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A Note on a Nonlinear Minimax Location Problem in Tree
Networks*

Richard L. Francis**

(May 16, 1977)

We present properties some new derivations of properties of a nonlinear version of a minimax tree network
location problem. The provide necessary and sufficient conditions for optimality, a means of computing the opti-
mum objective function value, and a means of constructing the unique optimum location.

Key words: Facility location; location theory; minimax; networks.

1. Introduction

The purpose of this note is to provide new proofs for properties, established by DEARING [4]," of a quite
general nonlinear minimax location problem; these proofs appear to give additional insight into the mathemati-
cal nature of such problems. As a natural consequence of the approach we use, we obtain as well a new family
of equivalent conditions for optimality to the problem.

So as to state the problem, consider a finite undirected tree network with positive arc lengths. We denote
by T' an imbedding of the given tree (e.g., a planar imbedding such as a road network) having rectifiable arcs,
so that it is meaningful to speak of points on the arcs as well as at vertices.

For every pair of points x and y in T', we suppose the shortest-path distance between x and y, d(x, y), is
well defined, as in reference [2]. This distance has the customary metric properties for every x, y € T', that
d(x,y) =0, thatd(x, y) = 0iffx =y, and that d(x, y) = d(y, x); alsod(x, y) =d(x,z) + d(z, y) for everyx, y,
z€T.

The problem of interest is as follows. Suppose “existing facilities” are at distinct vertex locations vy, * - -,
v in the tree, and that a “new facility” is to be located at a pointx. For each vertex v, fild(x, v;)] is a “cost” or
a “loss” incurred, increasing with the distance between x and v;, and

Ax) = max {fild(x, v)]:1 =i = m} (1)

is the maximum loss. The problem of interest is to find x* in T’ to minimize f defined by (1); we call any such x*
a minimum of f. One may wish to employ such an approach when it is more important to provide quick service
than to minimize total cost.

So as to state the problem more precisely, define 8; = max {d(u, v;):u €T}, 1 =i =m. Also we define f*
= f(x*); continuity and compactness considerations assure the existence of a minimum of f. We assume f; is a
strictly increasing, continuous function, with domain [0, 8;], for 1 =i = m. The assumed properties for each f;
are quite weak, compared to assumptions in earlier related literature. Dearing was apparently the first to solve
the problem using only these assumptions; previous work assumes the functions f; to be linear, and is
discussed by DEARING and FRANCIS [2].

Subsequent to the analysis we indicate in some detail how our results differ from Dearing’s.
2. Analysis
The following definitions facilitate the analysis:

M =1{,2, -, m}
MP = {i eM:f* < [{8)}
MS = {i e M:f(8) <f*}

Ml
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o' = max [f{0):i € MP]
a = max [f{0):i e M]
n' = min [f{):i € MP]

= min [f{d):t € M]
f(x) = max [f;[d(x, v;)]: i € MP], for all x € T.

3
Il

We remark that any f; with i € MS is a secondary function in the sense that it may be deleted from the
definition of f without changing f, that is,

f) =f'(x)

for all x € T. However, functions f; where t € MP are primary functions in the sense that f may be changed if any
such function is deleted.
The above definitions lead to
REMARK 1: (a) MP # ¢.
b)a =a=f=n'.
(¢) We may assume o < m without loss of generality.

PrROOF. (a) The proof is simple and we omit it.
(b) The proof is trivial except for o = f*. Let f{x*) = f*.
We then have

£0) = fild(x*, v)] = flx*) = f*, 1<i<m,

giving a = f*.
(c) If & = m then there exist functions f; and f; such that f3(0) = f48), thus f{x) = f{8;) =f/0) = fi(x)
for all x € T, and so the function f; may be deleted from the definition of f without changing f.

The following remark establishes properties of functions which occur repeatedly in the subsequent
analysis. The proof is straightforward but tangential to the main body of the development, and we relegate the
proof (of a more extensive form of the remark) to the appendix.

REMARK 2: Let {j, k} C M with j < k. Define the strictly increasing, continuous function g i, whose domain
[ajk, bik] is nonempty by Remark 1(c), by

gik(z) = f7'(z) + f'(2),

where

max [f;(0), fx(0)],
min [£;(8;), fx(8,)].

ajk

bjk

Il

Also deﬁne ij and Bik by

7 fk(0)]>0  iff;(0) < £ (0)

Lik=40 if £;(0) = £,(0)
£ [5(0)] >0 if £;(0) > £,(0)
Bik = aj if d(vy, ve) = L

g [d(vs, vio)] if Lix > d(vy, vip).

