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Two models for the pre hea t s tage of conve nt iona l liquid fue l drop le ts and of e mu ls ifi ed fu e l drop le ts in 
co mb usti on gases a re a na lyzed theo re ti ca ll y. These mode ls cont a in th e effects of tra ns ie nt hea t conduc ti on to the 
drop le ts. In the firs t model , th e dropl e t a nd gas tempe ratures vary tempora ll y but onl y the gas tempera ture va ries 
spati a ll y; i. e . , the d rop le t tempe ra ture is s pa ti a ll y unifurm. Numeri ca l exa mples, co mput ed from thi s model, fo r 
both t he drop le t a nd gas tempe ratures a re g ive n . In th e second mod e l, both th e drop le t a nd gas te mpe ra tures va ry 
spati a ll y a nd temporall y. Num eri ca l exa mples computed from thi s seco nd model for th e s lllface a nd average 
tempe ra ture o f the drople t a re give n. These a na lyses show th at th e temperature gradi ent s in s id e drople ts of oil 
and wate r are s ma ll compa red to those in th e combus ti on gases nea r the drop le t; that tempe ra ture profi les give n 
by bo th mod e ls are ve ry s imilar. In pa rti cula r, th e predi c ted tilnes a t whi ch mi cro-ex plos ions a re expected to 
occur agree within 10 pe rce nt of eac h othe r. 
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1. Introduction 

Before liquid fu els can burn effec tively in combusti on chambe rs , they must be reduced to minute 
droplets. Thi s a tomizati on of liquid fuels may involve one or more of th e followin g procedures : (1) mixing the 

fu el with high press ure a ir or gas; (2) injecting the fu el through small orifi ces a t high pressures; a nd (3) more 
recently, supe rh eating e mu ls ifi ed liquid fu els to th eir "m icro-exp losive" limit. Effective a tomiza tion occurs 

as foll ows . First, thin sheets of liquid fu el form. They th en become unstable and form li game nts and large 
drops . Finall y, th e segments of li ga me nts and large drops di s integrate furth er to s mall dropl ets [1]. t 

The ignition of the resulting droplet of conventional fu el consis ts essen tially of two s tages [2] . Dming th e 
firs t prehea t s tage, heat fl ows from th e hot surrou nding gas to th e droplet without s ignifi ca nt evaporation. In 

the second s tage, ignition occurs in th e gaseous mixture surrounding th e droplet a nd cons isting of hot air 

(oxidizing atmosphere) and fu el vapors . The preheat s tage is dominated by tra nsie nt heat flow a nd is the 

subjec t of thi s paper. 
Several researche rs have proposed that emulsifi ed fu els may yield increased combustion effi cienc ies; 

decreased pollutant emi ssions, such as soot, CO, and ox ides of nitrogen; a nd lower mainte na nce costs [3 , 4]. 
Emulsified fu els consis t of two or more components. At least one compo nent has a much higher vapor 

charac te ri s ti c than the primary fu el component. The component with the highe r vapor press ure, for example 
wat er, is d ispersed throughout the primary fu el. Such emulsified fuels may be generated by ultrasoni c 

techniques . 
The corres ponding preheat stage for emu lsifi ed fuels consists of two phases . For illus tra tive purposes, we 

consider in this paper a two component emul sifi ed fu el. Injec tion of such an emul sifi ed fu el into a combustor 

creates compound drops in which the primary fuel surround s a number of small er droplets of the d ispersed 
co mponent. Because th e smaller droplets have a lower boiling point tha n that of the surrounding primary 

fu el, vaporization of the former occurs a t superheat te mperatures above th e normal bo iling point. Superheated 
boiling or spontaneous nucleati on of the di spersed componen t is explosive and occurs a t surpri s ingly 

reproducible superheat tempera tu res for ultracl ea n emul s ions [5 , 6]. The result ing sudden c ha nge in the 
volume occupied by the dispe rsed phase produces catas trophi c shattering of th e primary fu el drop into a 
number of mu ch sma ll er drop lets (fragments) . Thi s th en is the firs t phase of preheating. The second phase of 

preheating for emul sifi ed fu els occurs when add itional heat transfers to these s maller dropl et fragments 

without signifi can t e vaporation a nd before ignition occurs . 

l Figures in bruc kcls indicate the lit e rature references at the end of thi s paper. 
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In this paper, we develop two mod els for predicting the transient heat flow to conventiona l fuel droplets 

undergoing preheat and to emulsified droplets undergoing th e first phase of preheat. We shall use these 
models to compute the dependence of the temperature of the droplet and it s surrounding, hot oxidizing gas 
(e.g., air) upon distance from the dropl et cente r and time from injection into the hot oxidizing gas . 

