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A numerical integration procedure to calculate the second virial coefficient of simple polyatomic molecules is
proposed. The intermolecular pair potential is assumed to be a sum of a spherically symmetric contribution and
an unsymmetric, angular dependent, contribution. The method is based on evaluating the possible different
numerical values for this latter term. Quadrupolar and dipolar molecules are considered. Calculations for the
virial coefficient for quadrupolar molecules are judged to be correct to within one part in 2500 or better, and to
within one part in 300 or better for polar molecules. Results from the method are compared to corresponding
results from the well-known Pople expansion procedure. It is shown that care must be taken to ensure this latter

technique yields a convergent answer.
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1. Introduction

In several papers [1, 2, 3], we have determined the
thermophysical properties of simple polyatomic gases via
statistical mechanics. In particular, a modification of the
Pople expansion procedure [4] was used to evaluate the
second virial coefficient. This technique is standard but
there are some drawbacks when it is applied to molecules
with relatively large electrostatic moments. The object of
this paper is to introduce an alternative procedure.

The second virial coefficient, B, is defined by the expan-
sion

$=1+Bp+... (1)

(where p is the pressure, T the temperature, R the gas
constant and p the density (mol/L)) and is given by an
expression of the form

B~N ff {CXP [_Bd’(Rz, Rz)] - 1} dR, dR, (2)
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where N is Avogadro’s number, 8 = 1/kT' (k is Boltzmann’s
constant), ¢ is the pair potential, and R; and R, denote the
position and angular configuration of molecule 1 and 2,
respectively.

In this work the intermolecular interaction of two polya-
tomic molecules is considered in the simple, but standard
coordinate system of figure 1: the molecules are treated as

FIGURE 1. The coordinate system for two polyatomic molecules.

rigid bodies interacting along the line of their centers, dis-
tance r apart, with a relative orientation given by the angles
0,, 6, and ®. The potential can be written as a sum:
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d)*(r*a 01’ 023 q)) = 0.;"(’-*) + 0:1:3(7-*7 01, 027 Q) (3)

with ¢F(r*) the spherically symmetric, angular independent,
part and ¢ the unsymmetric angular dependent part. In eq
(3), * = r/o and ¢* = ¢/e, where o and € are a length
and energy parameter of the spherical potential, respectively
(to be defined below).

For the coordinate system of figure 1 and the potential of
eq (3), eq (2) becomes

B* = B/b, =
— 3/(8m) f sin 60, d6, f
o o

m

sin 02 d02 r d(b
0

x [7 {exp[— @*(r*, 6y, O, ®)/T*] — 1} r*2 dr* (4)

where by = (2/3) wNo® and T* = T/(e/k).
In previous studies [1-3], we have taken ¢ to be the m-
6-8 function of Klein and Hanley [5]

Lo

where d = ryin/o, with o and ry;,, and also the energy €,
defined by the conditions ¢(0") = 0 and ¢(rmin) = —€. The
parameters m and y represent the “hardness” of the repulsive
term, and the “strength” of the inverse eight attractive term,
respectively.

If we consider non-polarizable axially symmetric quadru-
polar molecules, ¢ is given by

3 9%
(b;lks(r*’ 019 025 (I)) = 4- r?ﬂal’ 023 q)) (6)

where
£(6y, 6,, ®) =
1 — 5cos?0; — 5 cost0, — 15 cos?0; cos?f,
+ 2(sind; sinfy cos® — 4 cosf; cosdy) (7)

and ©*? is the reduced quadrupole moment (squared); ©*2
= 0?/(ea”).

To be consistent with our earlier calculations, and those
of other authors, we will first consider the potential given by
eqs (3), (5), and (6) but with y = 0 and m = 12 for which
eq (5) becomes the Lennard-Jones, 12-6, potential.

2. Procedure

The evaluation of the second virial is carried out in four
steps as follows. First, the quantity f(0;, 02, ®@) of eq (7) is
considered. Specifically, the molecules are set in a selected
initial configuration, e.g., 8; = 6, = ® = 0, then each of
the angles is varied incrementally (e.g., by 7/4) and the
numerical value of f noted after each incremental step.
Because of symmetry, many of the values are identical and

it is only necessary to record, say, [ different values f; (i =
1, I), and their number of occurrences or weight, wt;. In
general f; and its weight, wt;, are associated with the initial
configuration C; and the step 7/n where x = 0 or 7/2n
withn = 2, 4, 8. . . . That the number [ is relatively small
compared to the total number of configurations is shown in
table 1.

