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A review is presented of the basic classical mechanism whereby an electron can absorb energy from an
electromagnetic field while undergoing a collision with an atom or ion. The process is also described for a
quantum mechanical collision and the absorption or emission of photons. The appropriate formulations are
described for weak and strong applied fields. A brief review is given for the resulting plasma absorption

coefficients.
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1. Introduction

A free electron colliding with an ion is accelerated in its
potential field and on the basis of classical electrodynamics
will emit electromagnetic radiation [1, 2].' Such bremsstrah-
lung radiation has long been observed in collisions between
high energy charged particles and nuclei. If an external
radiation field is applied to an electron-ion system one has
stimulated free-free transitions of the electron, corresponding
to both the emission (bremsstrahlung) and absorption (inverse
bremsstrahlung) of photons.

In a fully ionized plasma irradiated by a laser with
frequency not near the plasma frequency, we can expect the
above stimulated processes in electron-ion collisions to be
the main mechanisms for the electron heating of the plasma.
Electron-electron collisions do not lead to absorption of this
type since that system does not have a dipole moment. Thus
contributions of this type as well as of stimulated Compton
scattering [3] will be of higher order in a.

In this review we will confine ourselves to the nonrelativ-
istic treatment of the electron motion, both classically and
quantum mechanically. We treat the electromagnetic field
entirely as a classical, monochromatic, coherent field, as we
are not concerned with spontaneous emission or higher order
quantum electrodynamic effects.

2. Classical Picture

In a harmonic, linearly polarized electric field, a free
electron having drift or thermal velocity, v, has the instanta-
neous resultant velocity

w(t) =v +ult), (1)

* Based on a talk presented at the 2nd Conference on the Interaction of Electrons with Strong
Electromagnetic Fields, Budapest, Hungary, October 6-10, 1975.
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! Figures in brackets indicate the literature references at the end of this paper.

where u(t) = u, sinwt (with uy = ¢Eo/mw) is the driven or
quiver velocity which is imparted to the classical motion of
an electron by the field [4]. If the electron did not make any
collisions, its instantaneous kinetic energy would simply
oscillate about its thermal value /2 mv? and an assembly of
such free electrons would have a temperature which remained
constant in time.

A heating of such a plasma could occur only if there were
a mechanism to convert some of the driven energy of the
electrons into thermal energy, and this will occur if the
oscillating electrons can make collisions with ions. In such
a collision, characterized as occurring at time t¢., one can
evaluate the thermal energy gain (or loss) by solving the
classical equations of motion of the electron under the
influence of both the applied radiation field and the ionic
potential field, and determining

W(t(- + T) = Vg + ll(l(. + T)~ (2)
subject to the initial condition
wite = T) =vitul —T), (3)

with 7" — ® being a valid idealization for large mean free
time between collisions. The ion takes up a recoil momentum
which corresponds to a very small part of the energy transfer
(since m/M << 1) and the net thermal energy change of the
electron, A€, = Y2 m(v} — v?), is considered to be taken
from (or delivered to) the electromagnetic field.

The detailed solution of the classical equations of motion
during a collision is quite complicated in general, so one
makes the simplifying assumption that if the collision dura-
tion is much smaller than the applied period (7, << 1/w)
the scattering by the ion can be idealized as an instantaneous
elastic deflection from w(tz) = w, to w(td) = w', (see fig.
1). In such an impact model the thermal energy change is

1
Ae, = —m(v%,_. —vd) =

2

m“c'(wc = ch), (4)
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FIGURE 1.

from which we see it depends upon the wave phase at the
collision through u, = w, sinwt,, the angle between w, and
field direction, and the angle of scattering 6,. One can thus
define a classical differential cross section for a free-free
transition

do*4e _ do'e[
dQ) dQ,

dQ,
dQ)

: (5)

where d€)./d) is a complicated kinematical factor relating
the instantaneous impact vectors to laboratory fixed direc-
tions and the average is taken over all possible collisions
compatible with the transition v; = vg. For applied fields
which are so intense that ug = #; s, d{)¢/dQ) will become an
extremely nonlinear function of £ and the impact energy /2
mw? will vary strongly over a cycle of the field. If we go to
the extreme weak-field case, where uy, << v;, and low
energy transfer, Ae, << €;, then impact energy = €; in (5),
and it reduces to

dott _do,,

a0 40 (©)