In the first model, the droplet and gas temperatures vary temporally but only the gas temperature varies 

spati all y. That is, the droplet temperature is spatiall y uniform. We shall refer to this model as the zero­

gradient model. Some researchers propose that in many s ituations the heat transfer rate within the droplet is 
much faster than is possible with conductive transfer alone and tha t internal circula tion may be sufficient to 
maintain a spatially uniform temperature within th e droplet [7] . Hence, the zero-gradient model of this paper 

is an appropriate one for such cases . In the second model, both the droplet and gas temperatures vary 

spatially and temporall y. We shall refer to this second model as the finite-gradie nt model. 
We include these two models for the following reasons . First, the numerical procedures to evaluate the 

temperature profiles predicted by the zero-gradient model require an order of magnitude less computer time 
than the numeri cal procedures to evaluate the temperature profiles predicted by the finite-gradi ent model 
require. We expect that th e zero-gradient model would be a parti cularl y useful one for any future theoretical 
analysis of the ignition stage of th e droplet. Second, th e zero-gradient model readily gives the spatial 

dependence of th e gas temperatu re near the droplet. We an ticipate that such spatial details will be required 
if one were to consider dense sprays of individual burning pa rticl es. And third , we expect that the finite­

gradi ent model is the more appropriate one for very short times prior to the micro-explosions of emuls ified 
droplets and for those situations in which th e thermal conductivity of the gas is comparable to that of the 
dropl et. 

In the next section , we describe th e ph ysical assumptions for the preheat stage which are common to both 

models. Section 3 contains the mathematical description of these assumptions. We derive in section 4 
profiles of the droplet and gas which are predi cted by th e zero-gradient mod el. In section 5, we give the 

expressions for th e surface temperature of the droplet and for the spatially averaged temperature within the 
droplet for the finite gradient model. We present in the las t section numerical examples for oil-water 
droplets . We find that the reduced tempera tures given by the two models are within 15 percent of each other 

for s mall reduced times and are within 5 percent of each other for large reduced times. 

2. Preheat Stage 

In models for droplet preheating , many researchers consider the droplet to be a sphere with temperature 

independent thermal properties and neglect diffusion effects [2] . Others include the rmal diffusion effects but 
later in their theoreti cal analyses neglect some terms in the diffusion equations [8]. In addition, most 

theoretical investigato rs neglect the influence of gravity , forced convection, and radiant heat transfer. 

Experimental tech niques such as freely falling combustion chambers can be used to eliminate gravitational 
effects and forced convection. Proper selection of experimental parameters such as ambient pressure and 
initial dropl et size may minimize the other effects not included in the model for preheating. Several 

researchers have shown that except for heavy fuel oils, radiant heat transfer from the hot gas or from 
adjacent droplets is negligible [7, 9]. 

The models examined in this paper con tain thermal diffusion effects. We assume that a spherical liquid 
fuel drople t of radius r d is inserted at time t = 0 into a hot atmosphere (e.g., air). The initial temperature of 

the droplet at time t = 0 is Tdo • The hot oxidizing gas is unbounded and at a constant temperature 1'110 

infinitely far from the droplet. During the preheat s tage, we assume that the radius of the droplet does not 
change. That is, no evaporation occurs. Evaporation will be considered in a subsequent paper. 

A conventional fuel droplet is essen tially homogeneous and has well defined thermal properties. However , 
an emulsified fu el droplet composed for example of water and oil, is not microscopically homogeneou s. In 
order to make the models for emulsifi ed droplets amenable to calculation, we must make an additional 

assertion. For the purposes of transient heat flow analysis, we assert that representative values of the thermal 
properties of an emulsified fuel droplet exist and that they characterize properly the overall thermal behavior 
of the droplet. These representative values are essentially uniform throughout the droplet and are most likely 

bounded by the thermal properties of the fluid components in the emulsified droplet. 
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We denote the dens ity, spec ifi c hea t a t constant volume, and thermal conductivit y of the droplet by dd , 
Cd, a nd Kd, respectively a nd of th e hot gas by dg, Cg, and Kg , respectively. We assume that these thermal 
properti es re main spatially and te mporall y constant during preheat. In addition, the ambi e nt pressure of the 
host gas, pg , does not cha nge. 

