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Previous studies of one-facility minimax location problems are extended by permitting the cost of travel to be given by any
(strictly) increasing, continuous function of travel distance. Previous solution procedures for the rectilinear distance problem in the
plane and for the problem on a tree network are extended to these general cost functions.
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1. Introduction

Minimax location problems have received considerable attention in the literature as models for locating
facilities that are to provide emergency or convenient service to a set of existing facilities. In most of these
problems there is given a set of existing facilities whose locations are represented as points in some space, and
new facility locations are also to be specified as points in that space. A distance function is chosen to represent
the travel distance between the new and existing facility locations. The minimax objective is to locate the new
facilities so that the maximum distance, or a function of distance, between the new and existing facility
locations is minimized.

Different problems may be specified by the choice of the space and of the distance function used. Most of
the problems in the literature may be placed into one of two classes: those using a norm-derived distance in the
space R" for some n, and those on a network using network distances. Also, different problems may be
specified by the choice of the cost-representing functions of travel distance. These functions are referred to
generically as “cost” functions, but they may measure cost, time or some other form of inconvenience.

This paper considers one-facility minimax location problems that permit quite general cost functions,
namely any continuous (strictly) increasing function of the travel distance. In the previous considerations of
minimax location problems, cost functions were assumed to be linear, or in many cases the identity function.
The initial formulation and analysis are given for a problem in R" using norm-derived distances; however, the
results obtained also hold for problems on a network and are discussed subsequently. In addition, for minimax
location problems using rectilinear distance, this paper extends previous solution procedures to these more
general cost functions in the space R%. For the problem on a tree network, previous solution procedures are
also extended to the general cost functions.

Most of the literature on minimax location problems has appeared in the last ten years, although one
version of the problem was first formulated in 1857 as a “minimum covering sphere problem.” A brief
historical review is given by Elzinga and Hearn [6]' who deal with the case involving the Euclidean distance in
R™ and the identity cost function. Elzinga and Hearn [5] and Nair and Chandrasekaran [23] develop additional
solution procedures for the same problem in R%. A multi-facility version of the Euclidean distance problem in
R? is considered as a convex programming problem by Love, Wesolowsky and Kraemer [20].

Geometrical properties motivate solutions by Elzinga and Hearn [5] and by Francis [8] to a one-facility
rectilinear distance problem in R? using the identity cost function. Wesolowsky [24], and Dearing and Francis
[2] solve a multi-facility version of the rectilinear distance problem in RZ.

One-facility minimax location problems on a network with linear cost functions were first considered by
Hakimi [12], [13] and subsequently by Goldman [11], Dearing and Francis [3] and Handler [16]. For tree
networks the problem has been solved by Goldman [11], Handler [15], [16], Halfin [14], and Dearing and
Francis [3]. A generalization for locating several new facilities, called the “p-center” problem, has been
considered by Christofides and Viola [1], Minieka [22], Garfinkel et al. [10], and Handler [16]. Multi-facility

minimax problems on tree networks are studied by Dearing, Francis, and Lowe [4].
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One-facility minimax location problems in R" using norm-derived distances and linear cost functions
were studied by Francis [7]. The analysis and developments of that work motivate many of the extensions in
this paper. A general reference on facility location is the book by Francis and White [9].

2. Formulation and Analysis

To state the minimax location problem under consideration, suppose that one new facility is to be located
atapointX = (x,. . ., x,) inR", and suppose that m given points P;, 1 =i =m, in R" represent the locations
of existing facilities. Let d(X, Y) denote a norm-derived distance between the points X and Y and suppose that

’ d(X, Y) is convex and continuous in X for each fixed Y. For example, this includes distances of the form

dX, ) = [ 3 | = x 1 (1)

for some real p = 1. When referring to a particular such distance for a specified p we write dy(X, Y).
For 1 =i <m, letf;be a continuous (strictly) increasing function with domain [0, %). In particular apply
fi to the distance d(X, P;) of X from P; and define the function f on R" by

fX) = max {fildX, P)]}.

1<is=m

The problem of interest, denoted by PO, is

min f(X).

XeR"

Problem PO may have a variety of applications depending on the dimension of the space R", the distance
d and the functions f;. For example, suppose the existing facilities are locations of demand for emergency
service and are represented as points in the plane R%. Suppose that travel distance is approximated by the
Euclidean distance (p = 2), and the functions f; are chosen to express the time of travel as a function of the
distance from P;. Then the function f expresses the maximum time of travel between the new facility location X
and any existing facility.

