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Two models for the preheat stage of conventional liquid fuel droplets and of emulsified fuel droplets in
combustion gases are analyzed theoretically. These models contain the effects of transient heat conduction to the
droplets. In the first model, the droplet and gas temperatures vary temporally but only the gas temperature varies
spatially; i.e., the droplet temperature is spatially uniform. Numerical examples, computed from this model, for
both the droplet and gas temperatures are given. In the second model, both the droplet and gas temperatures vary
spatially and temporally. Numerical examples computed from this second model for the surface and average
temperature of the droplet are given. These analyses show that the temperature gradients inside droplets of oil
and water are small compared to those in the combustion gases near the droplet; that temperature profiles given
by both models are very similar. In particular, the predicted times at which micro-explosions are expected to
occur agree within 10 percent of each other.
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1. Introduction

Before liquid fuels can burn effectively in combustion chambers, they must be reduced to minute
droplets. This atomization of liquid fuels may involve one or more of the following procedures: (1) mixing the
fuel with high pressure air or gas; (2) injecting the fuel through small orifices at high pressures; and (3) more
recently, superheating emulsified liquid fuels to their “micro-explosive™ limit. Effective atomization occurs
as follows. First, thin sheets of liquid fuel form. They then become unstable and form ligaments and large
drops. Finally, the segments of ligaments and large drops disintegrate further to small droplets [1].

The ignition of the resulting droplet of conventional fuel consists essentially of two stages [2]. During the
first preheat stage, heat flows from the hot surrounding gas to the droplet without significant evaporation. In
the second stage, ignition occurs in the gaseous mixture surrounding the droplet and consisting of hot air
(oxidizing atmosphere) and fuel vapors. The preheat stage is dominated by transient heat flow and is the
subject of this paper.

Several researchers have proposed that emulsified fuels may yield increased combustion efficiencies;
decreased pollutant emissions, such as soot, CO, and oxides of nitrogen; and lower maintenance costs (3, 4].
Emulsified fuels consist of two or more components. At least one component has a much higher vapor
characteristic than the primary fuel component. The component with the higher vapor pressure, for example
water, is dispersed throughout the primary fuel. Such emulsified fuels may be generated by ultrasonic
techniques.

The corresponding preheat stage for emulsified fuels consists of two phases. For illustrative purposes, we
consider in this paper a two component emulsified fuel. Injection of such an emulsified fuel into a combustor
creates compound drops in which the primary fuel surrounds a number of smaller droplets of the dispersed
component. Because the smaller droplets have a lower boiling point than that of the surrounding primary
fuel, vaporization of the former occurs at superheat temperatures above the normal boiling point. Superheated
boiling or spontaneous nucleation of the dispersed component is explosive and occurs at surprisingly
reproducible superheat temperatures for ultraclean emulsions [5, 6]. The resulting sudden change in the
volume occupied by the dispersed phase produces catastrophic shattering of the primary fuel drop into a
number of much smaller droplets (fragments). This then is the first phase of preheating. The second phase of
preheating for emulsified fuels occurs when additional heat transfers to these smaller droplet fragments

without significant evaporation and before ignition occurs.

! Figures in brackets indicate the literature references at the end of this paper.
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In this paper, we develop two models for predicting the transient heat flow to conventional fuel droplets
undergoing preheat and to emulsified droplets undergoing the first phase of preheat. We shall use these
models to compute the dependence of the temperature of the droplet and its surrounding, hot oxidizing gas
(e.g., air) upon distance from the droplet center and time from injection into the hot oxidizing gas.

In the first model, the droplet and gas temperatures vary temporally but only the gas temperature varies
spatially. That is, the droplet temperature is spatially uniform. We shall refer to this model as the zero-
gradient model. Some researchers propose that in many situations the heat transfer rate within the droplet is
much faster than is possible with conductive transfer alone and that internal circulation may be sufficient to
maintain a spatially uniform temperature within the droplet [7]. Hence, the zero-gradient model of this paper
is an appropriate one for such cases. In the second model, both the droplet and gas temperatures vary
spatially and temporally. We shall refer to this second model as the finite-gradient model.

