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We present properties some new derivations of properties of a nonlinear version of a minimax tree network 
location problem. The provide necessary and sufficient conditions for optimality, a means of computing the opti
mum objective function value, and a means of constructing the unique optimum location . 
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1. Introduction 

The purpose of thi s note is to provide new proofs for properties, establi shed by DEARING [4] , I of a quite 
general nonlinear minimax location problem; these proofs appear to give additiona l ins ight into the mathemati
cal nature of such problems. As a natural consequence of the approach we use, we obtain as well a new family 
of equivalent conditions for optimality to the problem. 

So as to state the problem, consider a finite undirected tree network with positive arc lengths. We denote 
by T an imbedding of the given tree (e.g., a planar imbedding such as a road network) hav ing rectifiable a rcs, 
so that it is meaningful to speak of points on the arcs as well as at vertices. 

For every pair of points x and y in T , we suppose the shortest-path distance between x and y, d{ x, y), is 
well define d, as in refe rence [2]. This distance has the customary metric properties for every x, y ET, tha t 
d{x,y) 2: 0 , thatd{x,y) = Oiffx =y, and thatd{x,y) = d{y,x); alsod{x,y) 5, d{ x, z) + d{z ,y) for evel), x, y , 
z E T. 

The problem of interest is as follows. Suppose "existing fac ilities" a re at distinct ve rtex locations v" ... , 
v'" in the tree, and that a " new facility" is to be located at a point x . For each ve rtex Vi, !i[d{x, Vi)] is a "cost" or 
a " loss" inc urred, inc reasing with the distance between x and Vi, and 

fix) == max {f;[d(x, Vi)]: 1 5, i 5, m} (1) 

is the maximum loss . The problem of inte rest is to find x* in T to minimize! defined by (I); we call any such x* 
a minimum off. One may wish to employ such an approach when it is more important to provide quick service 
than to minimize total cost. 

So as to state the problem more precisely , define 8i = max {d( u , Vi): u E T}, 1 5, i 5, m. Also we defin e.f" 
== fix*); continuity and compactness considerations assu re the existence of a minimum o ff. We assume!i is a 
strictly increasing, continuous function, with domain [0, 8i], for 1 5, i 5, m. The assumed properties for each!i 
are quite weak , compared to assumptions in earlier related literature. Dearing was apparentl y the first to 'solve 
the problem using only these assumptions; previous work assumes the functions!i to be linear, and is 

discussed by DEARING and FRANCIS [2]. 
Subsequent to the analysis we indicate in some detail how our results differ from Dearing's . 

2. Analysis 

The following definitions facilitate the analysis: 

M - {I , 2, . .. , m} 
MP - {i EM:.f" 5, f;{ 8in 
MS - {i EM :j,{fJ i) < .f"} 

• An invited paper. This research was SUPlX'rted in part by the Anny Research Office. Triangle Park, NC under cont rac t number DA HC04-75-G-OlSO . 
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a' max 1f~0):i E MP] 

a max If~O):i EM] 

r/ - min 1f,{Oi):i E MP] 

'Y} min If ~ oil : i E M] 

f(x) == max ffi[d(x , Vi)]: i E MP] , for all x E T. 

We remark that any fi with i EMS is a secondary function in the sense that it may be deleted from the 

definition off without changingf, that is, 

f(x) = f'(x) 

for all x E T. However, fun ctionsf; whe re i E MP are primary functions in the sense thatf may be changed if any 

such function is deleted. 

The above definitions lead to 
REMARK 1: (a ) MP ofo cP. 

(b) a' :'S a :'S I* :'S 'Y}'. 

(c) We may assume a < 'Y} without Loss of generaLity . 

PROOF. (a) The proof is simpl e and we omit it. 
(b) The proof is trivi al except for a :'S I*. Letf(x *) = 1*. 

We then have 

Ji( 0) :'S Ji[ d(x*, Vi)] :'S j{x*) = /", 1 :'S i :'S m , 

giving a :'S I*. 

(c) If a 2 'Y} then the re ex ist fun ctionsji andfj such thatf;(O) 2 fi OJ) , thusJix) :'S Ji OJ) :'S fiCO) :'S f;( x ) 
for all x E T, and so the functionfj may be deleted from the definition off without changingf. 

The followin g remark establishes properties of functions which occur repeatedly in the subsequent 
analysis. The proof is s tra ightforward but tangential to the ma in body of the development, and we relegate the 
proof (of a more extensive form of the remark) to the appendix . 