In a recent study for the New York City Fire Department, Kolesar et al. [18] conclude from empirical
observations that in most situations the time of travel for fire trucks is a particular continuous, nonlinear,
increasing function of the travel distance. The assumptions made about the cost functions f; allow such
representations of travel time as a function of travel distance. Also, freight movements often involve transport
costs which are concave increasing functions of transport distance; these situations also may be represented by
thef,-.

Next, some properties of the function f will be observed and proved, including the existence of a point X*
that minimizes f, the strict quasiconvexity of f, a lower bound for f, some conditions for the bound to be tight,
and a necessary condition for a minimum solution. Most of these properties of f are motivated by, and are

extensions to, similar developments in [7].
PROPERTY 1: There exists an X* in R" such that {(X*) = {(X) for all X in R".

Proor: Foreachi, 1 =i =m, f{d(X, P;)]is a continuous function of X since it is the composition of f;
and the continuous function d(P;, X) of X. Thus f, the maximum of finitely many continuous functions, is
continuous on R™, It can be shown that the level set S = {X €R™ f{X) =<k}, for any value of k in the range of f,
is compact in R". Thus there exists an X* in Sj such that fiX*) = fiX) for all X in Sx. By the definition of Sy,
SIX*) = fiX) for all X in R™

In the following property, the definition of strict quasiconvexity is taken from Mangasarian [21].

PROPERTY 2: The function f is strict quasiconvex on R".
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ProOOF: Let X, and X, be any two points in R" with fiX;) < fiX). We must show that f{lAX; + (1 — ANX,) <
fiX,) for 0 < X < 1. By the convexity of d and the monotonicity of f;, we have for some s, AN, + (1 — X\ )X,)
= fildAX; + (1 — NXa, Po)] = fi[MX 4, Py) + (1 — Nd(Xs, PY] =< fi[max{d(X,, P,), d(X,, P9} =
max{ fi[d(X,, Py)], fild(Xs, Py} = max{f(X,), AAX2)} = f(X,). If equality holds in the above, then Ad(X,, P,)
+ (1 — M)d(Xs, Py) = max{d(X,, Py), d(X,, Py)}, and this implies d(X{, Ps) = d(X,, Py). Also equality implies
fIXy) = fild(X,, Py)]. Then AiAX,) = fild(X,, Pyl = fldX,, Ijs)] = flXy), a contradiction, so that strict
inequality holds.

COROLLARY: If X* is a local minimum of f, then X* is a global minimum of f.

Since each f; is continuous and increasing, fi ' as well as (f;' + f;') and (f;' + f;')7! is continuous
and increasing. These observations are used next to develop a lower bound for the function f and conditions for
the bound to equal the value of f at some point. Such a point is of course a solution to problem PO.

For each pair of existing facility locations P; and P, consider the function (f7' + f51)~!. We define b(i,
j) as that function’s value at d(P;, P;), provided d(P;, P;) is in the domain, i.e.,

b(i,j) = (fi* + f7)7" [d(Py, P)]. (2)

Only the values b(i, j) are used in obtaining the lower bound. We next describe the domain of (f;' + f;1)~!
and give conditions for b(i, j) to exist.

The domain of (fi' + f;')7" is an interval whose end points are obtained as follows. The range of f; for
each i, 1 =i =< m, is the interval [f;(0), M;) for some value of M; (finite or infinite), and so this interval is the
domain of fi'. The domain of (f7! + fj!) is the intersection of [f{(0), M;) and [£(0), M;), i.e., [max{f;(0),
f(0)}, min{M;, M;}) which we denote by [m;;, My;). This interval may be empty, in which case (fi' + f71)7" is
not defined. If this occurs because M; < £(0), then for all X, f[d(X, P;)] < M; < £{(0) < fild(X, P;)]. In this
case the point P; and the function f; may be deleted from the problem since they do not enter into the definition
of f(X). Similarly P; and f; may be deleted if M; = f}(0). We therefore assume, for the remainder of the paper,
that the intervals [my;, M;;) are nonempty for all 1 =i # j < m.

The range of (fi' + f;') is the domain of (f7! + f571)7% ice., [(fi' + £ Y[myl, (i + £57HIMy)).
Using the definition of m; and observing that f7'[f{0)] [ /7 '[f40)] = 0, the left end point of this interval can
be written as max {f5[£{(0)], fi'[£i(0)]}. Similarly, using the definition of M ;; and observing that f7'(M;) =
fi'(M;) = o, the right end point of this interval is seen to be ©. Thus the domain of (f;' + f;1)7! is the
interval [max {f7'[£(0)], f7'[fi(0)]},). (For a bounded space, with diameter say M, we replace % by M in
the above development.) This yields the following remark which gives a way to check whether b(i, ;) is defined.

