
JOURNAL OF RESEARCH of the National Bureau of Standards 
Volume 82, No.2, September- October 

Eigenset Generalizations of the Eigenvalue Concept 

Charles R. Johnson* 

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 

(July 14, 1977) 

For an n-by-n complex matrix A some ge neralizations of the eigenvalue-e ige nvector equation 

Ax = Ax, ° oF X € en 

are investigated . These take the form 

AS = AS or AS ~ AS 

where S is a subset of en about which various assumptions are made . For example, it is shown that there ex ists a 
finite set See n, the sum of whose e lements is not 0 , such that AS = AS , if and only if" is an eigenvalue of A 
in the usual sense. The requirement that the sum of the elements of S is not 0 should be viewed as a natural 
analog of the requirement x oF ° in the class ica l e igenvalue-e ige nvector equation. 
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Let M n( C) denote the set of n-by-n complex matrices . For A EM n( C) , the complex number A is said to be 
an eigenvalue of A if there exists an x E C n suc h that 

(1) Ax = Ax and x i= o. 

We denote the set of all e igenvalues of A by a(A), the spectrum of A. For S an arbitrary nonempty subset of 
en, we define AS and as , for A EM n( C) and a E C, in the natural ways; that is, AS = {Ax: X ES} and as 
{ax : X ES}. We may then consider two generalizations of the classical e igenvalue-eigenvector eq (1): 

(2) AS = AS 

and 

(3) AS C AS, 

and ask (analogously to the classical eigenvalue question) "for which complex numbers A do there exist sets 
S satisfying (2) or (3)." Of course, if we allow S = {O}, then for any value of A an S would exist satisfying (2) 
or (3), and, if we allow S = C n, then, for non-singular A, any A 01= 0 satisfies (2) and , for any A EM n( C), any 
A 01= 0 satisfies (3). Generally speaking, allowing S to be unbounded results in difficulty putting any 
restrictions on A. 

EXAMPLE 1: Let S be the eigenspace corresponding to any nonzero eigenvalue (if there is one) of A EM J..C). 
Then, since any nonzero scalar multiple of S is identical to S, it follows that (2) and (3) hold for any A 01= o. 

R EMARK: There is a {O} 01= S C C n such that (2) or (3) holds for A = 0 , if and onl y if A is singular. This 
means that A = ° can satisfy (2) or (3) if and only if 0 E a(A), i. e. ° is an e igenvalue in the usual sense. 

EXAMPLE 2: LetA = (~ ~) ' A = l and s= {(~) , (~)}. 
Then (2) is satisfied despite the fact that neither of the two elements of S is an e igenvector. 
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In this note we investigate some generalizations of (1) of the type (2) or (3) . In each case some restriction 
regarding 0 is necessary, and these should be viewed as analogs of the second part of (1). (Of course, if 0 € 

5, then 0 E A5 and ° € )..5. Thus, neither (2) nor (3) is disturbed by addition of 0, or deletion of 0 if 5 does 
not otherwise inte rsect the null space of A.) The classical case (1) may be viewed as a special case of (2) or 
(3) in which 5 has just one element. The first natural ge neralizat ion of the one element case is the case in 
which 5 is finite; the next, the case in which 5 is bounded. 
REMARK: The case of 5 bounded in (3) might be viewed as a generalization of the instance in which A is a 
column stochastic matrix, A = 1, and 5 is the unit simplex (the convex hull of the n coordinate vectors). A 
matrix is column stochastic if and only if it maps the unit simplex into itself, and, of course, such a matrix 
has an e igenvalue equal to 1. 

We first consider the case in which 5 is finite. 
THEOREM 1: Let A E Mn (e). There exists afinite set Seen satisfying 

AS = AS 

and 2: v 4- 0, if and only if A € <T(A). 
v.s 

PROOF: If A E <T(A) , let 5 = {x} where x of 0 is an eigenvector of A corresponding to A. Then 

A5 = A 5, 2: v of 0 and 5 C en is finite. 
v.s 

On the other hand , suppose 5 C en is finite and sati sfi es (2) and tha t x "" !, v =I- o. Then 
v.s 

Ax = 2: Av = 2: AV = Ax 
v.s v.s 

which means that A E a (A). 

EXAMPLE 3. The requirement "2: v 4- 0" is necessary in theorem 1. 
v.s 

If A = (_~ ~), A = 1 and 5 = {(D, (_~), (=D, (-~)) , thenA5 = A5 without A E <T(A) = 

{±i}. The trouble, of course, is that G) + (_ D + (= D + (-D = (~) , but it should be noted tha t A 

E <T(A 4) , and tha t A = 1 = (-i)i where one factor is a fourth root of one and the other li es in <T(A ) (cL 
Theorem 2 below). 

We next consider what happens if th e requirement 2: v of 0 of theorem 1 is deleted. This broadens the 
v.s 

class of A's which may occur. A complex number z is called a root of unity if there exists a positive integer k 
such that z!< = 1. 
THEOREM 2: Let A f M n (V). There exists a finite set 0 f Sec n satisfying 

A5 ~A5 

if and only if A = z a where z is a root of unity and a E <T (A). 
PROOF: First suppose A = za where a E <T (A) and zk = 1. Then let 5 = {X, zx, ... , zk- 1X } where 0 of 

x E en satisfies Ax = ax. It follows that zS = S so that AS = as = a(zS) = A5. Thus 0 € 5 C en satisfies 
(3) as was to be shown . 