If we were now to assert that energy can be taken from the
field in units of fiw only, we could define a semi-classical n-
photon free-free absorption cross section in terms of the
various moments of (A€.)? by the correspondence:

do,t(n)
dQ)

dc’el
dQ)

(Aec))" @)

= (nhw)®"

If we carry this out for the single photon case, and average
over all initial directions, we obtain the result of Zeldovich

and Raizer [5]

do*® 4 (¢ ) (:, ) doy,
=\ )\ - 8
dQ) 3 (hw ) U= ) daQ’ ®)

Trajectory of an electron in a strong oscillatory field in the
region of an impact collison with an ion.

where €, = /2 mud. The above correspondence will give n-
photon cross sections which are proportional to the nth
power of the field intensity, which we know must be the
case from the full quantum treatment, but in general so
many approximations have gone into the above result that it
has very limited use in quantitative applications. Further-
more, for the Coulomb case the angular integral of (8) will
diverge unless there is a low-angle cut-off (or maximum
impact parameter).

It is interesting to use this classical picture to estimate
the rate of conversion of driven energy into thermal energy
[6]. On the basis of the impact model the cycle-averaged
time rate of energy transfer into transverse motion per
electron is

da’e{

d
°(hey) = mNdu, f a0~

= mN{ua, w.ogw,)). (9)

u.(we —w.” ))

The momentum transfer cross section o4 for a Coulomb
potential has the velocity dependence oq ~ w¢*, and if one
averages over all directions of w, one has

e = n (| == (10)
dt Cet (u%-’-wf)w2 ’

where w,. has been resolved into components along (1) and
transverse to the field (wL) Thus the average over phase of
the field cycle is

d A /2 /20
Se) =2 () [
dt Uop \ T 0

and the rate of conversion of the ordered, driven motion into
the transverse, thermal motion goes as uo/w, 2 for uy <<

sin®wt,.
© (sin®wte + w, ud)’

(11)
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w,, and as 1/ug for uy >> w,. In figure 2 we have curves
indicating this behavior. Thus in the limit of strong fields
there is a reduction with increasing field in the effective
free-free absorption. This is due to the decrease in o4 with
increasing impact velocity. We will see similar behavior in
the quantum description.
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FIGURE 2. Cycle-averaged rate of classical energy transfer from driven

motion into thermal motion.

A more complete classical treatment of the nonlinear
effects of strong fields on plasma properties was carried out
by Silin [7]. The nonlinear dependence of the current density
on the electric field strength introduces higher harmonics in
the effective field, which can be interpreted as multiphoton
phenomena.

3. Quantum Description

From the preceding it is seen that the available classical
description of free-free absorption is useful for an intuitive
physical picture of the process, but is extremely limited as
quantitative theory. For example, while the impact model is
adequate for microwave absorption it would break down for
slow electrons (<1 €V) in visible wavelengths. Also semi-
classical results such as (7) or (8) will lead to divergent total
free-free cross sections in the Coulomb field unless cut-offs
are applied. For a complete description it is necessary to
proceed to the quantum formulation.

The quantum problem is formulated by first considering
the electron-ion scattering problem in the absence of a
radiation field, where the initial stationary state of the
electron is
—ieitlh_

P (r, 1) (12)

=y (r)e
We assume that the laser field is switched on from¢ = 0 to
T, and wish to find the cross section for finding the electron
in the final stationary state fort > T,

Wi, 1) = wyfr)eenn, (13
A solution of the full Schrodinger equation in 0 =¢ =T

subject to initial condition (12), leads to the transition rate

1 ;
W= Jim K, Wi, T (14)

The use of quantum theory to describe the electronic motion
results in the appearance of energy conserving &€ — € +
nfiw) functions in Wy and the required summation over
final states (€p, gives the transition rates for absorption or
emission of n quanta,

__ 0 2

(15)
= 3 [Sulki— k) + Sa(ki > k)

where U is a quantization volume. The n-photon transition
rates are then related to a differential cross section for n-
photon absorption (emission) by dividing by the incident
electron flux,

d *+(n) O
o _ (m (16)

40 E)Stn(ki — ky).

In practice it is not possible to exactly solve the full
Schrodinger equation while the field is applied, so we must
use a perturbation procedure. There are two ways of splitting
the full Hamiltonian,

p2

H=o—+ V(r)—”%p'A(t) (17)