REMARK 1: d(P;, P is in the domain of (fi' + {77! if and only if fd(Pi, P;)] = fi (0) and fi[d(P;, P))]
= {; (0).
Next let D be the set of unordered index pairs (i, j) such that b(Z, j) is defined. Define

B = max b(i, j). (3)

(i.5)eD

We will show that B is a lower bound for f. We often write B = b(s, t) (or b(s, s)) to specify that the indices s and
t (ors) give the maximum value of b(i, j). Also, fori =, b(i, i) = f0), and so an equivalent expression for B is

B = max {max b(i, j), max f{0)}.
(i,))eD 1=i=m
i+
Clearly the function (f3! + f51)~! may be difficult to determine for general functions f; and f;. However,
if the f; are piecewise linear approximations to the actual cost functions, the expressions b(i, j) may be
determined explicitly. As an example, suppose each f; is concave piecewise linear function with domain [0, )
and is specified by the k; linear expressions aix + Bi for 1 < s < k; with
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fi®) = min {dsx + B}

1ss=<k;

Then fii(y) = lrsr;i); {y — Bi/ai}, and for each pair (i, j) in D
i

Uit +70) = max {[(c + o)y — (Bt + Bog)]/ ojoff.
1st=<k,

Finally,

7+ /7976 = min {(ohals + Biad + Blad/(od + e}
$:
lstsk;

and b(i, j) is obtained from the last expression with x = d(P;, P;).
Some further relationships between B and f are now given.

PROPERTY 3: For all X in R, B = {(X).
ProoF: Forl <i=<m, b(i, i) = f[d(P;, P;)] < f{d(P;, X)] < f(X). Next consider b(i, j) for anyi # j inD.
Let X' minimize max {f[d(P;, X)], fld(P;, X)]} and suppose f[d(P;, X)] = f[d(P;, X')]. (X' exists by
Property 1.) It can be shown that f{d(P;, X')] is in the domain of f;!, using the existence of b(i, j). Then
bG, j) = (fi* + f7)7dPs, PY] = (fi* + f7) 7 [d(Py, X') + d(Ps, X ]

= (i + 7 (PSP, XD] + f7 (P, X))

= (it + TSPy, XD + f7ALd(Ps, X))
it + 07U + ) AldPy, X)) = fldPy, X )]
max {fi[d(P;, X)], /ild(P;, X)]} for all X.

IA

If fld(Ps, X')] = fld(P;, X')], we get the same result.
Finally,

B = max b(i, j) = (;3;2() max {fi{d(P;, X)], fld(P;, X)]} = f(X).

() eD
The next two properties give conditions for B to equal AX) for some point X in R".
ProPERTY 4: B = b(s, t) = {(X) if and only if the points Ps, Py , and X satisfy
(a) d(Pg, P) = d(Ps, X) + d(X, Py
(b) f[d(Ps, X)] = f[d(P, X)]
(c) B = f[d(P;, X)] for all 1# s, t

The proof of Property 4 follows from the proof of Property 3. In particular, (a) and (b) imply fi[ d(Ps, Py)] =
fLd(Ps, X)] = fil d(P;, X)] = £/(0) and similarly ;[ d( P, P;)] = £,(0), so that Remark 1 applies to assure that
b(s, t) is defined.

PrOPERTY 5: B = [d(Ps, Ps)] = £5(0) for some point P if and only if f(Ps) = f5[d(Ps, Py)]; in either case Ps is
the unique minimum point of {.
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PROOF: Suppose f(Ps) = fi[d(Ps, Py)]. Then
B = f(P,) = f(0) < B implies B = f[d(P;, P,)] = f(Py).

Suppose B = f[d(Ps, Ps)] = f,(0) but that for some i, fj[d(Ps, Ps)] < fild(Ps, P;)] = f(Ps). Since B =
£:(0), £:(0) = £(0) so that f;(0) < £,(0) < f,[d(Ps, P;)]. Thus Remark 1 implies that b(s, i) exists. By assumption
B = £,0) = b(s, i) = (f5* + i) d(Ps, P;)]. Also, £i(0) = £,(0) < fi[d(Ps, P;)] < M; implies that £(0) is in
the domain of (f5* + fi'!), and we have (f5! + fiY)[f:(0)] = d(Ps, P;). This implies fi [ £,(0)] = d(Ps, P;),
or f3(0) 2_}3[(1(1)3, P;)] which is a contradiction. Thus £;(0) = f{d(Ps, P;)] for all i and AP,) = f(0) = B.