Using the above mod els we seek to compute the depe ndence of th e temperature T{r, t) upon th e radial 

di s tan ce r and time t. In parti cul a r, we sha ll compute the time req uired for a conventi onal fu el dropl et to 

reach a given te mperature and for th e e mulsifi ed fu el droplet to reach its superheat limit TSL ; i.e., the 
te mperature nea r wh ich the mi c ro-explos ion occurs . Because the adsorption of impuriti es a t the inted ace 

be tween liquids might alte r surface and intelfacial tension, most water droplets in oil vaporize explos ively 
somewhere between 240 and 270°C [3, 5]. 

3. Theoretical Analysis 

We find it conveni e nt a t this point to introduce several dimensionl ess quantiti es. We denote the reduced 
te mpe rature (J (T} , T) by the express ion 

(I) 

The dimensionless di s tance is T} = (r/rd) and the dimens ionl ess tim e is T (t/td) ' In thi s paper, we shall 

de note dime ns ionl ess quantiti es by Greek le tters. The time td is proportional to the time required for a heat 

pul se to diffuse across the droplet and is given by td = ri/ai whe re ai = (Kd/ddCd) de notes the thermal 
diffusivity of the droplet. Eve n though th e reduced time T may be mathemati call y unbounded, it does have a 
ph ysically determined upper limit for the preheat stage . The phys ically meaningful values of 'T must be less 

th an that value ofT = Tmax for whi ch O(T} , Tmax) corresponds to the boiling point of th e liquid in the droplet. 
The rouri e r heat condu c tion equa ti ons for the droplet a nd its surrounding gas describe the time and s pace 

depende nce of the te mperature wh en local thermod ynami c equilibrium ex is ts . For the case in whi ch the 
isothe rmal surfaces are concentri c spheres centered about th e droplet center a t T} = 0, these equations are, 

for T ~ 0 and T} < I (ins ide the droplet) 

a20d 2 aOd aOd -- + -- = --, 
aT}2 T} aT} aT 

(2) 

and forT ~ 0 and T} > 1 (ou tside the droplet) 

(3) 

where T} ~ 0 and a = ad/ago The quantity a/ = (Kg/dgCg) is the thermal diffus ivity of th e gas and the 

subscripts d andg refer respecti vely to the droplet and the gas. 
These Fourier heat conduc tion equations require a s tatement of the boundary conditi ons before solutions 

are uniquely defin ed. The reduced temperat ure 0 has the form 

and 

and it becomes for 'T > 0 

Og{T} , 'T) = 1 for T} > 1 a nd T $ 0 
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The boundary conditions do not depend explicitly upon time. The temperature IS finite everywhere 
namely, Oa (0, r) is finite and 

LimOg{7], r) = l. (4) 
1)-+00 

Also, the condition that no heat flux exists at the center of the droplet becomes 

(5) 

The continuity of the temperature across the droplet-gas interface is 

(6) 

The conservation of heat flow at the interface gives, 

(7) 

where f3 = KolKa is the ratio of thermal conductivities for the gas and droplet. 

Equations (2) through (7) represent the mathematical description of the above model for transient heat flow 

dming the preheat stage of an individual fuel droplet injected at time t = ° into hot oxidizing gases. We 
solve the equations by taking their Laplace transforms with respect to time. The Laplace transform of the 

reduced temperatme 0 (7], r) is denoted by 

ct>(7], <T) = 100 

exp (-<TT) 0(7], r) dr, 

where <T is the dimensionless Laplace transform variable. The Bromwich integral 

1 J€+Ui 
0(7], T) = Lim -. exp (<TT) ct>( 7], <T) d<T, 

/;-+00 27T! .-Ui 
(8) 

expresses the temperatme in terms of the Laplace transform. The quantity E is chosen sufficiently large so 

that the integral, 

exists. 

Introducing the dimensionless variable X = <T I (2 7], we express the Laplace transforms of eqs (2) through 

(7), respectively in the forms 

(9) 

{ a2 2 a } - + - - - a 2 ct>ix) = 
a 2 X ax 

(10) 
<T 

(11) 
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im <l>g(X) = 0-- 1 (12) 
'1 ---+ 00 

(13) 

a<l>d a<l>g 
-a- Ix =p - f3 ax Ix =p' (14) 

where p = 0-1/2. 