(in the dipole approximation the A* term is removed by a
unitary transformation) depending on whether the applied
field is weak or strong, i.e., the relative average magnitudes
of the V and p-A terms.
3.1. Weak Fields

Before the advent of high power lasers all laboratory
radiation sources provided very weak fields compared with
atomic potential fields. For example, one megawatt/cm?® of
laser radiation attains an E; of only about 107 of an atomic
unit. Thus all of the conventional atomic radiation theory [7]

is formulated by using H, = 2’; + V as the unperturbed
m

part of (17) and H' = — 2 P A as the perturbation. As is
me

well known, successive iterations of the time-dependent
Schrodinger equation lead to improved approximations for
W;(r, T), and consequently for do=™ /d(). In the limit of
an infinite number of iterations the cross section takes the
form (in atomic units)
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do.t(n)

Q8

ao kf

%, (18

® EO n+2m
3, (o) 5 0m
m=0 \&® g

where Dyp; is the jth “diagram” and m is the number of
“virtual photon pairs.” We will not go into the details of the
construction and enumeration of these diagrams, but rather
simply give the following typical example [8, 9]:

(E{) . p)ivl(Eo ) P)ulvz(ﬁo p) vzva(Eo : p)v3v4(E0 3 p)v4 f

Do = z 600 19
e %T &-—at0)! -+20) | (E-+o)] (6-— €&+ 200 (19)

where the sums include all bound and continuum states of @y(r, t) = exp {i[k-r
the electron-ion system and the arrows below indicate ab- (22)

sorptions or emissions of photons, thereby providing a
pictorial representation for the “diagram.”

To date there have been extensive calculations [10, 11,
12, 13] on the lowest order single-photon free-free absorption
of an electron in a Coulomb field. The angle-integrated and
polarization-averaged result can be written as

o

o= = axgpp(ki, k), (20)

where

7?2 ce?’Z%E}

-\/_g— mh (1)4ki

is a cross section originally derived semi-classically by
Kramers [14] and gpp is the Coulomb quantum correction
known as the Gaunt factor.

There appears to have been no theoretical work done on
weak-field multiphoton free-free processes. The lack of
motivation is understandable since such processes are of
order (E/2w)®™ and thus a negligible contribution (compared
with n = 1) to any continuous absorption by the plasma. On
the other hand many multiphoton bound-bound and bound-
free calculations have been done, as in those cases the
multiphoton process could be the dominant one.

From expression (18) we see that the free-free cross
section arising from weak-field perturbation theory is essen-
tially a power series in Ey/2w. Since we have no a priori

knowledge of the variation of Y Dpp; with m, we can't

j
make any statements about the absolute convergence of this
expansion, but a reasonable guess is that it is an asymptotic
series for any value of E,. It clearly is not a useful expansion
for the very strong field situation where E¢/20 = 1 a.u.

3.2. Strong Fields

When the magnitudes of the applied fields are comparable
with or greater than the mean atomic field it becomes
necessary to alter the choices of the unperturbed and
perturbation parts of H in the approximate evaluation of

2
Wi(r, T) [14, 15, 16]. One now chooses H, = LA

2m  me
P A, and the ionic potential V is regarded as the perturbation
in the interval 0 =< ¢ = T. The unperturbed wave functions
are

ﬁ t
—2mfdr(k2—ﬁ—kA N1}

which are not stationary states, but rather represent the
quivering motion of a classical electron in the oscillating
field. As a result of a single iteration of the time-dependent
Schrodinger equation, using the Green’s function appropriate
to basis functions (22) and going through the steps indicated
n (14)-(16), one obtains the free-free cross sections

d 0.t(n)

kfff

- 10,2

20 (27)%3 k,- dpdq
V(p q)

1(p) u?((q).]n(qu) (23)

where the Fourier transform is u(p) = (2m)*[dr e=i®'r u(r),

xpg = B(q — p), and B= :l& is the maximum classical

o

displacement of a free electron in the applied field. The
Bessel functions arise from an expansion of eiB(a p sino,
which enters through the functions (22). Carrying out higher
iterations would give an expression containing higher powers
of V, similar to a Born expansion for the elastic scattering
cross section. (Recall that the first Born approximation to
dore/d€) is proportional to [V[2.) In fact Kroll and Watson
[17, 18, 19] have carried out this iteration, and have
obtained the following approximate result

do:(n)
dQ)

dAo-el(é ) Q)