We include these two models for the following reasons. First, the numerical procedures to evaluate the
temperature profiles predicted by the zero-gradient model require an order of magnitude less computer time
than the numerical procedures to evaluate the temperature profiles predicted by the finite-gradient model
require. We expect that the zero-gradient model would be a particularly useful one for any future theoretical
analysis of the ignition stage of the droplet. Second, the zero-gradient model readily gives the spatial
dependence of the gas temperature near the droplet. We anticipate that such spatial details will be required
if one were to consider dense sprays of individual burning particles. And third, we expect that the finite-
gradient model is the more appropriate one for very short times prior to the micro-explosions of emulsified
droplets and for those situations in which the thermal conductivity of the gas is comparable to that of the
droplet.

In the next section, we describe the physical assumptions for the preheat stage which are common to both
models. Section 3 contains the mathematical description of these assumptions. We derive in section 4
profiles of the droplet and gas which are predicted by the zero-gradient model. In section 5, we give the
expressions for the surface temperature of the droplet and for the spatially averaged temperature within the
droplet for the finite gradient model. We present in the last section numerical examples for oil-water
droplets. We find that the reduced temperatures given by the two models are within 15 percent of each other
for small reduced times and are within 5 percent of each other for large reduced times.

2. Preheat Stage

In models for droplet preheating, many researchers consider the droplet to be a sphere with temperature
independent thermal properties and neglect diffusion effects [2]. Others include thermal diffusion effects but
later in their theoretical analyses neglect some terms in the diffusion equations [8]. In addition, most
theoretical investigators neglect the influence of gravity, forced convection, and radiant heat transfer.
Experimental techniques such as freely falling combustion chambers can be used to eliminate gravitational
effects and forced convection. Proper selection of experimental parameters such as ambient pressure and
initial droplet size may minimize the other effects not included in the model for preheating. Several
researchers have shown that except for heavy fuel oils, radiant heat transfer from the hot gas or from
adjacent droplets is negligible [7, 9].

The models examined in this paper contain thermal diffusion effects. We assume that a spherical liquid
fuel droplet of radius r 4 is inserted at time ¢ = 0 into a hot atmosphere (e.g., air). The initial temperature of
the droplet at time ¢t = 0 is Tgo. The hot oxidizing gas is unbounded and at a constant temperature T
infinitely far from the droplet. During the preheat stage, we assume that the radius of the droplet does not
change. That is, no evaporation occurs. Evaporation will be considered in a subsequent paper.

A conventional fuel droplet is essentially homogeneous and has well defined thermal properties. However,
an emulsified fuel droplet composed for example of water and oil, is not microscopically homogeneous. In
order to make the models for emulsified droplets amenable to calculation, we must make an additional
assertion. For the purposes of transient heat flow analysis, we assert that representative values of the thermal
properties of an emulsified fuel droplet exist and that they characterize properly the overall thermal behavior
of the droplet. These representative values are essentially uniform throughout the droplet and are most likely
bounded by the thermal properties of the fluid components in the emulsified droplet.
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We denote the density, specific heat at constant volume, and thermal conductivity of the droplet by dg,
Cq. and Ky, respectively and of the hot gas by d,, C;, and K, respectively. We assume that these thermal
properties remain spatially and temporally constant during preheat. In addition, the ambient pressure of the
host gas, pg, does not change.

Using the above models we seek to compute the dependence of the temperature T(r, t) upon the radial
distance r and time ¢. In particular, we shall compute the time required for a conventional fuel droplet to
reach a given temperature and for the emulsified fuel droplet to reach its superheat limit Tgp; i.e., the
temperature near which the micro-explosion occurs. Because the adsorption of impurities at the interface
between liquids might alter surface and interfacial tension, most water droplets in oil vaporize explosively
somewhere between 240 and 270 °C [3, 5].

3. Theoretical Analysis

We find it convenient at this point to introduce several dimensionless quantities. We denote the reduced

temperature 6(n), 7) by the expression

0(n, 7) = [T(r, t) = Tao)/(Tgo — Tao)], (6))

The dimensionless distance is § = (r/rg) and the dimensionless time is 7 = (t/tg). In this paper, we shall
denote dimensionless quantities by Greek letters. The time t4 is proportional to the time required for a heat
pulse to diffuse across the droplet and is given by tg = rg*/ag* where ag®> = (Kq/dgCq) denotes the thermal
diffusivity of the droplet. Even though the reduced time 7 may be mathematically unbounded, it does have a
physically determined upper limit for the preheat stage. The physically meaningful values of 7 must be less
than that value of 7 = Ty for which 8(m, Thax) corresponds to the boiling point of the liquid in the droplet.