REMARK 2: Let {j , k} C M with j :'S k. Define the strictLy increasing, continuous function g jk , whose domain 

[ajk, b jk] is nonempty by Remark J(c), by 

where 

ALso define Ljk and f3jk by 

(a) The condition 

is equivalent to 

ajk == max [fj(O), fk(O)], 

bjk == min [fj(oj), fk(Ok)]. 

{ 
f[fk(O)] > 0 

(k ~ [~(O)] > 0 
ajk 
gji/[d(vj, Vk)] 
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iffj(O ) < fk(O) 
iffj(O) = fk(O) 

iffj(O) > Ek(O) 
if d(vi> Vk) :'S Ljk 

ifLjk > d(vj, Vk) . 



--- ------

(b) if j = k = i, f3jk = f3ii = fi (0). 
(c) if {j, k} n MS f cp, f3jk < f*. 
The following additional notation is useful: 

f3' = max [j3jk:{j, k} C MP, j < k] ifIMPI 2: 2 
f3' = -00 if IMPI = 1 

f3 = max [j3jk:{j, k} C M,j < k] 
-y' = max [j3jk : {j, k} C MP, j ::s; k] 
-y = max [j3jk: {j, k} C M, j ::s; k]. 

We note that a' ::s; a, f3' ::s; f3 , y' ::s; -y, y' = max (a', f3'), and y = max (a, f3) , whe re the identiti es for-y' 

and -yare due to Remark 2(b); also, T/ ::s; 7]'. 
Some extra definitions are conve nient. Given any y ET and nonnegative numb e r r define N(y, r) = {x E T: 

d(x, y)::s; r} , and caIlN(y , r) a neighborhood with center y and radius r. Given anyu, v ET defin e L(u, v) = {x E 

T: d(u, x) + d( x, v) = d(u, v)}; intuitive ly, L(u , v) is the unique imbedded path joining u and v, and has 
"length" d( u , v). 

We say that a subset 5 of T is convex (or connected) if L( u, v) C 5 for eve ry u, v E S. HORN [6] proves a 

"pair-wise intersec tion" prope rty for trees whi ch, sli ghtly modified, is the foundati on of the ana lysis to follow. 
The result sta tes that " A collection of subtrees has at least one common node if and only if evel), pair of (these) 

subtrees has at least one common node." Following Horn's result , Chan and Francis [1] give a diffe rent proof of 
a quite s imilar result: the inte rsection of all the members of a finite collection of co nvex (and compact) subsets 

of an imbedded tree Tis none mpty if and on ly if eve ry pair-wise inte rsection of these subse ts is none mpty. 
It is intuitively appealing, and ca n be proven (see Le mma 1 a nd Property 10 of reference [3]) that any 

neighborhood of T is a convex (or connected) set, and is also compact given rathe r wea k assumptio ns a bout T. 
Hence as a s pec ial case of the pair-wise intersection prope rty of refere nce [1] we have the followin g lemma. 

LEMMA 1. Given neighborhoods N(yi. rJ of T , 1 ::s; i ::s; m, the conditions (2), (3), and (4) below are 
equivalent: 

n {N(yi. ri ):1 ::S; i ::S; m} f cp (2) 

(3) 

(4) 

We remark that the nontrivial part of the proof o[ the lemma is s howing (3) impli es (2). The condition (3) 
follows immediately [rom (2), and it is direct to es tabli sh the equival ence of (3) and (4) . 

We study the functionf' in order to minimizeJ. It is simpler to develop the theOl)' forf' than forf, and all 
such theory then applies toj. Fortunately we do not need to determine the set MP used in definingf' in order to 

develop the theory, as we must knowf* in order to construct MP, andf* is what we are trying to find. 
In order to minimize!, we study the following equivalent problem: 

mllllmlze z 

subject tofJd(x, Vi)] ::s; z, i E MP (Sa) 

z E [a' , 7]']. (5b) 

We comment that (5b) is justified by Re mark l(b). 

The following lemma gives conditions equivalent to (5). 
LEMMA 2: Each of the conditions (6) through (16) , on z, in conjunction with the condition z E [a' , 7]'] , is 

equivalent to the feasibility of z in (5): 

3 x ~ fi[d(x, Vi)] ::s; z, i E MP (6) 

3 x ~ d(x, Vi) ::s; fjl(Z), i E MP (7) 
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3 x , x E N(vi. fjl (Z)), i E MP 

3 x , x E n {N(vj, f;-l (z)): i E MP} 

S(z) == n {N(vi. f;-I (z)): i E MP} r c/J 

N(v;, fjl (Z)) n N(vk, fk1 (Z)) r c/J, {j, k} C MP, j :s; k 

d(v;, Vk) :s; fjl (z) + fk1 (z), {j , k} C MP, j :s; k 

d(v;, Vk) :s; gjk (Z), {j, k} C MP, j :s; k 

{3jk :s; z, {j , k} C MP, j :s; k 

a' :s; z 

{3 ' < - z 

y' :s; z. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(lSa) 