The solution to eq (9) and the condition (11) require that the Laplace transform for the droplet has the form 

(15) 

Similarly, with Xu = ax , the solution to eq (10) and the condition (12) require that 

(16) 

The remaining continuity condition (13) and the conservation of heat now eq (14) yield two simultaneous, 
inhomogeneous eq uations for th e coeffi cients I'd and I'g . Solving these equations, we obtain the respective 
Laplace transform s for the droplet and the gas; 

(17) 

and 

<l>g(X) = - ~- l {p cosh (p) - sinh (p)} exp {- ap (7) - l)} + p-2, (18) 

for 7) > 1, and where 

~ = p27) [{/l:1 + ap) - I} sinh (p) + p cosh (P)]. (19) 

Inserting eqs (17) and (18) respectively into the Bromwich integral (8) gives us the reduced temperatures 
(Jd(7) , r) for the droplet and Og(7) , r) for the gas . In the following section 4, we give expressions predicted by 
the zero gradient model for th e reduced temperature (Jd in the droplet and for the reduced temperature (Jg in 
the gas near the droplet. In section 5, we present the exact evaluation of the reduced temperature (Jd inside 
and on the surface of the droplet for the finite gradient model. 

4. Zero-Gradient Model 

~ Two different but equivalent ways exist for obtaining the expressions which correspond to the zero-
gradient model. We shall give both. 

First, for sufficiently large reduced times r, the major contributions to the Bromwich integral (8) arise 
from the region corresponding to values of 10"1 = iP21 which are less than one. This suggests that we consider 
expansions in powers of p . We divide eq (17) and (19) by sinh (P) and for small values of p approximate p 
cosh (P) by 1 + (P2j3) and sinh (P) by p . For even smaller values of X = 7)P because 7) :s; 1, we 
approximate sinh (x) by X and find that , 

(20) 

where 

p± = (3af3/2)[1 ± {I - (4/3f3a2)}'/2]. (21) 

We apply th e partial fraction method to eq (24) and rewrite it in the form, 

(22) 
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Observe that for suffic iently long redu ced times 1', the droplet reduced temperature fJa becomes independent 
of 1/; i. e., it is spatially uniform and depends only upon the reduced time 1'. 

Procedures similar to that by which we obtain eq (20) give us that 

(23) 

U sing the rela tion that 

(24) 

and referring to page 1023 and page 1026 of Abramowitz and Stegun [10] , for T/ < 1, we evaluate the 
Bromwich integrals for eqs (22) and (23). The results are , for 1/ < 1, 

and for 1/ > 1, 

fJaA1') = 1 + (p+ - p_)-l{_p+ exp (p+21') erfc (P+ 0) 

+ p_ exp (p_ 21') erfc (p_ 0)} 

8gkfJ, r) = 1 + {1/(P+ - p _)}-l[ -p+ exp {p+2r + CXf>+(1/ - I)} 

erfc{ p+ Yr + (a(1/ - 1)/20)} + p_ exp {p_21' + CXf> (1/ - I)} 

eIfc {p_ Vr + (0:(1/ - l)/2Y:;:-)], 

(25) 

(26) 

where the subscripts dz and gz denote the droplet and gas reduced tempera tures for the zero-gradient model 
and where the complementary error fun ction of complex argument z is denoted by elfc (z) . Equations (25) 
and (26) are valid only when p+ 7= p_. 

For fuel droplets in combustion gases, the values of 0: and {3 are such that p+ equals the complex 
conjugate of p_; i.e. , p+ =p_ *. We then analytically continue the fun ctions appearing in eqs (25) and (26) 
to their values for complex arguments in order to compute the reduced temperatures. This is a tedious 
process and we refer the reader to [11] for the de tails . 

In order to compute the reduced times l' for which eqs (25) and (26) correspond to valid inverse transforms 
of eqs (17) and (18) , we consider the previous inequality (]"1/2 < 1. We divide both sides of this inequality by 
(]" and then take the inverse Laplace transform . This yields the inequality (7T1't l /2 < 1 or l' > 7T- 1. 

Remembering that l' = (tjta) , we have that for times t > (ra 2j7Tad 2) the temperature gradients in the droplet 
become negligible. The time (rd2j7Tad 2) corresponds to the time whi ch is required for a heat pulse to diffuse 
a distance r d in the droplet. 

There is a second way in which to obtain the same reduced temperatures given by eqs (25) and (26) 
without making any assertions about the value of r. The second argument involves considering the 
conservation of heat flow at the interface for the case in which the total thermal conductivity of the droplet 
due to both Fourier heat conduction and internal circulation exceeds that for the gas. As we mentioned in 
section 1, the internal circulation inside a droplet may be sufficient in many cases to maintain a spatially 
uniform te mperature within the droplet. When such conditions preva il, the Fourier heat conduction equation 
for the drople t, eq (2), and the boundary condition (7) , are replaced by a single heat transfer equation. For 
the case in which the droplet temperature is spatially uniform, Td(r, t) = Td(t) = Til (ra, t), the heat flux into 
the drople t, 