The Fourier heat conduction equations for the droplet and its surrounding gas describe the time and space
dependence of the temperature when local thermodynamic equilibrium exists. For the case in which the
isothermal surfaces are concentric spheres centered about the droplet center at § = 0, these equations are,

forT = 0 and n < 1 (inside the droplet)

R 2 90 a0
SRS L. e 2)
on? mnon o7

and for7 = 0 and > 1 (outside the droplet)

0, 206, _ 00,
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where 7 = 0 and @ = ag/ay. The quantity a,® = (K,/d,C,) is the thermal diffusivity of the gas and the
subscripts d and g refer respectively to the droplet and the gas.
These Fourier heat conduction equations require a statement of the boundary conditions before solutions

are uniquely defined. The reduced temperature 6 has the form

04m,7) =0 for <1 and 7=0

and
O0,m,7)=1 for >1 and 7=0
and it becomes for 7 > 0
_JO(m, 1) for m<1
o, 7)= {Og(n, 7) for m>1.
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The boundary conditions do not depend explicitly upon time. The temperature is finite everywhere
namely, 04 (0, 7) is finite and

Lim 6,(7m, 7) = 1. )
N0

Also, the condition that no heat flux exists at the center of the droplet becomes

3604(n,T
%) rmo = 0. (5)

The continuity of the temperature across the droplet-gas interface is
6a(1, 7) = 64(1, 7). (6)
The conservation of heat flow at the interface gives,

86,4(7, 7) 80,(n,7)

an n=1= B an n=1> @)

where B = K, /K, is the ratio of thermal conductivities for the gas and droplet.

Equations (2) through (7) represent the mathematical description of the above model for transient heat flow
during the preheat stage of an individual fuel droplet injected at time ¢ = O into hot oxidizing gases. We
solve the equations by taking their Laplace transforms with respect to time. The Laplace transform of the
reduced temperature 60 (7, 7) is denoted by

©

O, o) = J gl

0

where o is the dimensionless Laplace transform variable. The Bromwich integral

1 €+id
6(m, 7) = Lim o exp (o7) ®(n, o) do, ®)

50 2T J—is

expresses the temperature in terms of the Laplace transform. The quantity € is chosen sufficiently large so
that the integral,

J exp (—0’7)'0 m, ’r)|d’r
0

exists.

Introducing the dimensionless variable X = o' 7, we express the Laplace transforms of eqs (2) through
(7), respectively in the forms

# 29
—+=——=1; D =0 9
{3X2 X 9% } a(X) (9)
? 29 a?
St () = —— 10
od
J| =l (11)



im ®yx) = o! (12)

n—>o
Dy(x = p) = Pylx = p) (13)

ad, ad,

- =B \
where p = o/,
The solution to eq (9) and the condition (11) require that the Laplace transform for the droplet has the form

P4(x) = vax ! sinh (x). (15)
Similarly, with x, = ax, the solution to eq (10) and the condition (12) require that
Dy(Xg) = YoXs ' exp (Xo) + P72 (16)

The remaining continuity condition (13) and the conservation of heat flow eq (14) yield two simultaneous,
inhomogeneous equations for the coefficients y4 and y,. Solving these equations, we obtain the respective
Laplace transforms for the droplet and the gas;

@y(x) = AT'B(1 + ap) sinh (x) for m <1 (17)
and
®,(x) = —A7"{p cosh (p) — sinh (p)} exp{— ap (n — D} + p7%, (18)
forn > 1, and where
A = p*n [{B(1 + ap) — 1} sinh (p) + p cosh (p)]. (19)

Inserting eqs (17) and (18) respectively into the Bromwich integral (8) gives us the reduced temperatures
04(n, 7) for the droplet and 6,(n, 7) for the gas. In the following section 4, we give expressions predicted by
the zero gradient model for the reduced temperature 6, in the droplet and for the reduced temperature 6, in
the gas near the droplet. In section 5, we present the exact evaluation of the reduced temperature 64 inside
and on the surface of the droplet for the finite gradient model.

