hypergraphs, let H = (X, &) where
X=1{1,23,4,5,6,7, 8, 9;and €= {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {7, 8}, {7, 9}, {8, 9},
1,4, 7}, {2, 5, 8}, {3, 6, 9}}. Then 7o(H) + Bo(H) = 6 + 3 # 3 + 4 = ay(H) + vy(H).
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3. Enclaveless Sets and MK-Systems

If H= (X, & is a hypergraph with S C X, then S will be said to be maximally enclaveless if S is
enclaveless and for each v € X — S one has that S U {v} is not enclaveless. Let wy(H) denote the size of the
largest (maximally) enclaveless set of H, and let my(H) denote the size of the smallest maximally enclaveless
set of H. Also, S C X is called a dominating set if for eachv € X — S one has ['(0) NS # ¢, and S will be
said to be an irredundant dominating set if it is a dominating set and for each v € S one has that S — v is not
dominating. Now Yo(H) denotes the size of the smallest (irredundant) dominating set, and 8yo(H) will denote
the size of the largest irredundant dominating set.

THEOREM 2: If H = (X, &) is any hypergraph, then uo(H) + yo(H) = m(H) + 8y(H) = | X |
ProoF: If F' is any family of subsets of X, let

M(X,F) =max {| S| S € F},

and

mX, F) = min{| S |:S € F}.

Families F; and F;, of subsets of X will be called complement-related if S € F if and only if X — S € F.
Suppose F; and F5 are complement-related. Since the complement of any set in Fy is in Fy, m(X, F,) =< |X |
— M(X, F,); since the complement of any set in Fy is in F'y, M(X, F,) = I X | — m(X, Fy). Thus M(X, F,)
+ miX, F,) = |X . Since the families of enclaveless sets and dominating sets in X are complement-related,
MolH) + yoH) = IX | (The same argument establishes Theorem 1’s relation 7o(H) + Bo(H) = | X | for
simple graphs.)

Let F* denote the family of those members of F which are set-theoretically maximal with respect to
membership, and F~ those which are minimal. It is easily seen that if F; and Fy are complement-related,
then so are F{ and F5. Hence m(X, FT) + M(X, F3) = | X | Now if F'; is the family of enclaveless sets in
H and F, is the family of dominating sets in H, then my(H) = m(X, F{) and 8(H) = M(X, F3). Thus my(H)
+ &(H) = | X |.

THEOREM 3: If G is a simple graph, then my(G) = 79(G).

PrOOF: Let S C V(G) be a transversal (a vertex cover of E(G)) of size 7o(G). Observe that S cannot contain
any isolated vertices. (That is, S contains no vertices of degree zero. There may indeed exist an isolate of S.)
Assuming that vertex v is an enclave of S, then any edge incident with v has both endpoints in S, but this
would imply that S — v is a smaller transversal than S is. To show that S is a maximally enclaveless set, let v
€ V(G) — S. Since every edge incident with » must have its other endpoint in S, » would be an enclave in

S U{v}. Thus mo(G) = | S | = 74(G).

The example in the last paragraph of this section shows that Theorem 3 does not extend to general
hypergraphs.

A singleton edge of hypergraph H is an edge of H that contains exacty one vertex.
THEOREM 4: If H is a hypergraph without singleton edges, then v{(H) =< r(H).

PROOF: Suppose Fy, Fy, . . ., F are pairwise disjoint edges of H with & = v,(H). Note that all | F; | = 2.
Let S be a maximally enclaveless set with | S | = 7y(H). We wish to prove thatk < | S |.

Number the F /s so that F; C S if and only if i < j(1), | F; N S| = 2if and only if i < j(2), and F; N S #
¢ if and only if i < j(3). Thus 0 = j(1) = j(2) = j3) = k. Let F = UL F;, and set d =|S N (X — F)|.
Thus

d=|S|= 3| Fi| = XS | Fin S| = (iB) — j(2)).

Because S is maximally enclaveless, for each vertex v € U%3)4(F; there must be an enclave v’ in S U {v}.

We will show (a) thatv'e (SN (X — F)) U (U{QiF;) and (b) that the verticesv” are distinct. This implies that

d+ SRR = |60 0X-F)U (uﬂm)l > ’ugmmj.
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The assumption | S | <k, however, would yield

’ Uk i | = 2(k — j(3))

>2|8 |- 23)

<d+§ﬂ2)|F ms|+]3)—1(2))—213)
>2(d+2’“’|F | + 23j(2) — (1) — ))
=2d + YO | Fi | +2i(1) + 4(j(2) — j(1)) — 2i(2)
=24+ S| Fi| +20(2) ~ 1)

>(1+E](1)|F|

Thus the assumption leads to a contradiction, implying the desired result k < [S].