(27) 

must equal the heat flux from the gas, Kg{aTg(r, t)jarlr=rd. This last equality replaces eqs (2) and (7) and 
becomes in terms of the dimensionless quantities used in this paper, 

1 d8av a I -- - - 8 l' 3 dT - (3 a1/ gu(1/, ) ~1 (28) 
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wh ere (Jdv and (JgU are th e reduced temperatures for th e spatiall y uniform case di scussed above. The Laplace 
transform of eq (28) is 

(29) 

and thi s eq (29) replaces eqs (9) and (14) . Remembering th at <l>du(o-) = <l>gu(l, 0-), we use egs (10) and (12) 
with <l>g replaced by <l>gU and eq (29) to obtain the result that <l>gu(7/, 0-) == <l>gz(x), where <l>gz(x ) is given by 
eq (23). Hence, we th en have that for all values of reduced time T ~ 0 and when (a Td(r, (liar) = 0 for all r 
~ ro , the reduced droplet temperature is (Jdu(T) = (Jdz(T) and (Jgu(7] , T) = (Jg.(7] , T), where (Jdz(T) and (Jgz(7] , 
T) are given by eqs (25) and (26). 

For the case of an oil or water droplet in hOl air at atmospheri c pressure , the quantity (4/3f3a 2) is of the 
order of 104 and th e quantiti es p+ and p _ are approximated very well by p± = ± i(3f3)1/2. Using these 
values in eqs. (22) and (23) and assum ing that a(7] - 1) «:: 1 in eq (23), we obtain the rather simple 
approximati ons to eq (25) and to eq (26); name! y, 

Lim (JdAT) = (JdO(T) , 
<>-+0 

and 

Lim Ogz( 7] , T) = (Jgo( 7], T), 
<>-+0 

where 

(JdO(T) = 1- exp(-3,8r), (30) 

and 

(Jgo(7], T) = 1 - 7] -1 exp (- 3,8r). (31) 

From eq (30), we observe that (3f3) - 1 is the reduced time required for (1 - (JdO) to reach (e - 1) times its value 
at T = O. We shall see in section 6 that for oil and water droplets in air, the numerical predictions of eqs 
(30) and (31) agree very well with the numeri cal predi ctions of th e exact equations (25) and (26). 

5. Finite Gradient Model 

In the finite gradient model, the reduced temperature distributions of the droplet and the surrounding gas 
are obtained by directly evaluating the Bromwich integrals, 

1 LE-tiB 
(J(7] , T) = Lim - . exp (o-T)<I>(7], 0-) do-. 

/)-+'" 27T1 riB 
(32) 

<1>(7], 0-), or equivalently <I>(x) with X = o-I/~, is given by eq (17) for the droplet and eq (18) for the 
surrounding gas. 

To evaluate the Bromwich integral it is first necessary to investigate the nature of the integrand exp 
(<TT)<I>(7], 0" ). No distinction will be made in this discussion between the droplet and the gas as the 
integrands in both cases exhibit the same general properti es. Since exp (<TT)<I>(7], u) is not an even function 
of X it is not a single valued fun ction of 0" , and it possesses a branch-point at 0" = O. The quantity exp 
(o-(J)<I> (7] , 0- ) also has a simple first-order pole with residue unity at 0- = 0 and singularities at the nonzero 
roots of !J. given in eq (19). Simple considerations of Ll indicate that no pure real or pure imaginary roots 
exist; but they do not rule out the existence of complex roots . We present in appendix A a general proof that 
the function Ll does not have any complex roots [12]. 
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We now evaluate the Bromwich integral. We compute the contour of equation (32) by two quarter circular 

arcs in the upper and lower left hand plane, by two parallel lines running above and below the negative real 

(T-axis, and by a small circular arc traversing a path around the origin (T = O. The reduced temperature 
distributions for the droplet and the gas are then obtained by applying Caueky's Theorem and by letting 8 ~ 
00 in eq (8) and the radius of the small er circle about the origin tend to zero. The quantity E is taken to be an 

arbitrarily small positive number. The integrations along the quarter-circular arcs vanish as their radii go to 
infinity. The simple first order pole at (T = 0 contributes unity, and the two infinite integrals above and 
below the negative real (T-axis are evaluated with (T set equal to eii1T and e e-i1T, respectively. We then 

obtain the following expressions for the reduced temperature distributions: 