4. Zero-Gradient Model

Two different but equivalent ways exist for obtaining the expressions which correspond to the zero-
gradient model. We shall give both.

First, for sufficiently large reduced times 7, the major contributions to the Bromwich integral (8) arise
from the region corresponding to values of || = |p?| which are less than one. This suggests that we consider
expansions in powers of p. We divide eq (17) and (19) by sinh (p) and for small values of p approximate p
cosh (p) by 1 + (p%3) and sinh (p) by p. For even smaller values of x = mp because 7 = 1, we
approximate sinh (x) by x and find that,

Dy(x) = Pa.(x) = 38(1 + ap)[p*(p + p+)p + p )], (20)

where
p= = (3af/2)[1 £ {1 — (4/3 Ba?)}'"*]. (21)
We apply the partial fraction method to eq (24) and rewrite it in the form,
Pa:(x) = p7% = [(p + ps)p + p)I. (22)
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Observe that for sufficiently long reduced times 7, the droplet reduced temperature 84 becomes independent
of m; i.e., it is spatially uniform and depends only upon the reduced time 7.
Procedures similar to that by which we obtain eq (20) give us that

Dy(x) = Py.(x) = p2 — [nlp + p+)(p + p)I ! exp{—ap(n — D}. (23)

Using the relation that
[(e+pdp+ pI)I'=(-—p)  {lo+p) " — (o + p)} (24)

and referring to page 1023 and page 1026 of Abramowitz and Stegun [10], for § < 1, we evaluate the
Bromwich integrals for eqs (22) and (23). The results are, form <1,

0a:(r) = 1 + (ps — p-) " {~py exp (ps?r) erfe (py \/7)
+ p_ exp (p-*1) exfe (p- V/7)} (25)
and form > 1,
05:(n, 7) = 1 + {n(ps — p )} '[—p+ exp{ps®7 + api(n — 1)}
erfc { pr V7 + (a(n — 1)/2V7)} + p_ exp{p_2 + ap (n — 1)}
erfe {p- V7 + (a(n — 1)/2V/7)], (26)

where the subscripts dz and gz denote the droplet and gas reduced temperatures for the zero-gradient model
and where the complementary error function of complex argument z is denoted by erfc (z). Equations (25)
and (26) are valid only when py # p_.

For fuel droplets in combustion gases, the values of @ and B are such that p; equals the complex
conjugate of p_; i.e., py =p_*. We then analytically continue the functions appearing in eqs (25) and (26)
to their values for complex arguments in order to compute the reduced temperatures. This is a tedious
process and we refer the reader to [11] for the details.

In order to compute the reduced times 7 for which eqs (25) and (26) correspond to valid inverse transforms
of eqs (17) and (18), we consider the previous inequality 0/? < 1. We divide both sides of this inequality by
o and then take the inverse Laplace transform. This yields the inequality (m7)™"?> < 1 or 7 > @ L
Remembering that 7 = (¢/tq), we have that for times t > (rq%/mag?) the temperature gradients in the droplet
become negligible. The time (r4%/maq?®) corresponds to the time which is required for a heat pulse to diffuse
a distance rg in the droplet.

There is a second way in which to obtain the same reduced temperatures given by eqs (25) and (26)
without making any assertions about the value of 7. The second argument involves considering the
conservation of heat flow at the interface for the case in which the total thermal conductivity of the droplet
due to both Fourier heat conduction and internal circulation exceeds that for the gas. As we mentioned in
section 1, the internal circulation inside a droplet may be sufficient in many cases to maintain a spatially
uniform temperature within the droplet. When such conditions prevail, the Fourier heat conduction equation
for the droplet, eq (2), and the boundary condition (7), are replaced by a single heat transfer equation. For
the case in which the droplet temperature is spatially uniform, T4(r, t) = T4(t) = T4(rg, t), the heat flux into
the droplet,