TABLE 1. Values of | for various incremental steps and initial
configurations of two molecules in the coordinate system of figure 1.
(a) Quadrupolar interactions, (b) dipolar interactions.

Number of different (/) values for

: Number of
the angle function at two selected umber o

I tal S - ssible value
nsc;zepm;;xna initial configurations: Co and Cyyzn p(f)oflth: ;’:gll‘e s
o G function
(a) Quadrupolar
/4 11 12 128
/8 74 80 1024
/16 548 576 8192
(b) Dipolar
/4 13 24 128
/8 123 160 1024
/16 1011 1152 8192

Second, an intergral /; is defined by

I; = 'r exp [—iF/T* — 1]r*2 dr* i=1,1 (8
)

to correspond to the r* integral in eq (4). Here ¢;* is the
potential of eq (3) for a given quadrupole moment associated
with a particular £;(64, 0,, ®).

The integral is evaluated numerically at a selected T* by
the one-dimensional Chebyshev integration technique used
in our previous work [1, 2].

Third, the value of the reduced second virial coefficient
for an initial configuration, C,, and an incremental step
follows from the expression

l

2 Qu;

: )
2

i=1

BHT*, ©*) = -3

where

); = (sin 0, sin 0, wt); =1, L (10)

Fourth, and last, since B* of eq (9) is associated with C,,
and the incremental step, a final estimate of the virial
coefficient is obtained from the results for different steps at
a particular C;, and then from a repeat of the procedure for

a different C,,.

2.1. Variation of L With the Angle Function

The calculation outlined above is potentially time-consum-
ing, despite the simplification due to symmetry, because the
integral I; apparently needs to be evaluated [ times for each
step at each configuration. We have, however, observed a
feature which allows the calculation to be manageable:
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namely, that [; appears to vary smoothly with the angle
function at a given T* and ©*2, This is illustrated by figure
2 in which 3/; is plotted versus f;(0;, 05, @) for the 12-6
potential with ©*> = (.7 at three representative tempera-
tures. Hence for a given spherical potential with a given
O*2 at T*, one only has to evaluate a few [; directly: the
remainder can be estimated to a high precision by interpola-
tion.

QUADRUPOLAR

(&)
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1
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T

£,(6,6, D)

FiGURE 2. Plot of 3lieq (8), versus {i(6,6®), from eq (7), at T* = 0.7,
2.0, and 20.0 for a 12-6 quadrupolar molecule with 6** = 0.7.

3. Results

3.1. Quadrupolar Molecules

Sample detailed results are presented in table 2 which
displays values of B* for several incremental steps and initial
configurations at four reduced temperatures; 0.7, 1.0, 2.0,
and 20.0. The spherical potential was taken to be the 12-6
and the reduced quadrupole moment (squared) was set at
0.2 —which corresponds to the moment (squared) for a
molecule similar to nitrogen. Our estimated convergent
values are also shown and are judged to be precise to within
one part in 2500 at 7* = 0.7 and to one part in 10,000 at
T* = 20.0.

A check on the absolute values of the virials listed in
table 2 was made by comparing them to corresponding
values from the expansion technique [4]: the expansion
procedure can be expected to yield essentially an exact

result for B* provided the quadrupole moment is small. For
the potential of eq (3) with equations (5) and (6) one can
derive [2, 6]:

. 2108 216 05 630 O
BHT*) = Bf — — padut 50 el ~ 5 pea Jw
4608 O*1°
@ﬁ‘/zs*‘ e (1)

TABLE 2.  The second virial coefficient of a quadrupolar molecule, 0** =
0.2, as a function of initial configuration and incremental step (see text).
Comparisons with equivalent values from the expansion of equation (11) are given.