( ) _ 2af31OO sin ~T}(~ cos ~ - si n~) exp (-Te) d~ 
(}d T}, T - 1 + --

7TT} 0 a?- fJle sin2 ~ + (~ cos ~ - (l - f3) sin ~)2 
(33) 

and 

( ) _ ~ 100 N(T}, ~)(~ cos ~ - sin~) exp (-Tf)dt 
(}g T}, T - 1 + 2 

7TT} 0 o?- fJle sin2~ + (~ cos ~ - (l - f3) sin t) 
(34) 

where N(T}, ~) = t -I sin (a(T} - 1~)[~ cos ~ - (1 - f3) sin ~] + af3 sin t cos (a(T} - 1)t"). The average 

temperature of the droplet is given by 

(}d(avg, T) = f T}2(}d(T} , T)dT}1 f T}2 dT} 

1 _ 6af3 [ ~-2(~ cos ~ - sin ~)2 exp ( - T~2)dt , 
7T o?- fJle si n2 ~ + (~ cos ~ - (l - f3) sin t)2 

(35) 

and a similar expression for the surrounding gas may easily be obtained from eq (34). 

The above rather complicated integrals must be evaluated numerically. A short outline of the procedure 
which we used is given in appendix B. 

We discuss in the next section the representative values of the reduced surface te mperature of the droplet 
6,(T) == 6g (l , T) given by eq (33) with T} = 1 and the spatially averaged reduced temperature throughout the 

droplet 6av (T) ;;;;; (}d (avg, T) given by eq (35). 

6. Numerical examples and Conclusions 

In this section, we give some illustrative numerical examples for the predictions made by the zero-gradient 
and finite gradient models. The input data for these calculations are the thermal conductivity, the density, 
and the specific heat of the fuel droplet and the combustion gas. Values for the above properties of a 

conventional fuel droplet are readily available. Table 1 contains typical values of medium weight fuel oils. 

TABLE 1. Thermal properties 

The thermal conductivity, the dens ity, and the speci fi c heat a t constan t volume are denoted respective ly by K, d, and C. 

K d C 

(J/cm s K) (g/cm 3) (JIg K) 
oil 1.45 X 10- 3 0.95 2.24 

water 6 .75 X 103 1.00 4.20 

gas 2.70 X 10- 4 1.30 X 10- 3 1.00 

Values for the above properti es of an emulsified fu el require more consideration. We expect that an 
emulsified droplet containing oil and water will have thermal properties whi ch are bounded by those for the 
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pure fuel oil and pure water components. Hence, we list also in table 1 the values for the thermal properties 
of water. An emulsified droplet of 10 per cent water and 90 per cent fuel oil probably has an overall thermal 
behavior which is very close to that of fu el oil. Nonetheless, we include calculations for the pure water 
droplets to give bounds on the predictions and to test the sensitivity of the predictions upon the thermal 
properties of the droplet. Past experience indicates that whenever the thermal conductivity of the spherical 
droplet being heated exceeds the thermal conductivity of the medium surrounding the droplet, the thermal 
response of the droplet-gas system is dominated substantially by the thermal properties of the surrounding 
medium. We use the values of air at one atmosphere of pressure to represent the hot oxidizing combustion 
gases. Thes.e values are also given in table 1. Table 2 contains values for the two quantities a and {3. The 
radius of the droplet rd is 50 /Lm for all the numerical examples considered in this paper. 

TABLE 2. Reduced parameters 

The dimensionless quantity £1'2 is the thermal diffusivit y of the drople t aJ = (Kd/daCd) divided by the the rmal diffus ivity of the gas a: = (K./duG.) and the dime nsionless quantity f3 is the thermal conductivity of the gas K 0 divided by the thermal conductivity of the 
dropl et. The density and speci fi c heat of th e dropl et and th e gas are denoted respectively by dd a nd Cd and by d. and C •. 

oil dropl et 
water droplet 

a 
0.0572 
0.0880 

f3 
0.186 
0.040 

Figures 1 and 2 compare respectively the numeri cal predi ctions of the zero gradient and finite gradient 
models for oil droplets in air. Figures 3 and 4 compare respec tively the numerical predicitions of the zero 
gradient and finite gradi ent models for wa ter droplets in air. From these figures, we observe that the four 
reduced temperatures 8dz (r) , 8dO(r) , 8.(r) , and 8av (r) all agree to within 15 per cent of each other for values 
of r ::5 0.5 and to within 5 per cent of each other for values of r = 2.5. Because all four quantities approach 
unity as r approaches infinity, the agreement among the values improves for values of r > 2. 5. We also find 
that the water droplets require longer reduced times r to achi eve reduced temperatures comparable to those 
of the oil droplet. 