{(@7rrg®/3)daCa(dTq/ dt) [47rra?} (27)

must equal the heat flux from the gas, Ky(dTy(r, t)/0r)y=r,. This last equality replaces eqs (2) and (7) and
becomes in terms of the dimensionless quantities used in this paper,
| dOan

ad
Rl Pl MU I (28)
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where 04, and 6, are the reduced temperatures for the spatially uniform case discussed above. The Laplace

transform of eq (28) is

7 @) = B bu(n, 0) (29)
n

9 =1

and this eq (29) replaces eqs (9) and (14). Remembering that ®g,(0r) = Py (1, o), we use eqs (10) and (12)
with @, replaced by ®,, and eq (29) to obtain the result that ®g,(n, ) = Py, (x), where Py, (x) is given by
eq (23). Hence, we then have that for all values of reduced time 7 = 0 and when (87T4(r, t)/dr) = 0 for all r
=< ry, the reduced droplet temperature is 04, (T) = 04,(7) and 04, (M, T) = 6,,(n, T), where 64,(7) and 0,,(n,
T) are given by eqs (25) and (26).

For the case of an oil or water droplet in hot air at atmospheric pressure, the quantity (4/3Ba?) is of the
order of 10* and the quantities p; and p_ are approximated very well by p. = = i(38)"2 Using these
values in eqs. (22) and (23) and assuming that am — 1) < 1 in eq (23), we obtain the rather simple
approximations to eq (25) and to eq (26); namely,

Lim 04.(7) = O40(7),
a0

and
I;l:,l 0g:(m. T) = Oy0(n, 7),
where
Bao(T) = 1 — exp (—=3pr), (30)
and
0go(m, ) =1 — ™! exp (—3pr1). (31)

From eq (30), we observe that (38)7! is the reduced time required for (1 — 640) to reach (e ") times its value
at 7 = 0. We shall see in section 6 that for oil and water droplets in air, the numerical predictions of eqs
(30) and (31) agree very well with the numerical predictions of the exact equations (25) and (26).

5. Finite Gradient Model

In the finite gradient model, the reduced temperature distributions of the droplet and the surrounding gas
are obtained by directly evaluating the Bromwich integrals,

€t+id

1
0(n, ) = Lim — exp (o7)®(n, o) do. (32)
5w 27T1

€id

®m, o), or equivalently ®(x) with x = a'?n, is given by eq (17) for the droplet and eq (18) for the
surrounding gas.

To evaluate the Bromwich integral it is first necessary to investigate the nature of the integrand exp
(or)®(m, o). No distinction will be made in this discussion between the droplet and the gas as the
integrands in both cases exhibit the same general properties. Since exp (oT)®(m, @) is not an even function
of x it is not a single valued function of o, and it possesses a branch-point at ¢ = 0. The quantity exp
(06)Y®(m, o) also has a simple first-order pole with residue unity at o = 0 and singularities at the nonzero
roots of A given in eq (19). Simple considerations of A indicate that no pure real or pure imaginary roots
exist; but they do not rule out the existence of complex roots. We present in appendix A a general proof that
the function A does not have any complex roots [12].
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We now evaluate the Bromwich integral. We compute the contour of equation (32) by two quarter circular
arcs in the upper and lower left hand plane, by two parallel lines running above and below the negative real
o-axis, and by a small circular arc traversing a path around the origin & = 0. The reduced temperature
distributions for the droplet and the gas are then obtained by applying Caueky’s Theorem and by letting § —
@ in eq (8) and the radius of the smaller circle about the origin tend to zero. The quantity € is taken to be an
arbitrarily small positive number. The integrations along the quarter-circular arcs vanish as their radii go to
infinity. The simple first order pole at & = O contributes unity, and the two infinite integrals above and
below the negative real g-axis are evaluated with @ set equal to %™ and &2% 7™, respectively. We then
obtain the following expressions for the reduced temperature distributions:

_ ., 2aB [T siném(é cos & — sin §) exp (—7€%) d
Bd('n, ’T) =1+ ™ J(; a2ﬂ2§2 g £+ (6 el — (1 — B) “in E)z (33)

and
Oy, ) =1+ i * N(m, €)(& cos & — sin §) exp (—TE2)dE -

™ Jo €% sin?é + (€ cos & — (1 = P) sin §)*

where N(m, €) = €' sin (am — 1)€)[€ cos € — (1 — B) sin €] + af sin € cos (a(m — 1)). The average

temperature of the droplet is given by

Ba(avg, 7) fo n*6a(n, T)dn/ fo m* dn
Y T L
T Jy 2FE sin? € + (€ cos & — (1 — B) sin )2

(35)

and a similar expression for the surrounding gas may easily be obtained from eq (34).