In either case f{Pg) = B so that P minimizes f. To prove uniqueness, suppose X° minimizes f. Then B =
fdd(Ps, Py =< f{d(Ps, X°)] =f(X°) = B which implies d(Pg, X°) = 0 and X° = P,

The next property considers the case where B > f{0) for 1 =i = m, and provides a necessary condition
for a point X* to minimize f. The proof of this property is analogous to the proof of a similar result in reference
[3], and is not given here.

PROPERTY 6: Let X* minimize f and suppose that B > {i(0), 1 =i = m. Then there exist distinct points Psand
Py such that f(X*) = f{d(Ps, X*)] = f{d(P;, X*)].

Since B is a lower bound for £, if there is a point X in R" such that f{X) = B, then X minimizes f. For two
special cases we show that the set Sp = {X €R™ f(X) = B} is not empty, and we characterize all the points in
Sp. In characterizing S it is useful to write Sp = N A;where A; = {X eR™f{d(X,P)] =B}, 1 =i =m.

1=i=m

The following lemma is used later but is stated here since it holds for any norm-derived distance in R™.
LEMMA 1: For each pair of indices i, jwith 1 =1, j =m, A;NA; * ¢.

PrOOF: Observe that P; €A for each 1 =i =m, since f{d(P;, P;)] = B. Thus fori =, the conclusion holds.
For i # j there are three cases.

1. fi(0) > f{d(P;, P)]: This implies P; € A; since fi(0) < B.

2. fi(0) > f{d(P;, P)): Thus P; € A;.

3. fd0) = f{d(P;, P)] and f{0) =< f{d(P;, Pj): This implies b(i, j) =
(fi + )7 [d(Py, Py)] or that £7'[bG, )] + £7'[b(i, j)] = d(P;. P;).

Each summand on the left-hand side is nonnegative so f;'[b(i, j)] = d(P;, P;). By the intermediate value
theorem, there exists a point X, on the line segment between P; and P; such that d(X,, P;) = f;'[b(, )]
Substituting this expression together with d(P;, P;) = d(Pi, Xo) + d(X,, P;) into the last equation gives d(X,
Pj) = f71[b(, j)]. Thus f{d(Xe, P)] = fild[(Xe, P;)] = b(i, j) and since b(i, j) = B, X, is in A; and A ;. This

proves the lemma.

3. The Rectilinear Distance Problem in R?

A special case of problem PO is considered that uses the rectilinear distance in R®. The rectilinear
distance is denoted by d, (X, P;) and is defined by takingp = 1 in (1). For the case where the cost functions
are linear functions of distance, an explicit solution procedure is reported in reference [9]. This procedure is
extended here to the functions f; of distance.

Note that if B is not in the range of f;, then f{d; (X, P;)] =B for all X € R* and A; = R*. Otherwise B is in
the domain of fi* and A; = {X €eR?*: d, (X, P;)) =fi' (B)}. Let E be the index set of all i such that B is in the
domain of fi'. Thus Sp = N A,

i€k

Using the rectilinear distance in R?, each set A ;, i € £ may be further characterized, as in reference [9], by
a system of linear inequalities. Denoting X = (x, y) and P; = (a;, b;), we may write

69



Ai={lx,y) eR: —fi' B)+t e+t bi=x+y=fi'(B) + a; + b;,
—f,_l(B)+a,—b,Sx—ySﬁ'1(B)+at—b,}

Then Sgp = M A; implies that S is the set of all points (x, y) in R? such that
i€k

max {—fi'(B) + a; + b} = x + y =< min {i! (B) + a; + b3},
i€k ieE

and

max {—f;* (B) + a; — b} = x — y = min {i* (B) + a; — b;}.
ieE

3
The above inequalities imply that S g is nonempty if and only if
—fi'(B) + a; + b= fi* (B) + a; + b,
and
~fi'B) +a;—b=fi'(B) +a;— b
for all pairs (i, j) i, j € E or equivalently if
dy(P;, P;) = |a; — a5| + |b; — b| = /i1 (B) + 51 (B).

If b (i, ) is defined, the above inequality holds since b (i, j) =B. If b (i, ) is not defined, then either B =
£40) > fildy (P, Pj)] or B =£5(0) > fildy (P;, Pj)]. The first case implies fi! (B) = 0and f;! (B) >d; (P;, Pj),

and adding gives the desired inequality. The second case is similar. This proves the following result.