I

Bix
(a) The condition
d(v, vi)) = gil(z), 2 € [aj, by
is equivalent to
Bik = 2, z € [a, by].
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(b)If j = k =1, B = B = fi (0).
((')If{is k} N MS # d)v Bjk<f*-

The following additional notation is useful:

B’ = max [Bj:{j, k} C MP, j < k] if |MP| = 2
B’ = —xif |[MP| =1

B = max [Bj:{j, k} C M, j < k]

v = max [Bje:{j, k} C MP, j < k]

vy = max [Bj:{j, k} C M, j = k].

Wenotethata' =, B' =B,y =7v, ¥y = max (a’, B), and y = max (, B), where the identities for y’
and 1y are due to Remark 2(b); also, n = 7’.

Some extra definitions are convenient. Given any y € T and nonnegative number r define N(y, r) = {x €T:
d(x,y) =r}, and call N(y, r) a neighborhood with center y and radius r. Given any u, v € T define L(u, v) = {x €
T:d(u, x) + d(x, v) = d(u, v)}; intuitively, L(u, v) is the unique imbedded path joining u and v, and has
“length” d(u, v).

We say that a subset S of 7" is convex (or connected) if L(u, v) CS for every u, v € S. HORN [6] proves a
“pair-wise intersection” property for trees which, slightly modified, is the foundation of the analysis to follow.
The result states that “A collection of subtrees has at least one common node if and only if every pair of (these)
subtrees has at least one common node.” Following Horn’s result, Chan and Francis [1] give a different proof of
a quite similar result: the intersection of all the members of a finite collection of convex (and compact) subsets
of an imbedded tree T' is nonempty if and only if every pair-wise intersection of these subsets is nonempty.

It is intuitively appealing, and can be proven (see Lemma 1 and Property 10 of reference [3]) that any
neighborhood of T is a convex (or connected) set, and is also compact given rather weak assumptions about 7.
Hence as a special case of the pair-wise intersection property of reference [1] we have the following lemma.
LEMMA 1. Given neighborhoods N(y;, ;) of T, 1 = i = m, the conditions (2), (3), and (4) below are
equivalent:

N(yj, I'j) N N(,Vkv l'k) # ¢, 1 < J =k=<=m (3)
diyp yo =1t lsjsk=m. (4)

We remark that the nontrivial part of the proof of the lemma is showing (3) implies (2). The condition (3)
follows immediately from (2), and it is direct to establish the equivalence of (3) and (4).

We study the functionf’ in order to minimize f. It is simpler to develop the theory for f than for £, and all
such theory then applies tof. Fortunately we do not need to determine the set MP used in defining /" in order to
develop the theory, as we must know f* in order to construct MP, and f* is what we are trying to find.

In order to minimize f* we study the following equivalent problem:

minimize z

subject to f{d(x, vj)] =z, i €e UP (5a)

zela',m'] (5b)

We comment that (5b) is justified by Remark 1(b).

The following lemma gives conditions equivalent to (5).
LEMMA 2: FEach of the conditions (6) through (16), on z, in conjunction with the condition z € [, '], is
equivalent to the feasibility of z in (5):

I x5 f[d(x, v))] = z, i € MP (6)
Ax5dx, v) = f{z), i e MP (7)
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x5 x €N(vy, fi! (z)), i e MP (8)

I x5 x € N {N(v;, fi' (z)): i e MP} )
S(z) = N{N(v, fi* (z)): i e MP} # ¢ (10)
N(v;, fi* (2)) N N(vi, f* (2) # &, {j, K} CMP, j <k (11)
d(v;, vi) = 1" (z) + fi' (2), {j, K} CMP, j <k (12)
d(vj, vi) = gk (2), {j, k} CMP, j =k (13)
Bixk =1z {j, k} CMP, j =k (14)
a =z (15a)
B' =z (15b)
V' =z (16)

We omit a formal proof of Lemma 2, as in most cases the equivalence of adjacent conditions is clear. We
use the fact that since f; is continuous and strictly increasing it has an inverse function f;! which also is
continuous and strictly increasing. Likewise gj has an inverse function which is continuous and strictly
increasing. The equivalence of (6) and (7) requires z to be in the domain of fi*, z € [f{0), f{5))], which is
implied by z € [&’, M']. The equivalence of (13) and (14) is due to Remark 2(a). The key equivalence in (5)
through (16) is the equivalence of (10), (11), and (12), which is due to Lemma 1.