The above rather complicated integrals must be evaluated numerically. A short outline of the procedure
which we used is given in appendix B.

We discuss in the next section the representative values of the reduced surface temperature of the droplet
0,(T) = 6,(1, 7) given by eq (33) with m = 1 and the spatially averaged reduced temperature throughout the
droplet 0,y(T) = 04 (avg, T) given by eq (35).

6. Numerical examples and Conclusions

In this section, we give some illustrative numerical examples for the predictions made by the zero-gradient
and finite gradient models. The input data for these calculations are the thermal conductivity, the density,
and the specific heat of the fuel droplet and the combustion gas. Values for the above properties of a
conventional fuel droplet are readily available. Table 1 contains typical values of medium weight fuel oils.

TABLE 1. Thermal properties

The thermal conductivity, the density, and the specific heat at constant volume are denoted respectively by K, d, and C.

K d C
(J/em s K) (g/cm?) (J/g K)
oil 1.45 X 1073 0.95 2.24
water 6.75 X 103 1.00 4.20
gas 2.70 X 1074 1.30 X 1072 1.00

Values for the above properties of an emulsified fuel require more consideration. We expect that an
emulsified droplet containing oil and water will have thermal properties which are bounded by those for the
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pure fuel oil and pure water components. Hence, we list also in table 1 the values for the thermal properties
of water. An emulsified droplet of 10 per cent water and 90 per cent fuel oil probably has an overall thermal
behavior which is very close to that of fuel oil. Nonetheless, we include calculations for the pure water
droplets to give bounds on the predictions and to test the sensitivity of the predictions upon the thermal
properties of the droplet. Past experience indicates that whenever the thermal conductivity of the spherical
droplet being heated exceeds the thermal conductivity of the medium surrounding the droplet, the thermal
response of the droplet-gas system is dominated substantially by the thermal properties of the surrounding
medium. We use the values of air at one atmosphere of pressure to represent the hot oxidizing combustion
gases. These values are also given in table 1. Table 2 contains values for the two quantities a and B. The
radius of the droplet rg is 50 wm for all the numerical examples considered in this paper.

TABLE 2.  Reduced parameters

The dimensionless quantity @? is the thermal diffusivity of the droplet i = (Ka/daCa) divided by the thermal diffusivity of the gas
a? = (Ky/dyC,) and the dimensionless quantity Bis the thermal conductivity of the gas K ; divided by the thermal conductivity of the
droplet. The density and specific heat of the droplet and the gas are denoted respectively by dg and C4 and by d, and C,.

a B
oil droplet 0.0572 0.186
water droplet 0.0880 0.040

Figures 1 and 2 compare respectively the numerical predictions of the zero gradient and finite gradient
models for oil droplets in air. Figures 3 and 4 compare respectively the numerical predicitions of the zero
gradient and finite gradient models for water droplets in air. From these figures, we observe that the four
reduced temperatures 04,(7), 040(7), 05(T), and 0,,(7) all agree to within 15 per cent of each other for values
of 7 < 0.5 and to within 5 per cent of each other for values of 7 = 2.5. Because all four quantities approach
unity as 7 approaches infinity, the agreement among the values improves for values of 7 > 2.5. We also find
that the water droplets require longer reduced times 7 to achieve reduced temperatures comparable to those
of the oil droplet.

Because the computer time required to evaluate 04(7) and 6,(T) exceeds the computer time to evaluate
04.(7) by at least a factor of ten and because the numerical agreement among 04,(7), 04(T), and 8,y (7) is good
for oil and water droplets in air whenever 7 > 0.5, we can envisage situations for which 04,(r) evaluations
will be adequate. From these numerical examples, we conclude then that whenever 8 < 1 and for 7 > 0.5,
the numerical predictions of the zero-gradient and finite-gradient models quantitatively agree to within 10
per cent. This of course will not be true if 8 > 1. Hence, for the oil and water droplets considered here, the
predictions of the zero-gradient and finite-gradient models differ significantly only for values of 7 substantially
less than 0.25.