Incre- Initial configuration Estimated* ) )
T* mental p——— Equation

step C C al o (11)

Pt 20 BTN value
0.7| m/4 —4.80711 —4.86570

/8 —4.84904 | —4.85841

w/16 | —4.85425 | —4.85637 —4.8557 —4.85560
1.0 m/4 =2:57073 —2.59522

/8 —2.58929 | —2.59293

w/16 | —2.59140 —2.59220 285910 —2.5919
2.0 w4 —.63202 —.63862

/8 20317 =.63857

/16 —.63828 —.63845 —0.63840 —0.63834

20.0 | /4 52567 .52534
/8 52522 .52519
/16 .525193 .525189 9525190 525185

* Estimated by plotting B* versus 7r/n for both Cy and Cggp. The
intersection point of the two curves was taken as the convergent value.

where B¥ is the angular-independent, classical second virial
at T*. J . are dimensionless integrals given by

Jo= [ ew [ate/Pps v a2

Results from eq (11), for the 12-6 potential and O** =
0.2, are given in the last column of table 2. Since the
agreement between corresponding second virial coefficients
from our procedure and from equation (11) is very close, we
conclude our procedure is satisfactory.

3.2. Polar Molecules

The integration procedure is not, of course, restricted to
quadrupolar molecules. It was straightforward to extend it to
polar molecules interacting with a potential of the form

%2
(. 01, 0, §) = 05(*) — "5 (61, 6. @) (13)
where
2(0,, 0,, D) = 2 cosb, cosby — sinb; sinfy cos®.  (14)
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w* is the reduced dipole moment given by u*? = u/(ed”),
where u is the dipole moment. ¢¥(7*) is the spherical
potential of eq (5), as before.

Calculations followed those for quadrupolar molecules
using the two significant time-saving arguments, i.e., (a) the
symmetry of the coordinate systems which reduces substan-
tially the number of independent values of g(6;, 6, P)
which have to be considered (see table 1), and (b) that a
particular value of g, g4 is a smooth function of the r-
integral, I; [ eq (8)], see figure 3. Typical results are shown
in table 3 for three temperatures. The results are those for a
12-6 potential for u*?> = 0.8485 and 2.8284, respectively.
We have listed the parameter 7%, used in Hirschfelder,
Curtiss, and Bird [7] and elsewhere [7* = 8712 y*2]. For
these dipole moments (squared), 7™ = 0.3 and 1.0.

60
40

POLAR

20

31, —

-20 +

-a0 - ”

sk 7

-80 L L 1
! i -20

gi (9| 52¢)

FIGURE 3. Plot of 31;eq (8), versus g{6,6®P), from eq (14), at T* =
0.7 and 7™ = 1.0 (solid line), T* = 0.7 and 7™ = 0.3, (dashed line) and
T* = 2.0 and 7™ = 0.3 (dotted line).

TABLE 3. Comparison between the sound virial coefficient for a polar
molecule calculated by numerical integration, and by the expansion of
equation (15)

11 B*, integration B*, expansion
7% = 0.3
0.7 —6.001 —6.0182
2.0 —0.7130 —0.7168
20.0 .5241 .52441
7% = 1.0
0.7 —41.61 =39.89
2.0 =175 —1.7264
20.0 .5148 .51468

Again our results can be compared to those from the
expansion technique [6]:

BX(T%)

i jy 2 . 220G — 3)
= B¥ — 192 ———| w*Y K,J —] 15
) = [(21' + 1)!} il ‘*’[ pa | (19

where

Ky= Y (2K /(K )? (16)
k=0

and Jg; = J z of eq (12). Values of B* from eq (15) forj = 4
are given in table 3.

The results from our integration procedure are apparently
low. But this is most probably due to the appreciable
contribution of the term (w*2/r®)g(6;, 6,, ®) to the integral
eq (8) at large values of r. Our Chebyshev integration
method can fail to yield a fully convergent answer in such
cases. Clearly, one could compensate for this difficulty.
However, the substantial discrepancy at T* = 0.7 for 7% =
1.0 is undoubtedly a failure of the expansion (15) to give a
convergent forj = 4.