On the other hand, suppose 0 f 5 en such that AS .. 'AS is given. Since S is finite there must exist a 

sequence of vectors Xi" ••• , Xi k€ 5 such that 

and AXil = Axi,. It then follows that 
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and, therefore, that 

A 
for some a e O"(A). If A = 0, th e des ired consequence follows trivi all y, and, if not , thi s means that z = - is 

a 
a kth root of unity. Since A = z· a , this completes the proof. 

REMARK: If 0 e 5 i s allowed in the contex t of theorem 2, th en any A may be achi eved by lelling 5 = {o, x} 
where x (possibly 0) is in the null space of A. However, if "0 f 5" is re placed by "{o} 0/= 5" and "A5 ~ AS" 

is replaced by "A5 = AS" a valid alternative to theorem 2 result s . 
We call a set Seen bounded if there is some finite number r (depend ing on 5) such that the Euclidean 

length of each element of 5 is less than r. We next consider th e case of 5 bounded in (2) or (3). We denote 
the convex hull of T C Cn by Co(T) and th e closure of T by T. 
THEOREM 3: Let A e Mn (C) . There exists a bounded set S C Cn satisfying 

A5 ~ AS 

and 0 If- Co(S), if and onLy if A e 0" (A). 
PROOF: If A e 0" (A), th en we may choose 5 = {x} where 0 0/= x e cn is an eigenvec tor of A cO'~'esponding 

to A. 
On the other hand , suppose a bounded subset 5 of C n such tha t A5 ~ AS and 0 If- Co(5) is given. Then 

it is s traighforward to check that S = Co(5) sati sfi es AS ~ AS. Now, if A = 0, the desired result is 

immediate, a nd if not , l/AA is a continuous ma pping whi ch maps the compact, convex set S into itself. 
The refore, by th e Brouwer fix ed point theorem 1/1.. A has a fix ed point x eS. Since 0 f S, thi s mea ns that x is 

an eigenvector of A cOITesponding to A and com ple tes the proof. 

REMARK: The assumption 0 If- Co(5) is, of course, crucial in the above argument. If 0 e Co(S), then 0 might 
well be the only fix ed point of 1/1.. A . 

If we relax the requirement 0 ¢ Co(5) the class of allowable A's is again broadened. 
REMARK: If (2) holds it follows in a straightforward way that for any positive integer t , 

(4) 

Similarly, if(3) holds it follows that 

(5) 

THEOREM 4: Let A E Mn (C). There exists a bounded set {a} 0/= S C Cn satisfying 

AS ~ AS 

if and only if I A I ~ m = min I a I· 
aW'(AI 

PROOF: If II..I ~ m, let x 0/= 0 be an eigenvector corresponding to an eigenvalue a of A for which lal = 

m and let 5 = {ax:a E C, r-I ,;;; l}. Then S 0/= {a} and A5 = mS while AS = IAI5 so that (3) holds. 
On the other hand, s uppose that {a} 0/= S C c n such that A5 ~ AS is given, and select an element 0 0/= x e 

5. If A were 0 , then it would follow that Ax = 0 and that 0 E O"(A) so that m would be O. Thus I A I ~ m 
would be satisfied; and therefore we assume from he re on that A 0/= o. By continuity we may assume without 
loss of generality that A has a complete set of linearly independent eigenvectors xl. ... , Xn corresponding 

n 

respectively to the eigenvalues a], ... , an. Then x = 2: aixi for some complex numbers al. .. . , an and 
i=} 

A Ix = I aiatxi. Since (3) implies (5), we obtain that i ai(a i) I Xi e 5 for all positive integers t. If I A I 
i=1 ,=1 A 

were less than m, then the bounded ness of 5 would be contradicted so that we conclude that I A I ~ m, as 

was to be shown. 
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Only slight modifications of the preceding argument yield the following. 
THEOREM 5: Let A E Mn (C). There exists a bounded set Seen satisfying 0 f S and 

AS ~ AS 

if and only if I A I = I a Ifor some a E (T(A). 
THEOREM 6: Let A E Mn (C). There exists a bounded set {a} oF s C Cn satisfying 

if and only if I A I = I a Ifor some a E (T (A). 
REMARK: Analogous to (3) we may also consider 

(6) 

AS = AS 

AS:1 AS. 

Analysis of (6), however, is similar to that of (3) along the lines of this note. In fac t for A oF 0 and A 
nonsingular, (6) holds if and only if (3) holds with A replaced by A - 1 and A by A- I. It is clear that A = 0 
satisfies (6) if and only if the intersection of S and the null space of A is nonempty. Also, in case S is finite 
and A oF 0, (6) implies (2). 

We close by noting that many questions are suggested by the above observations. For example, what 
may be said about the geometric and algebraic properties of eigensets S in the senses of (2) and (3)? 

The author would like to express his thanks to Dr. Alan Goldman of the National Bureau of Standards 
for suggesting some of the questions considered herein. 
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