Another quantity which enters the design of combustion chambers is the time required to achieve the
superheat limit of emulsified fuel droplets; i.e., the time required before the emulsified fuel droplet
undergoes a “microexplosion.” For illustrative purposes, let us assume that the superheat limit Tg;, for an
oil-water emulsification is 260 °C, and the droplet temperature g, is 20 °C, and the gas temperature Ty is
1520 °C. The superheat limit that corresponds to the reduced temperature 6g;, = 0.16. From the numerical
examples, we find that for pure oil droplets, 0go(739 = 0.313) = 0.16, 04,(73, = 0.317) = 0.16, O,(12 =
0.233) = 0.16, and 0,,(73y = 0.286) = 0.16. The corresponding reduced time values at the superheat
limit for pure water droplets are

Oa0(7¥h = 1.45) = 0.16, 04.(7%, (= 1.47) = 0.16,

0(* = 1.29) = 0.16, and 0,4(7%, = 1.36) = 0.16.

Using the values of {3 = 36.8 ms for oil and t4 = 15.6 ms for pure water, we list the superheat times

predicted by the two models for pure oil droplets; namely, 3y = 11.5 ms, t3, = 11.7 ms, £y = 8.7 ms and

t3, = 10.5 ms. The corresponding values for pure water droplets are t3, = 22.5 ms, t§, = 22.9 s, ¢ =
20.1 ms, and tay = 21.1 ms. Again, the quantitative differences between the two models for the cases
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FIGURE 1. The reduced temperature 6 as a function of reduced time T
predicted by the zero gradient model for oil droplets in air.
The solid curve with solid dots corresponds to the reduced temperature 6, given by eq (26). The
dashed curve with open circles corresponds to the reduced temperature 84, given by eq. (31). All of
the above quantities are dimensionless and the droplet radius is 50 wm.
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FIGURE 3. The reduced temperature 6 as a function of reduced time T

predicted bg' the zero gradient model for water droplets in air.
The solid curve with solid dots corresponds to the reduced temperature 6., eq (26), and the
dashed curve with open circles corresponds to the réduced temperature 84, eq (31). All of the above
quantities are dimensionless and the radius of the droplet is 50 um.
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FIGURE 2. The reduced temperature 6 as a function of reduced time T

redicted by the ﬁnite gradient model for oil droplets in air.
The solid curve with solid dots is the average droplet témperature 4, given by eq (36) and the
dashed curve with open circles is the surface temperature of the droplet 8, given by eq (34) withn =
1. All of the above quantities are dimensionless and the radius of the droplet is 50 um.
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FIGURE 4.  The reduced temperature 0 as a function of reduced time T

predicted bg' the finite gradient model for water droplets in air.
The solid curve with dots is the average droplet temperature 6,4y, eq (36), and the dashed curve
with open circles is the surface temperature of the droplet 6,, eq (34), withm = 1. All of the above
quantities are dimensionless and the radius of the droplet is 50 wm.
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considered in this paper are not significant. Here the subscripts denote the model and the superscript 0
denotes pure oil and the superscript w denotes pure water.

In summary then, whenever the droplet thermal conductivity exceeds the thermal conductivity of the
surrounding gas and the reduced time 7 exceeds 0.5, the quantitative predictions for the reduced
temperatures of the zero-gradient and finite-gradient models agree to within 10 percent and the superheat
times agree to within 25 percent for pure oil droplets and to within 15 percent for pure water droplets.
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7. Appendix A

In this appendix, we prove that the function A given in eq (29) has no complex roots.
We first assume that such roots exist and then show that this assumption leads to a contradiction. Let us
assume that p; and p, are nonzero and that A(p;) = 0 where i = 1 or 2. We define the auxiliary functions

uy(x) = X~ sinh pyx (A1)

and
ug(x) = x~ ! sihn (py) exp {—aps(n — 1} (A2)