(ISb) 

(16) 

We omit a formal proof of Lemma 2 , as in most cases the equivalence of adjacent conditions is clear. We 
use the fact that since fi is continuous and strictly inc reasing it has an inverse function];l which also is 
continuous and strictly increasing. Likewise gjk has an inverse function which is continuous and strictly 
increasing. The equivalence of (6) and (7) requires z to be in the domain of];l , Z E [f'{0), f,{0i)] , which is 
implied by Z E [a', 1)']. The equivalence of (13) and (14) is due to Remark 2(a). The key equivalence in (S) 
through (16) is the equivalence of (10), (11), and (12), which is due to Lemma l. 

With S(z) defined by (10), Lemma 2 gives: 
PROPERTY 1: (a) We have y' = f* , and the set of all points x* minimizing f is nonempty and consists of S(y'). 
( b) With z = y' , each of the conditions (S) through (16) is necessary and sufficient for optimality to the minimax 
problem. 
PROOF: (a) From Lemma 2, since (6) implies (16) we conclude y' is a lower bound on every value off. Using 
Lemma 2 with z = y' and noting that, Y' :s; f* :s; r/, y' = max(a' , {3') , so that a' :s; y' :s; 1)' , it follows since 

(16) implies (6) that y' is the minimum value off, and that S (y') is the nonempty set of all points x * minimizing 
f. (b) This part is immediate from (a) and Lemma 2. 

Since y' depends on MP , it generally cannot be computed prior to determiningf*. Fortunately, we shall 
see that y' = y; y can be computed. 
PROPERTY 2: (a) If y = a = fp(O), then y = f* = y' , and p E MP. 

(b) If y = {3 = {3st. with s < t, then y = f* = y' and {s, t} C MP. 
PROOF: (a) Property 1 givesf* = y' ; so that a :s; f* = y' :s; y. Thus y = a implies y = f* = y' . Further, we 

know f'{O) < f* for i EMS , so fp(O) = Y = f* implies p E MP. (b) Property 1 gives y' = f* , so {3' :s; y' implies 
{3' :s; f*. For any {3jk not used in computing {3' , j EMS or k EMS , so Remark 2(c) implies {3jk < f*. Thus for 
every {3 jk, {3 jk :s; f*, so that {3 :s; f* . Thus {3 :s; f* = y' :s; y = {3, so y = f* = y'. Since {3 sl = f*, Remark 2( c) 
implies {s , t} n MS = c/J, and so {s , t} C MP. 

Given y = f* we now proceed to characterize the minima off. Since y = max(a, /3) , it suffi ces in turn to 
cons ider the cases y = a and y = {3. 
PROPERTY 3: If y = fp(O) for some p EM, then Vp is the unique minimum of f and P E MP. 
PROOF: Property 2 gives y = y' and p E MP. Thus, by Prope1ty 1, S(y) = S (y' ) is the nonempty set of minima 
off. As y' = fp(O ), fpl (y') = 0 , so the definition of S (y') gives 

c/J +- S(y) = S(y') C N(Vp , fp1 (y')) = {vp }, 

and hence Vp is the unique minimum off. 

We now consider the remaining case where y = {3 S1 for some Vs and VI and y > a. Note, with reference to 
the definition of {3 S1 in Remark 2, that when y = {3 S1 > a , then a 2':: asl implies {3s1 > asl, and thus {3sl = 
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g-;/ [d(vs , Vt)]. The following preliminary remark is useful. (A tangential result needed in the proof is sta ted 

and proven in the appendix .) 
REMARK 3: Suppose y > a , so that for some distinct v s and v t with s < t , 

y = f3st = g;;tl [d(vs, vJ]. 

The following conclusions may be drawn. 

(a) We have 

and 

(b) For some x* E L(vs, Vt), 

f;- I (y) + fll (y) = gst (y) = d(vs, Vt), 

min [f;-I (y), fl l (y)] > O. 

d (vs, x*) = lsi (y ). 