3.3. Mixed Moments

The method can be applied to molecules with more than
one electrostatic moment and, in fact, has been used for
nitrous oxide: a molecule which has a small dipole and a
large quadrupole [3]. We considered the potential

S*(*. 6,, 6,, @) = F + by + bfe + dEp  (17)
where @¥ is eq (5); dHp is the angle dependent term of eq
(13); ¢d%q is given by eq (6); while 6%y, the contribution of
the quadrupole-dipole interaction, is given by

dp = w*O*[(cosBy — cos0,)(3 cosb; cosb,

2p¢4

— 2 sin, sin@s cos®) — cosB, + cosby]. (18)

We will not report here results for the second virial
coefficient of nitrous oxide; suffice to say that agreement
between our method and that from the corresponding expan-
sion [6] was within the precision of the respective determi-
nations.

4. Discussion and Conclusions

We have introduced a simple numerical procedure to
evaluate the second virial coefficient of a polyatomic mole-
cule assuming the electrostatic moments are placed at the
center of the molecule.

Our method should be compared, in general, to the
expansion procedure since both techniques are based on the
same approximations of the nonspherical intermolecular
interaction. The expansion procedure treats the angle de-
pendent terms of the potential as perturbations around the
spherical contribution. Hence one obtains an expansion
involving products of integrals of the spherical contribution
and the electrostatic moments. For example, we have used
eq (11) with the J ; integrals. The advantage of this approach
is that the J ; integrals need only to be calculated once for a
given spherical potential and one has some flexibility in
adding various angle dependent terms.

In contrast, our method has the advantage that the [
different angle functions and their weights [e.g., eq (7) and
eq (10)] only have to be recorded once for any type of angle
dependence in the potential. The method, therefore, is
flexible as to the spherical part of the potential.

Obviously, this flexibility has to be balanced against the
problem that several J ; integrals [eq (8)] have to be evaluated
at a given T'*. Overall, therefore, the expansion procedure is
faster. However, we have shown [1, 2] that calculations of
the thermophysical properties in general, and of the second
virial coefficient, in particular, for a gas are about as
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sensitive to a choice of the spherical part of the potential as
they are to the various nonspherical contributions. The net
time required, therefore, to calculate a value of B* for a
given gas, is not too dependent on which of the two methods
is used.

When comparing the two methods one assumes that the
expansion procedure can yield a convergent result for the
number of terms considered. But this is known to be a
problem for polar molecules. In fact we have pointed out
that, for the sample calculation at T* = 0.7, 7 = 1.0
(table 3), the expansion of equation (15) has not given a
convergent B* if j = 4. It is less appreciated that conver-
gence should also be checked for quadrupolar molecules, as
was mentioned with respect to carbon dioxide in reference
[2]. [Inspection of the expansion of equation (11) indicates
one should anticipate difficulties if, by chance, the factor
O*2/T* is close to unity.]

As a matter of interest, we checked the convergence of
the expansion of eq (15) for a molecule with a reduced
quadrupole moment (squared) of 0.7 (to correspond approxi-
mately with carbon dioxide). The reduced second virial
coefficients from our numerical procedure were taken to be
correct. Table 4 lists B* (numerical) at four temperatures

TABLE 4. Comparison between values of B* for a quadrupolar molecule

with 6** = 0.7 calculated numerically, and calculated from the expansion
of equation (11) to various orders in 1/T*

T* B* B* [equation (11)]
(numerical) 0(1/T*3) 0(1/T*%) O(1/T*3)
0.7 S ONIL8 —6.2941 S ONIIT29 —6.6173
1.0 38232 —3.1461 —3.2434 —3.2194
2.0 —.7599 —0.7540 —0.7605 —0.7596
20.0 .5231 NS2311'3 .02312 .52312

and the value of B* calculated from the expansion of eq (11)
to order 1/7%3, 1/T**, and 1/T*?, respectively. The results
suggest that the expansion technique can fail to give a
convergent answer at 7% = 0.7 (and possibly at 7% = 1.0)

even to 0 (1/7%%).

In conclusion, we have demonstrated that the numerical
technique presented here is a viable method to compute the
second virial coefficient of polyatomic molecules whose inter-
action is represented by the system sketched in figure 1.
More sophisticated techniques are listed in reference [8].
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