These auxiliary functions satisfy the differential equations

&£o2 .
d_x2+;_pl =0 0=x<I (A3)
TS

{—’;(7+;—a2p?}u2=0 1< X (A4)
a

and the conditions that u(0) = 0, uy(®) = 0, uy(1) = uy(1), and uy(1) = Buy(1). The last condition is a
consequence of the definition of py. Let v4(x) and vs(x) be the analogues of uy(x) and us(x) with p, replaced
by p2 and consider eqs (A5) to (A8) to be the corresponding versions of eqs (A1) to (A4). For brevity, we do
not list eqs (A5) to (A8). Equation (A3) is now multiplied by v,, and equation (A7) is multiplied by u,. The
two are subtracted. The resulting equation is multiplied by X and then integrated from zero to one to obtain

1

1 1
(p? — pd) f XPuwy dx + f XA(uy — ugy) dx + f 2x(uyvy — upy) dx = 0. (A9)
0 0 0

Performing the same operations on the functions uy and v, but integrating instead from one to infinity yields

(p} — pd) f X2ugvy dx + f X*(ugvy — ugvy) dx + f 2X(ugvy — ugvy) dx = 0. (A10)
il 1 1

Multiplying eq (A10) by B, subtracting it from eq (A9), and using the conditions on uy, vy, us, and vy, we
obtain the following condition:

1
(- pD{ L XPuwy dx + Bo? r X2uw, dx} = 0. (A11)
il
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We now assume that both p; and p, are complex and that p, = p¥. In this case, uf = v; and uf = v, so
that both integrals in eq (A11) are of positive definite quantities and therefore necessarily positive. The curly
brackets then cannot vanish implying that p? — p = 0. This criterion cannot be satisfied by p; and p, of
the assumed nature. This yields the contradiction mentioned earlier and is sufficient to rule out the existence
of complex roots.

8. Appendix B

As stated in section 5, the integrals representing the temperature distributions of the droplet and
surrounding gas, 04, 7) and 6,(n, 7) given as eqs (33) and (34), must be evaluated numerically. The same
remark also holds of course for the average temperature in the droplet, O4(avg, 7), given as eq (35). Let us
denote the denominator of the integrands of each of these three expressions by

D(§) = 2RE sin* €+ (€ cos & — (1 — P) sin €)% (B1)

When D(€) becomes small, the integrands become large.

The values of a?8? for the oil and water droplets are from table 2, respectively, 1.13 X 107* and 1.24 X
1075, Such small values lead to very large integrands whenever € is near one of the minima of D(€). We may
approximate the values of & for which D(§;) is at one of its minima by the roots of the equation

EicosE—(1— P)sing;=0 (B2)

when &?f? is small compared to one. As a consequence of such small &?B?, the integrands are highly
oscillatory. For this reason, Gaussian-type integration formulas are inappropriate. They would require an
extremely high point formula in order to obtain accurate results. The procedure used consisted of two steps
which we now outline schematically. The first step is to terminate the upper limit of integration so that

fo i Sx)dx = L ’ Sflx) dx, (B3)

Where R is choosen to make the result independent of R to the desired accuracy. Secondly, a function g(x)
which behaves like f(x) in the neighborhood of its large oscillations is introduced as follows

fo ’ fx)dx = fo ! [fx) — s@)ldx + fo ! () dx. (B4)

The function g(x) is chosen subject to two restrictions; namely, that f(x) — g(x) is a relatively smoothly
varying function of x, and secondly that the last integral in eq. (B4) may be evaluated analytically. Finally,

[Ax) — g(x)]dx is computed using a finely-spaced Simpson’s rule.

We obtain a function g(x) by summing three expressions derived from the first three roots, &, €2, and &3
of eq (B2). The expression which corresponds to the ith root is the numerator of the particular integrand in
one of the eqs (33), (34), and (35) evaluated at ¢ = &; with the denominator replaced by

D(§) > o?B€% sin&; + (Bcos & — & sin £)* (€ — &)™ (B5)

The initial conditions, 64(m, 0) = 0 and 6,(n, 0) = 1, were checked using R = 20 For 7 = 0.25, the
relative error introduced in using R = 10 instead of R = % was never larger than 1076 for any case. The
results displayed graphically in section 6 were computed to at least four significant figures. This required
varying the spacing in the Simpson’s rule until the desired accuracy was achieved. The spacing was
generally of the order of 107%.
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