(c) Let x* E L(v8, Vt) satisfy (20) . Then we have Vs =r- x* =r- Vb 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

PROOF. (a) Equa tion (18) foll ows immedia te ly by appl yinggst to (17). Since y > a, y > fiO) and y > f~O), 

so lsi (1') > 0 and .ftl (y) > 0, establishing (19). 
(b) From (a) we have 0 < lsI (y) < d(v s, Vt), so co ntinuity considerations and the inte rmediate value 

theorem, as disc ussed in reference 2, assure the ex istence of x* sa ti sfy ing (20) . 
(c) Since x* E L(v s, Vt), from (a) we have 

(23) 

Together (20) and (23) give (21). From (20) and (21), x* E I st. Due to the comment of the appendi x, on 

identifying x, rs, and rt with x*, lsi (y), and.ftl (y) respectively, and using (20), (21), and the fac t th at x* E 
L(v ., Vt) , we conclude that if y E 1st then y = x*. Thus (22) is true . Further, (19), (20) , and (21) give v s + 
x* = v,. 

We now employ the remark. 

PROPERTY 4: Suppose y > a, and we have l' = f3 stfor some distinct Vs and Vt with s < t. Let x* E L(vs, VI) be 

such that d(vs, x*) = lsI (1'): x* is the unique minimum of f, and Vs =r- x* =r- Vt. Also, {s, t} e MP. 
PROOF. Prope rty 2 gives y = y' and {s, t} eMP. Thus from Prope rty 1, the defin ition o[ S(y' ), and Remark 3, 
we have 1> =r- S(y) = S(y' ) e N (vs, lsl (y)) n N (v t, fi l (y)) = {x* }, and hence x* is the unique minim um of]. 

Remark 3 also gives Vt =r- x* =r- Vs. 

Pare nthetically, we observe that when d( Vj, v k) ~ L jk, Remark 2 gives f3 jk = max[fl O)Jk(O)], so that f3 jk 
~ a. Thus with 

f3* == { - 00 if d~vj~ Vk) ~ Ljk f or a ll pairs (j, k) fo r which 1 ~ j < k ~ m 
max{f3jk. {j, k} e M, ) < k, Ljk < d(vj, VI.,)} otherwIse 

we have l' = max(a , [3*) , a fac t that may possi bly permit l' to be computed more e ffici entl y than by using y = 

max(a , [3). 

3. Concluding Remarks 

To summarize our analysis, all of the basic results evolve from Lemma 2, wh ich in tu rn relies upon the 
pa ir-wise inte rsection prope rty of Lemma 1. Given y = y' , the equivalent conditions of Lemm a 2 immed iately 
imply tha t y = r , and lead naturally to procedures (Properties 3 and 4) for computing the unique mini mum . 
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Dearing studies properties of the mInImax problem for more general types of distances (e.g. , norm

derived distances in Rn) than the one we consider (which is not norm-derived), and presents a number of 
properties, including a proof that y :S J*. His analysis es tablishesf is stric t quasiconvex, and can be adapted 

to s how thatf has a unique minimum and to provide a procedure (whic h we state in Properties 3 and 4) for 

computing the minimum. Whe n distances are rectilinear be tween pairs of points in the plane, he uses a version 
of the pair-wise intersection property to show y = f*; also he points out that the version given by Horn can be 
used to show y = J* for the problem we consider. 

The major d ifference between our development and Dearing's is the way in whic h all our basic results 
evolve naturall y from Lemma 2. Thi s evolution in turn entails proofs different from Dearing's. In addition , we 

believe Remark 2, Lemma 2, and Properties 1 a nd 2 , to be new. Also, we remark that our analysis can be used 
readily to establi sh that y = J* when distances are (a) rectilinear between pairs of points in the plane or (b) 

Tchebyshev between pairs of points in real p-space, p ::::: 1; for these cases distinct global minima may exis t. 

That y = J* in cases (a) and (b) has previously been established in different ways by Dearing [4], a nd Goldman 
[5] respectively. Properties 3 and 4 can be modified to provide precedures for constructing all alternative 
global minima. 

Finally, while the results of thi s paper have been presented for the case where T is a tree network , we 

remark, as pointed out by a referee, that a number of the results are in fac t more general. In particular, if we 

take T to be a metric space with me tric d, assume that eac h term 0i is well-defined (which will be the case 

provided T is a compact metric space), and assume the condition (4) implies (3) and (3) implies (2) (equivalent 
to c hanging Lemm a 1 to an hypothesis), then all of the results of the paper, with the exce ption of Re marks 3(b) 

a nd (c), and Property 4, are true. Property 4 is true if the second and third sentences are replaced by the 

following one: Every point inS(y) , and at least one pointx* in the nonempty set N(vs,j';I(y)) n N(vt..ft l(y», 
is a minimum off Also, we remark, as pointed out by a referee, that the assumption that (3) implies (2) is 
much stronger than the assumption that (4) implies (3). The latter assumption is true for any connected network 

or, more ge nerall y, for any path wise-connected me tric space. 

4. Appendix 

Here we sta te and prove an expanded form of Remark 2. Also we state and prove a comment needed in the 
proof of Remark 3. 