With S(z) defined by (10), Lemma 2 gives:

PROPERTY 1: (a) We have y' = f*, and the set of all points x* minimizing f is nonempty and consists of S(y').
(b) With z = ', each of the conditions (5) through (16) is necessary and sufficient for optimality to the minimax
problem.

PROOF: (a) From Lemma 2, since (6) implies (16) we conclude ' is a lower bound on every value of f. Using
Lemma 2 withz = " and noting thaty’ =< f* < 7', " = max(a’, B'), so that &' =7y’ = 7', it follows since
(16) implies (6) that y' is the minimum value of f, and that S(y’) is the nonempty set of all points x* minimizing
f. (b) This part is immediate from (a) and Lemma 2.

Sincey' depends on MP, it generally cannot be computed prior to determining f*. Fortunately, we shall

see thaty’ = 7; ¥ can be computed.
PROPERTY 2: (a) If v = a = {(0), then y = f* = y', and p € MP.

(b) If y = B = B, with s < t, then y = f* = y' and {s, t} C MP.
PROOF: (a) Property 1 gives f* = y',’so that &« =< f* = v’ <. Thus y = a implies y= f* = y’. Further, we
know f{0) < f* fori € MS, so fp(0) = vy = f* implies p € MP. (b) Property 1 gives y' = f*, so 8’ =7y implies
B' = f*. For any Bjx not used in computing B, j € MS or k € MS, so Remark 2(c) implies Bj; < f*. Thus for
every Bk, Bix =/f*, sothat B =f*. Thus B =f* =y =y = B,s0y =f* = y. Since Bg = f*, Remark 2(c)
implies {s, ¢t} N MS = ¢, and so {s, t} C MP.

Given y = f* we now proceed to characterize the minima of f. Since y = max(a, ), it suffices in turn to
consider the cases y = a and y = .

ProPERTY 3: If vy = f,(0) for some p € M, then v, is the unique minimum of f and p € MP.
PROOF: Property 2 gives y = ' and p e MP. Thus, by Property 1, S(7y) = S(y') is the nonempty set of minima
of f. As v = f,(0), f»' (¥') = 0, so the definition of S(y’) gives

¢ # S(y) = S(Y') C Nvp, f," (v')) = {vp},

and hence vy, is the unique minimum of f.
We now consider the remaining case where y = B for some vgand v, and y > a. Note, with reference to
the definition of B in Remark 2, that when y = By > a, then @ = ay implies By > ag, and thus By =
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g [d(vg, v)]. The following preliminary remark is useful. (A tangential result needed in the proof is stated
and proven in the appendix.)
REMARK 3: Suppose y > «, so that for some distinct vs and viwith s <'t,

Y = Bst = gs* [d(vs, v)]. (17)
The following conclusions may be drawn.
(a) We have
' (y) + 171 (y) = got (¥) = d(vs, Vo), (18)
min [f5* (y), £ ()] > 0. (19)
(b) For some x* € L(vg, vy),
d(vg, x*) = £51 (y). (20)

(¢) Let x* € L(vs, vy satisfy (20). Then we have vy # x* # v,
d(x*, v) = fr' (y) 1)
and

Iy = N(vg, £51(¥)) N N(vy, fr'(y) = {x*}. (22)

PrRoOOF. (a) Equation (18) follows immediately by applying g4 to (17). Since y > a, y > f0) and y > f(0),
so fs1 (y) > 0 and f;' (y) > 0, establishing (19).

(b) From (a) we have 0 < fi! (y) < d(vs, v4), so continuity considerations and the intermediate value
theorem, as discussed in reference 2, assure the existence of x* satisfying (20).