) (24)

k
=, i)

where € is the mean incident energy fi%/2m (k; + Eomno/
Eo* Q)2 and Q = k; — k; is the actual momentum change.
Since |k{ # Ik,| when photons are absorbed or emitted, the
actual scattering angle corresponding to the momentum
change Q is given by cosf = 1 — £20Q%/2me. Since
doe/dS) appears explicitly in (24), as it did in the classical
expressions (5), the Kroll-Watson result is basically an
impact approximation and thus applicable only at low fre-
quencies.

If plane-wave initial and final scattering functions are
used in (23) it reduces to
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do.t(n)

do=" Jhe 727
dQ)

= 4o kj (an)4

HE) (25)

for the case of the Coulomb potential. A more precise
representation [20] of the scattering wave functions in a
Coulomb field leads to the additional factor for (25),

fe =81 + D(nf + 97 + D(ni + 9] (26)

where m; = —Z/kiay and my = —Z/kray. A thorough
analysis of the angular distributions contained in (25) was
made by Elyutin [21] for various magnitudes of the quantities
Eg;/w* and Eg/viw (in atomic units), and it is found that
under some conditions and angles the emission cross section
exceeds the absorption cross section. Brehme [22] has done
extensive numerical calculations on the angular integral of
(25), and some of these results are shown in figure 3 as a
function of photon flux. Also shown in this figure is the
weak-field single-photon absorption cross section which is
obtained from (20). The photon flux at which Ey/w = 1 a.u.
is indicated, and the exact result for o is expected to
join smoothly between these weak and strong-field theories.
The wiggles in the strong-field curves arise from the JZ
factor, and one sees a primary maximum followed by a
downward trend with increasing radiation intensity. This
behavior follows from the asymptotic envelope of Ji(x) ~
Eg' ~ p'2. This is qualitatively similar to the classical
fall-off of the rate of thermal energy increase which is shown
in figure 2.

We note that the strong-field formulation of free-free
absorption gives expressions which are analytic functions of
the field strength £, unlike the power series form of the
weak-field perturbation theory. Thus it seems likely that
higher iterations of the strong-field method will give satisfac-
tory values for the cross sections in the intermediate region,
where Ey/w ~ 1 a.u. Pert [23] has shown that (25) forn = 1
goes over to the semiclassical (8) in the low-field limit after
averaging over oscillations of the Bessel function. He has
also shown the correspondence between (25) and the purely
classical treatment (5) using a method due to Rand [24].

The first direct observation of a laser-induced free-free
multiphoton process has been very recently reported by
Weingartshofer et al. [25]. They observed the absorption
and emission of CO, laser photons by an electron beam
undergoing large-angle scattering by argon atoms. A near
monoenergetic beam of 11 eV electrons was scattered by
argon atoms in the presence of a pulsed CO, laser producing
a radiation flux density of 10° W/cm?. The electrons scattered
through an angle of 153° were detected and energy analyzed
with laser off and on. The results of counting over many
laser pulses are shown in figure 4 in terms of scattered
electron current (in arbitrary units) for fixed incident current
plotted against scattered electron energy in units of laser
photons (0.117 V). One clearly sees the distinct peaks
representing the absorption and emission of up to three
photons, with their peak values approximately satisfying
(24). The widths are a result of the energy width of the
incident electron beam and the energy resolution of the
spectrometer (0.055 €V). Since the energy gained or lost by
the electrons is very small compared with their initial
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FIGURE 3.  Total cross section for the strong-field n-photon absorption
(ruby laser hw = 1.8 €V) by an electron-proton system in a 100 eV

scattering state (solid lines); corresponding weak-field 1-photon absorption

(dashed line).
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FIGURE 4. Weingartshofer et al. [25] data on free-free transitions of
electrons scattered from argon atoms. Integrated current with (a) laser off
and (b) laser on.
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energy, x;r is essentially a constant, and using the identity

S A =1

n ©

one has from (24) that

do.:(n) _ ‘ioil_
n d() dQ)

[like classical result (6)]. It is obvious from figure 4 that this
sum rule is well satisfied.