REMARK 2. Let {j, k} C M with j :S k. Define the function gjkwith domain [ajk' b jk] by 

where 

The following assertions are true. 

(a)[ajk' b jk] =f. 1>. 

(b) gjk is strictly increasing and continuous, and has range [Ljk' UjJ, where 
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if fj( OJ) < fk( Ok), 

if fj( OJ) = fk( Ok), 



-------------------

(d) The inversefunction of gjk, gj,/ , exists , is strictly increasing and continuous, has domain [Ljk, U jlJ and range 
[ajk, bj,J. 

(e) Define f3jk by 

The condition 

is equivaLe nt to 

(I) If j = k = i, f3jk = f3ii = qO). 

(g) If {j , k} n MS =1= cf>, f3jk < f*. 

PROOF: ( a) For i E {j, k}, .Ii I has domain [f,{O),j,{ 0;)]. As the domain of g jk is th e intersection of the domains 
of .I; I and Jk' , the domain of g jk is thus [a jl<> b jk). Also, a < YJ implies ajk < bjk, so [ajl<> b jd =1= cf> by Remark 
l(c). 

(b) It is well-known that a sum of strictly increasing, continuous functions is strictly increasing and 
continuous, implying in turn that the range of g jk is [gj~ajk) ' gjk~bjk»). 

Due to the similarity of the various cases of this part of the proof, we consider only the cases offiO) < 
f~O), where Ljk is concerned, andfioj) <f~Ok)' where U jk is concerned . Subcases not considered a re treated 
similarly. 

WhenJiO) <fk~O) <fioj),f~O) is in the range offj, so L jk = .I;'(fk(O)] is well-defin ed. Also 0 = 
fii [fiO)] <jj1 [f~O») =.1;1 [fk~O)] +h1 ff~O)] = gjklf~O») = gjk~ajk) = Ljk = fil [fk(O)] <fi1 ffj(8J)] = 8J . 

WhenA(O) <jj(Oj) <A(Ok),jj(Oj) is in the range offk, sOh1[f;(Oj)] is well-defined. Also, OJ = .1;1 [f;(Oj)] 
+ h1(fk(O)] <.I;l[f;(Oj)] + h 1[f;(Oj) ] = gjk[f;(Oj)] = gjk(bjk) = Ujk = OJ + h 1[f;(0;)] < OJ + Jk 1(fk(Ok)] = OJ 

+ Ok· 

(c) From (b), min (OJ, Ok) < U jk. From the definition of OJ and Ok, d(v j, v k) :::; min (OJ, Ok) , and so d( v j, v k) 
< Ujk. 

(d) Since gjk is strictly increasing and continuous, it has an inverse function , gjkl , which is also stri ctl y 
increasing and continuous. The domain of gjk1 is the range ofg jk, and the range of gjkl is the domain ofgjk. 

(e) If d(vj, Vk) :::; L jk, then the equivalence of the two conditions is immediate (since Ljk is the minimum 
value ofg jk). When d(vj , Vk) > L jk, by part (c) d(vj, Vk) is in the range of gjk, in which case applying gjk1 to the 
first condition gives the second, while applying gjk to the second condition gives the first. 

(I) When} = k = i , we have f3 jk = ajk = aii = f'{O). 

(g) When {j, k} n MS =1= cf>, the definition of MS gives b jk = min ffi OJ),j ~ Ok») < f*, so as f3 jk :::; b jk we 
have f3jk < j*. 
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COMMENT: Given that T is an imbedded tree, suppose 3x, x E T, such that 

d(Vi' x) = fi' i = s, t 

d(vs, VI) = d(vs , x) + d(x, Vt). 

If y is such that 

d(Vi' y) :::; ';, i = s, t 

then y = x. 
PROOF. Equations (24) and (25) give 

while (26) and the triangle inequality give 

From (27) and (28), 

and thus (26) and (29) give 

d(Vi' y) = 'i, i = s, t. 

(24) 
(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

From (29) we have y E L( V s, v I), so since T is an imbedded tree, Lemma 1 of[2] implies y E L( v s, x) U L(x, VI)' 
We may assume y E L(vs, x) without loss of genera)ity, so that 

d(vs, x) = d(vs , y) + dey, x). 

Thus (25) and (31) give 

d(vs , VI) = d(vs , y) + dey, x) + d(x, Vt). 

Using (27), (30), and (24) with (32) we have 

fS + fl = fs + dey, x) + 't· 

Thus dey, x) = 0, and so y = x. 

I would like to acknowledge the constructive comments of P. M. Dearing, and of the referees. 
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