PROPERTY 7: Using the rectilinear distance in R%, B = min f(X).
XeR?

Interestingly, the above solution procedure does not extend to the rectilinear problem in R" forn > 2, that
is, it is possible that B < f(X) for all X in R". As an example, consider existing facilities at the points P; = (1,
0,0), P, =(0,1,0),P53=(0,0,1), Py= (1, 1, 1) in R, and letf; be the identity function for 1 =i < 4. Then
b (i,]) = 1 for all pairs of distinct i andj and all b (i, i) = 0, so B = 1. The sets A; in R? intersect pair-wise (in
fact any three of the sets A; intersect), but the intersection of all four sets A; is empty.

To describe further why the bound B may not be tight in R", we use the following set intersection property:
a finite collection of sets is said to satisfy the pair-wise intersection property if the nonempty intersection of each
pair of sets in the collection implies that the intersection of all sets in the collection is not empty. Observe that
when using the rectilinear distance, each set A; is an octahedron in R™ (with appropriate definition for n > 3),
and Lemma 1 implies that the A; intersect pair-wise. However, it is shown in reference [19] that octahedra in
R" satisfy the pair-wise intersection property if and only if n = 2. The “if” part provides an alternate proof of
Property 7.

4. Minimax Problems on a Network

Consider a minimax location problem with respect to a system of existing facility locations and given
transportation links between the facilities. As in reference [3], such a system may be modeled as a network
metric space N. The m existing facility locations correspond to nodes a;, 1 =i = m, of N, and transportation
links correspond to edges of V. Each point along a given transportation link is a feasible location for a new
facility and is represented by a point x on the corresponding edge of N. For any two points x and y in N, the
distance between x and y, denoted by d (x, y), is the length of a shortest path between x and y, denoted by
P (x, y). For each i, d(x, a;) is a continuous function of x on N [3].
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As above, let f; be an increasing, continuous function of distance and define fy on N by

S(®) = max {fld(x, al, (@)

1=i=m

and the problem PN by

min fy(x).

xeN

It is shown in reference [3] that V is a compact metric space, and as in the proof of Property 1, fy is
continuous on N. Thus there exists a point x* in N that minimizes fy.

Next observe that a lower bound B may be defined analogous to (2) and (3). It follows that B is a lower
bound for fy since the proof of Property 3 used only the triangle inequality. Properties 4, 5, and 6 also may be
proved for fy by following the respective proofs above and using similar results in reference [3] for linear
functions of distance.

For the special case of a tree network T, additional properties may be proved and a solution procedure
obtained. Let fr denote the function defined on T by expression (4). Observe that the proof of strict
quasiconvexity of f in Property 2 required only the convexity of d and the assumption of increasing f;. In
reference [4], it is shown that the distance d on a network is convex if and only if the network is a tree. Thus an
argument similar to the proof of Property 2 shows that f7 is strict quasiconvex.

Analogous to the above development, we may define the setsA;, 1 =i =m and thesetSg= N A;for

1=i=m
the problem on a tree. We may also show, analogous to Lemma 1, that each pair of sets A; and A; have
nonempty intersection. It is shown in reference [17] that the pair-wise intersection property holds for
connected subsets of a tree. This development implies that Sg is not empty and we conclude that Property 7
holds for f7, that is, B = min f4{(x). This development also gives a procedure for minimizing f7: determine B =
xeT

b (s, t), then the point x* such that d(as, x*) = fi'' (B) on the path P (as, a,) minimizes fr. It may also be shown
using results in reference [3] that x* is the unique minimum of f7 on 7'

In conclusion we note that for a general network NV, the points that minimize fy may be characterized in
terms of spanning trees of N. Let T;, 1 = = v, be all the spanning trees of V.

PROPERTY 8: A point x* in N minimizes fy if and only if x* minimizes fr, for some Ty such that min B(f’[‘j) =

1=j=p
B(fr,).

Using the above developments for fy, the proof of Property 8 is a direct extension to the proof of a similar
result in reference [3]. This property provides an interesting characterization of the minimum solutions of
problem PNV in terms of the network structure. However, at the present no efficient solution procedures are
known for solving PN, even for identity cost functions.

The author is grateful to A. J. Goldman for his helpful comments and suggestions during the course of this
work ‘and to the referees for their constructive comments, especially concerning the conditions for b (i, j) to
exist.
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