(c¢) Since x* € L(vs, vy, from (a) we have

d(vg, v¥) + d(a*, v;) = d(vs, v) = f;' (y) + fi! (y). (23)

Together (20) and (23) give (21). From (20) and (21), x* € Iy Due to the comment of the appendix, on
identifying x, ry, and ry with x*, f;' (), and f;' () respectively, and using (20), (21), and the fact that x* €
L(vs, vy, we conclude that if y €Iy then y = x*. Thus (22) is true. Further, (19), (20), and (21) give vs +
x* = v,

W:e now employ the remark.
PROPERTY 4: Suppose y > ., and we have 'y = By for some distinct vgand vywith s < t. Let x* € L(vg, vy) be
such that d(vs, x*) = f3! (y): x* is the unique minimum of f, and vy # x* # vi. Also, {s, t} C MP.
PROOF. Property 2 gives y = ¥’ and {s, t} C MP. Thus from Property 1, the definition of S(y’), and Remark 3,
we have ¢ # S(y) = S(y') CN(vs, f5* (7)) N N(vy, 71 (7)) = {x*}, and hence x* is the unique minimum of f.
Remark 3 also gives v; # x* # v,

Parenthetically, we observe that when d(vj, vx) = Ljx, Remark 2 gives Bjx = max[f{0), fx(0)], so that B
= «. Thus with

g = — if d(v;, vx) = Ly for all pairs (j, k) for which 1 = j < k=m
| max{B: . k} C M, j <k, Ly < d(v;, )} otherwise

we have y = max(a, 8%), a fact that may possibly permit y to be computed more efficiently than by using y =
max(a, [3).
3. Concluding Remarks

To summarize our analysis, all of the basic results evolve from Lemma 2, which in turn relies upon the
pair-wise intersection property of Lemma 1. Given y = ', the equivalent conditions of Lemma 2 immediately
imply that y = f*, and lead naturally to procedures (Properties 3 and 4) for computing the unique minimum.
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Dearing studies properties of the minimax problem for more general types of distances (e.g., norm-
derived distances in R") than the one we consider (which is not norm-derived), and presents a number of
properties, including a proof that y = f*. His analysis establishes f is strict quasiconvex, and can be adapted
to show that f has a unique minimum and to provide a procedure (which we state in Properties 3 and 4) for
computing the minimum. When distances are rectilinear between pairs of points in the plane, he uses a version
of the pair-wise intersection property to show y = f*; also he points out that the version given by Horn can be
used to show y = f* for the problem we consider.

The major difference between our development and Dearing’s is the way in which all our basic results
evolve naturally from Lemma 2. This evolution in turn entails proofs different from Dearing’s. In addition, we
believe Remark 2, Lemma 2, and Properties 1 and 2, to be new. Also, we remark that our analysis can be used
readily to establish that y = f* when distances are (a) rectilinear between pairs of points in the plane or (b)
Tchebyshev between pairs of points in real p-space, p = 1; for these cases distinct global minima may exist.
That y = f* in cases (a) and (b) has previously been established in different ways by Dearing [4], and Goldman
[5] respectively. Properties 3 and 4 can be modified to provide precedures for constructing all alternative
global minima.

Finally, while the results of this paper have been presented for the case where T' is a tree network, we
remark, as pointed out by a referee, that a number of the results are in fact more general. In particular, if we
take T to be a metric space with metric d, assume that each term 8; is well-defined (which will be the case
provided 7' is a compact metric space), and assume the condition (4) implies (3) and (3) implies (2) (equivalent
to changing Lemma 1 to an hypothesis), then all of the results of the paper, with the exception of Remarks 3(b)
and (c), and Property 4, are true. Property 4 is true if the second and third sentences are replaced by the
following one: Every point in S(7), and at least one point +* in the nonempty set N(vg, f5 (y)) N N(vy, f71(y)),
is a minimum of /. Also, we remark, as pointed out by a referee, that the assumption that (3) implies (2) is
much stronger than the assumption that (4) implies (3). The latter assumption is true for any connected network

or, more generally, for any pathwise-connected metric space.
4. Appendix

Here we state and prove an expanded form of Remark 2. Also we state and prove a comment needed in the
proof of Remark 3.
REMARK 2. Let {j, k} C M with j = k. Define the function g with domain [aj, by by

giz) = {7 (z) + f'(2),
where

ajx = max [f;(0), fx(0)]

o
5
|

= min [f;(9;), fi(dK)]-

The following assertions are true.