4. Plasma Averages

In the last two sections we have reviewed the stimulated
absorption and emission of multiphoton radiation by an
electron in an encounter with a single ion. When one goes
over to the case of a real plasma it is clear that the
macroscopic parameters of density and temperature must
also be considered in the overall description of the absorption
of external laser radiation. If these are such that an electron
makes many collisions in the course of a cycle of the field
(2N; B% v/w > 1), the properties of the plasma cannot be
completely analyzed in terms of binary collision cross sec-
tions alone.

Hughes and Nicholson-Florence [26] have studied the
heating of a plasma in the weak field case by single photon
absorption and emission. They have used form (20) for the
cross sections and have investigated absorption coefficients
for both thermal and non-thermal velocity distributions.
They have obtained numerical results for power absorbed by
the plasma, but appear to go to such high incident power
fluxes that would require use of cross section form (25)
rather than (20). Nicholson-Florence [27] used (25) including
both stimulated absorption and emission for then = 1, 2, 3,
4 cases to numerically evaluate the expected power absorp-
tion for a wide range of the parameters ¢ = hiw/mv* and y
= evE/iw?®. The results typically show a maximum in the
power absorption versus 7y similar to those seen in figures 2
and 3.

Seeley and Harris [28] have used (25) and the zeroth-
order assumption of a Maxwellian velocity distribution to
evaluate the time derivative of a first order velocity distribu-
tion function for weak and strong fields, and obtain results
in essential agreement with Silin’s classical results [7]. They
find that for weak fields only single-photon processes are
important while at strong fields multiphoton processes are
dominant, with the most important n values given by nfiw =

1
5 muj, the peak classical driven energy. For the weak

fields they should have used cross section form (20) for o?,
but from figure 3 we see that the error made is less than an
order of magnitude. This would probably not affect their
conclusions, particularly since it is expected that weak field
do®®|dQ (n > 1) are even further below the respective
values that would result from (25).

A study of the departure of the total strong-field absorption
coefficient of a plasma from its single-photon value was
made by Osborn [29]. The total rate per unit volume for the
absorption or emission of n photons is given by

R., = NpNif dvfiv)va=®, (27)

The distribution function f{v) is assumed to be Maxwellian
and the strong-field cross section (25) is taken for ™™, The
net energy absorption rate is now

©

o = 2 nhw(R+n - R—n) = C¥1F(x,}’) (28)
n=1
where o is the single-photon value
oy = ho(Ry; — R_y).
The parameters in the coefficient F' are x = /2 mud/2kT

and y = Aw/2kT, i.e., essentially ratios of driven energy
and photon energy to mean thermal energy. In the limit of «,
y = 0, F — 1, or the entire absorption is due to single-
photon processes. Brysk [30] has carried out a more detailed
analysis of F(x,0) and the result is given in figure 5. The
large reduction in & from &; shown here for large values of x
implies that stimulated emission in multiphoton transitions
is more important (relative to stimulated absorption) than in
the single photon case.
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FIGURE 5. Factor representing multiphoton contribution to total free-free

absorption coefficient.

5. Conclusions

The weak- and strong-field forms of the nonrelativistic
free-free problem apear to be well understood and are being
applied to the calculation of absorption coefficients for
actual plasma conditions. The general behavior of the cross
sections as a function of radiation flux is an increasing
function at low fluxes and an oscillating function with
decreasing envelope at large fluxes, with a maximum in the
region where the magnitude of the applied electric field
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equals the mean atomic field strength. Similarly the absorp-
tion coefficient of the plasma due to inverse bremsstrahlung
will have a maximum as a function of applied field strength
at any given temperature, indicating that there exists an
optimum laser intensity for maximum efficiency in heating
the plasma.

Relativistic effects have so far been largely neglected in
the theory on the grounds that they would probably not alter
the qualitative absorption characteristics [6, 22]. However,
since the maximum driven velocity uy = eFEo/m® becomes
equal to ¢ at a Nd-glass laser intensity of 6 X 10'" W/cm?,
it would be worthwhile to make a more careful estimate of
relativistic effects.

Our remarks above have been confined to the case of
linearly polarized radiation. However, a study [31] shows
that the absorption rate does not depend on the polarization
in the weak-field case but does become very dependent on
the polarization in the strong-field case.

In concluding, we would like to bring to the reader’s
attention a very recent bibliography [32] and a review [33]
on free-free transition processes involving electron collisons
on neutral atoms.
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