To prove that v’ € (S N X-F)) U (U F), first suppose v’ € X — F. Then v’ # v; sincev’ € S U {u}, it
follows that v’ € S and thus thatv’ € S N (X—F). Next suppose v’ € F, i.e. v € Fj, for some h with 1 < h <
k. Since v’ is an enclave of S U {v}, it follows that F, C S U {v}. Because [Fp| = 2, this implies that F, N S
# ¢, and thus that A < j(3). Since the F;’s are pairwise disjoint and v € U¥g),,F;, it follows that v € Fj, and
soFp CS, implying h < j(1). Thusv’ € UQF,.

To prove that the vertices v" are distinct, it suffices to show that I'@") N ( _,(3,_,.117{) = {v}. For this
purpose, note first that since v’ is an enclave of S U {v},

@) N (Uf=x3)+1Fi) C@ Ufhn <U%C=K3)+1Fi)
= 0} 0 (Ueamrofi ) = o1

The conclusion of the last paragraph implies v’ # v; thus v’ € S, and since I'(»') € S U {v} and S is
enclaveless, it follows thatv € I'(v"), completing the proof.

Call hypergraph H an MK-System if H has no singleton edges and v{ (H) = ay (H). For graph G, in figure
1, {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}} is a family of pairwise disjoint edges and {1, 4, 5, 8, 9,
12} is a maximal enclaveless set. By Theorem 4 one has v{(G;) = my(G;) = 6. Since 7y (G;) = 7, G, is an
MK-System but not a Menger System. Theorems 3 and 4 combine to produce the next corollary.

2 1 12 n
G

———o
5 6 7

3 4 9 10

FicuRrE 1. A simple graph with v, =y =6 and 1y = 7.
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COROLLARY. Any simple graph which is a Menger System is also an MK-System.

Considering example 3 of section 2 as applied to graph G, of figure 2, one obtains hypergraph H = (X, %)
where X = {1, 2, 3, 4} and € = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 3, 4}, {2, 4, 3}, {1, 2, 4}, {2, 1, 3}, {1,
2, 4, 3}}. Since v{(H) = 79(H) = 2 and my(H) = 3, this is an example of a Menger System which is not an
MK-System. Indeed, most examples of Menger Systems described in [11] (such as examples 2 and 3 of
section 2 in this paper) are, in general, not MK-System.

2 4

FIGURE 2. A graph whose open u-v paths create a Menger System but not an MK-System.

4. Dual Concepts

As noted, v (H) = BoH*) and 7o(H) = oy(H*), giving us two sets of dual parameters. One can also
describe the duals of the parameters defined in section 3. Let a;;(H) denote the minimum number of edges
in a set § C & such that (*): if £, € € — & then there is an edge F; € & for which E; N F; # ¢. Let By,(H)
denote the maximum number of edges in a set § C & such that § has property (*) and for each F € &
property (*) does not hold for § — F. Then yo(H) = ay(H*) and 8,(H) = By1(H*).

If v is a vertex in hypergraph H, call v a singleton vertex if it is contained in only one edge. If F € § C &,
call F an enclosure of § if £ € € — & implies that E N F = ¢, and § will be called enclosureless if it
contains no enclosures. Also, % is maximally enclosureless if it is enclosureless and for each F € € — & one
has that § U {F} is not enclosureless.Let Ry(H) denote the size of the largest (maximally) enclosureless set
of H, and let p;(H) denote the size of the smallest maximally enclosureless set of H. Then wo(H) = R(H*)
and wyH) = p,(H*).

The theorems which follow are simply the duals of Theorems 2 and 4. First note that graph G of figure 3
demonstrates that Theorem 3 does not dualize since the dual hypergraph of a simple graph is not necessarily
a simple graph. One has a;(G3) = 4 and p,(G3) = 6.

THEOREM 5: If H = (X, &) is any hypergraph, then Ry(H) + ay,(H) =B1;(H) + py(H) = |i§|
THEOREM 6: If H is a hypergraph without singleton vertices, then Bo(H) = p,(H).

In view of the previous terminology, it is natural to call hypergraph H a Dual MK System or a KM-System
if H has no singleton vertices and By(H) = p,(H).
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FIGURE 3. A simple graph with p; > a;.

From August, 1974, to August, 1975, I worked as an NRC/NBC Postdoctoral Research Associate in the
Applied Mathematics Division at the National Bureau of Standards. While expressing appreciation to all my
associates there, special thanks (for different reasons) are due to Lambert Joel and Alan Goldman.
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