(@[a byl # ¢

(b) gk ts strictly increasing and continuous, and has range [Lyk, U], where

0 <Ly ={i[fi0)] <9; if i(0) <f(0),
Lix=0 if £;(0) = fi(0),
0 <Ly =f[f(0)] <8 if £,(0) > fi(0),

8; < Uy = i [fi(8;)] + 8; < 8y + §; if £(8;) <fi(Sy),

Ujx = 6; + O if £(8;) = fi(Sy),

Oy < Uy = 57 [f(8y)] + 6k < 85 + Oy if £(8;) > fi(8y).
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(¢) d(vy, vi) < Ujy.

(d) The inverse function of gjx. gix', exists, is strictly increasing and continuous, has domain Ly, U] and range

[ajk, byl

Clne e

Bix = aj if d(vj, vi) = Ly,

Bix = gy [d(vy, vi)] if Ly < d(vj, vi).
The condition

d(vj, vi) = giul(2), z € [ag, by
is equivalent to
Bik =z, z € [aj, by

O1fj=k=1i Bk = B = £0).
(&) If {j, k} N MS # ¢, By < f*.

ProoF: (a) Fori €{j, k}, fi! has domain [f{0), f{8;)]. As the domain of g is the intersection of the domains
of f;i! and f5!, the domain of gy is thus [a i bjx]. Also, & < 7 implies aj < bjx, so [ajw bjx] F ¢ by Remark
1(c).

(b) It is well-known that a sum of strictly increasing, continuous functions is strictly increasing and
continuous, implying in turn that the range of g is [gi(@jk), 2l bjr)]-

Due to the similarity of the various cases of this part of the proof, we consider only the cases of f{0) <
fi0), where L is concerned, and f{8;) < fi(0r), where U j is concerned. Subcases not considered are treated
similarly.

When f10) < fi{0) < f19;), fi{0) is in the range of f;, so Ly = fi[fx(0)] is well-defined. Also 0 =
SO < £ O] =£7 O]+ O] = g0 = o) = L = 7 [olO) < ;" 58)] = 8.

When £.(0) < £(8;) < fi(8r). f;(5;) is in the range of fx, so f5 [fi(8;)] is well-defined. Also, 8; = f7'[f;(5;)]
+ fsl?l[fk(o)] <Si'8:)] + £ 'li(85)] = galfi(8)] = ginlbix) = Uz = 8; + f'[i(8)] < &; + fic '[fi(8r)] = §;
+ 0.

(c) From (b), min (8;, 8x) < Ujx. From the definition of 8; and 8y, d(vj, vx) = min (8;, 8;), and so d(v;, v)
< Uj.

(d) Since g is strictly increasing and continuous, it has an inverse function, gj!, which is also strictly
increasing and continuous. The domain of gj;' is the range of g jx, and the range of g3 is the domain of g j.

(e) If d(vj, vk) = Ly, then the equivalence of the two conditions is immediate (since L j is the minimum
value of gjx). When d(vj, vk) > L, by part (c) d(vj, vg) is in the range of gjx, in which case applying gj! to the
first condition gives the second, while applying g to the second condition gives the first.

(0 Whenj =k = I:, we have B.ik = Qjp = Qi =f,(0)

(g) When {j, k} N MS # ¢, the definition of MS gives b = min [f{5)), fi(Sr)] <f*, so as Bjx = bjx we
have B < f*.
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COMMENT: Given that T is an imbedded tree, suppose v, x € T, such that

d(vi7 x) = ri ¢= s, t (24')
d(vs, v) = d(vs, %) + d(x, v,). (25)
If y is such that
d(vis )’) == Ti, = s, t (26)
then y = «.
ProoF. Equations (24) and (25) give
d(vs, v) = 15 + 1o, (27)

while (26) and the triangle inequality give

d(vg, v) = d(vg, y) + d(y, v;) =15 +1¢. (28)
From (27) and (28),
d(vs, y) + d(y, v) = rs + ry = d(vs, v) (29)
e s (6080 el
d(vi, y) = i, 1= s, L. (30)

From (29) we have y € L(vs, vy), so since T is an imbedded tree, Lemma 1 of [2] implies y € L(vg, x) U L(x, v,).
We may assume y € L(vg, x) without loss of generality, so that

d(vs, x) = d(vg, y) + d(y, x). (31)
Thus (25) and (31) give
d(vg, v) = d(vs, y) + d(y, x) + d(x, vy). (32)
Using (27), (30), and (24) with (32) we have
re trp=rs +d(y, x) +rg

Thus d(y, x) = 0, and soy = x.

I would like to acknowledge the constructive comments of P. M. Dearing, and of the referees.
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