Because the computer time required to evaluate 8.(r) and 8av (r) exceeds the computer time to evaluate 
8dz (r) by at least a factor of ten and because the numeri cal agreement among 8dz(r), 8.(r), and 8av(r) is good 
for oil and water droplets in air whenever r > 0.5, we can envisage situations for which 8dz(r) evaluations 
will be adequate . From these numerical examples, we conclude then that whenever {3 < 1 and for r > 0 .5, 
the numerical predictions of the zero-gradient and finite-gradient models quantitatively agree to within 10 
per cent. This of course will not be hue if {3 > 1. Hence, for the oil and water droplets considered here, the 
predictions of the zero-gradient and finite-gradient models differ significantly only for values of r substantially 
less than 0.25. 

Another quantity which enters the design of combustion chambers is the time required to achieve the 
superheat limit of emulsified fuel drople ts; i. e., the time required before the emulsified fu el droplet 
undergoes a " microexplosion." For illustrative purposes, let us assume that the superheat limit TSL for an 
oil-water emulsification is 260°C, and the droplet temperature TdO is 20 °C, and the gas temperature Tuo is 
1520 0c. The superheat limit that corresponds to the reduced temperature 8SL = 0.16. From the numerical 
examples, we find that for pure oil droplets, 8dO(-rSo = 0 .313) = 0 .16, 8dArOdz = 0.317) = 0.16, 8,(r'1 = 

0.233) = 0.16, and 8aV<~v = 0.286) = 0 .16. The corresponding reduced time values at the superheat 
limit for pure water droplets are 

8db:fo = 1.45) = 0.16, 8dAr:fz (= 1.47) = 0.16, 

8.(~ = 1.29) = 0.16, and 8avCr:fv = 1.36) = 0.16. 

Using the values of td = 36.8 ms for oil and td = 15.6 ms for pure water, we list the superheat times 
predicted by the two models for pure oil droplets; namely , tSo = 11. 5 ms, tSz = 11. 7 ms, t~ = 8.7 ms and 
tgv = 10.5 ms. The corresponding values for pure water droplets are tao = 22.5 ms, tlf.. = 22.9 s, t:' = 
20.1 ms, and tav = 21.1 ms. Again, the quantitative differences between the two models for the cases 
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FIGURE 1. The reduced temperature () as a function of reduced tilne T 

predicted by the zero gradient model for oil droplets in air. 
The solid curve with solid dots corresponds to the reduced lelll l)crature (JIIZ given by eq (26). The 

dashed curve with open ci rcles corresponds to the reduced temperatu re 9". given by eq. (31). All of 
the above quantiti es are dimensionless and the droplet radius is 50/-t1n. 
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FIGURE 3. The reduced temperature () as afunction of reduced time T 

predicted by the zero gradient model for water droplets in air. 
The solid curve with solid dots corres ponds to the reduced temperature Od.z' eq (26). and the 

dashed curve with open circles corresponds to the rI!duced.temperature 0". , eq (3 1). All of the above 
~ quantities are dimensionless and the radius of the droplet is 50 11m. 
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FIGURE 2. The reduced temperature () as a function of reduced time T 

predicted by the finite gradient model for oil droplets in air. 
The solid curve with solid dot s is the average droplet temperature Bart given by eq (36) and the 

dashed curve with open circles is the surf<lce temperature of the droplet 9, given by eq (34) with 7j = 
I. All of the above quantities are dimensionless and the radius of the droplet is 50 Jlm. 
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FIGURE 4. The reduced temperature () as afunction of reduced time T 

predicted by the finite gradient model for water droplets in air. 
The solid curve with dots is the average droplet temperature Oar" eq (36). and the dashed curve 

with open circles is the surface temperature of the droplet 0, . eq (34), with 7j = 1. All of the above 
quantities are dimensionless and the radius of the droplet is 50 ~IJ\. 
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considered in this paper are not s ignifi cant. Here the subscripts denote the model and the superscript 0 
denotes pure oil and the superscript w denotes pure water. 

In summary then, whenever th e dropl e t thermal conductivity exceeds the thermal conductivity of the 
surrounding gas and the reduced time l' exceeds O. S, the quantitative predictions for the reduced 
te mperatures of th e zero-gradi ent and finite-gradi ent models agree to within 10 percent and the superheat 
times agree to within 2S percent for pure oi I droplets and to within I S percent for pure water droplets. 

The authors thank members of the Appli ed Math ematics Division and th e Computer Sciences Division at 
the National Bureau of Standards for thei r ass istance in preparing and using computer programs. They 
benefited from helpful di scussions with T. D. Coyle, K. C. Krerker, and M. B. McNeil. One of us, Richard 
Kayser, Jr. , gr'atefully ac knowl edges support from the Nati onal Science Foundation. 

7 . Appendix A 

In thi s appendix, we prove that the function Ll given in eq (29) has no complex roots. 
We first assume that such roots exist and then show that thi s assumption leads to a contradiction. Let us 

assume that PI and P2 are nonzero and that Ll(Pi) = 0 where i = lor 2. We define the auxil iary functions 

(AI) 

and 

(A2) 

These auxiliary functions satisfy the differential equations 

{ d2 2 } - + - _p2 U = 0 
d 2 I I 
X X 

(A3) 

{ J2 2 2 2} - + - - apr U2 = 0 
dx2 X 

1 < X (A4) 

and the condi tions that UI(O) = 0, U2(oo) = 0, ur(l) = u2(1), and u~(l) ~ J3u~(1). The last condition is a 
consequence of the definition of Pr ' Let VI(x) and V2(x) be the analogues of UI(x) and U2(x) with PI replaced 
by P2 and consider eqs (AS) to (A8) to be the corresponding versions of eqs (AI) to (A4). For brevity, we do 
not list eqs (AS) to (A8). Equation (A3) is now multiplied by v., and equation (A 7) is multiplied by Ul' The 
two are subtracted. The resulting equation is multiplied by xi and then integrated from zero to one to obtain 

Performing the same operations on the functions U2 and V2 but integrating instead from one to infinity yields 

(AlO) 

Multiplying eq (AIO) by /3, subtracting it from eq (A9), and using the conditions on u., v., U2, and V2, we 
obtain the following condition: 

(All) 
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We now assume that both P I and P2 are complex and that P2 = pt. In this case, ut = VI and ut = V2 so 
that both integrals in eq (All) are of positive definite quantities and therefore necessarily positive. The curly 
brackets then cannot vanish implying that pi - p~ = o. This criterion cannot be satisfied by PI and P2 of 
the assumed nature. This yields the contradiction mentioned earlier and is sufficient to rule out the existence 
of complex roots. 

8. Appendix B 

As stated in section 5, the integrals representing the temperature distributions of the droplet and 
surrounding gas, Od(Tj, 7) and Og(Tj, 7) given as eqs (33) and (34), must be evaluated numerically. The same 
remark also holds of course for the average temperature in the droplet, Od(avg, 7), given as eq (35). Let us 
denote the denominator of the integrands of each of these three expressions by 

(Bl) 

When D(~) becomes small, the integrands become large. 
The values of (X2f32 for the oil and water droplets are from table 2, respectively, 1.13 X 10- 4 and 1.24 X 

10- 5 • Such small values lead to very large integrands whenever ~ is near one of the minima of D(~). We may 
approximate the values of ~i for which D(~i) is at one of its minima by the roots of the equation 

(B2) 

when (X2f32 is small compared to one. As a consequence of such small (X2f32, the integrands are highly 
oscillatory. For this reason, Gaussian-type integration formulas are inappropriate. They would require an 
extremely high point formula in order to obtain accurate results . The procedure used consisted of two steps 
which we now outline schematically. The first step is to terminate the upper limit of integration so that 

r fix)dx == f fix) dx, (B3) 

Where R is choosen to make the result independent of R to the desired accuracy. Secondly, a function g(x) 
which behaves likef(x) in the neighborhood of its large oscillations is introduced as follows 

f fix)dx = f [t{x) - g(x)]dx + f g(x) dx. (B4) 

The function g(x) is chosen subject to two restnctIOns; namely, that f(x) - g(x) is a relatively smoothly 
varying function of x, and secondly that the last integral in eq. (B4) may be evaluated analytically. Finally, 

[ [t{x) - g(x)]dx is computed using a finely-spaced Simpson's rule. 

We obtain a fun ction g(x) by summing three expressions derived from the first three roots, ~J, ~2' and ~3 
of eq (B2). The expression which corresponds to the ith root is the numerator of the particular integrand in 
one of the egs (33), (34), and (35) evaluated at ~ = ~i with the denominator replaced by 

(B5) 

The initial conditions, Od(Tj, 0) = 0 and Og(Tj, 0) = 1, were checked using R = 20 For 7 :> 0 .25, the 
relative error introduced in using R = 10 instead of R = 00 was never larger than 10- 6 for any case. The 
results displayed graphically in section 6 were computed to at least four significant figures. This required 
varying the spacing in the Simpson's rule until the desired accuracy was achieved. The spacing was 
generally of the order of 10- 4 • 
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