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Previous studies of one-fac ility minimax location problems are extended by pennitting the cost of travel to be given by any 
(stric tly) increasing, continuous function of travel d ista nce. Previous solution procedures for the rec tilinear distance problem in the 
plane and for the problem on a tree network are extended to these general cost functions. 
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1 . Introduction 

Minimax location problems have rece ived considerable attention in the literature as models for locating 
fac ilities tha t are to provide emerge ncy or convenient service to a set of ex isting facilities. In most of these 
problems the re is given a set of ex isting facilities whose locations are represented as points in some space, and 
new fac ility locations are also to be spec ified as points in that space . A distance func tion is chosen to represe nt 
the travel di stance between the new and ex isting fac ility locations . The minimax objective is to locate the new 
fac ilities so that the maximum di stance, or a fun ction of di stance, between the new and existing fac ility 
locations is minimized. 

Different problems may be spec ified by the choice of the space and of the dista nce function used . Most of 
the problems in the literature may be placed into one of two classes: those using a norm-derived di stance in the 
space R" for some n , and those on a network using network distances. Also, diffe rent problems may be 
spec ified by the choice of the cost-representing fun ctions of travel distance. These func tions a re refe rred to 
genericall y as "cost" funct ions, but they may measure cost, time or some othe r fo rm of inconvenience. 

This paper considers one-fac ility minimax location problems that permit quite ge neral cost functions, 
namely any continuous (strictly) increasing fun c tion of the travel di stance. In the prev ious cons iderations of 
minimax location problems, cost fun ctions were assumed to be linea r, or in many cases the identity function. 
The initial formul ation and analysis a re given for a problem in R" using norm-derived distances ; however, the 
results obtained also hold for problems on a ne twork and are disc ussed subsequentl y. In addition, for minimax 
location problems using rectilinear distance, this paper extends prev ious solution procedures to these more 
general cost fun ctions in the space R2. For the problem on a tree network , previous solution procedures are 
also extended to the general cost functions. 

Most of the literature on minimax location problems has appeared in the las t ten years, although one 
ve rsion of the problem was first formul ated in 1857 as a " minimum covering sphere problem." A brief 
historical review is given by Elzinga and Hearn [6]1 who deal with the case involving the Eucl idean distance in 
R" and the identity cost function. Elzinga and Hearn [5] and Nair and Chandrasekaran [23] develop additional 
solution procedures for the same problem in R2. A multi-facility version of the Euclidean distance problem in 
R2 is considered as a convex programming problem by Love, Wesolowsky and Kraemer [20). 

Geometrical properties motiva te solutions by Elzinga and Hearn [5] and by Francis [8] to a one-fac ility 
rectilinear distance problem inR2 using the identity cost func tion. Wesolowsky [24] , and Dea ring and Francis 
[2] solve a multi-fac ility version of the rectilinear distance problem in R2 . 

One-fac ility minimax location problems on a network with linear cost fun ctions were first cons idered by 
Hakimi [12], [13] and subsequently by Goldman [11] , Dearing and Francis [3] and Handle r [16]. For tree 
ne tworks the problem has been solved by Goldman [11], Handler [15], [16] , Halfin [14], and Dearing and 
Franc is [3). A generalization for locating several new fac ilities, called the "p-center" problem, has been 
considered by Christofid es and Viola [1] , Minieka [22], Garfinkel et a l. [10] , and H andler [16] . Multi-fac ility 
minimax pro blems on tree networks are studied by Dearing, Francis , and Lowe [4]. 
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One-facility minimax location problems in R" using norm-derived distances and linear cost functions 

were studied by Francis [7]. The analysis and developments of that work motivate many of the extensions in 
this paper. A general reference on facility location is the book by Francis and White [9]. 

2. Formulation and Analysis 

To state the minimax location problem under consideration, suppose that one new facility is to be located 

at a point X = (x b' .. , x n) in R n, and suppose that m given points P;, 1 :s; i :s; m, in R n represent the locations 

of existing facilities. Let d(X, Y) denote a norm-derived distance between the points X and Y and suppose that 
d(X, Y) is convex and continuous in X for each fixed Y. For example, this includes distances of the form 

11 

d(X, Y) [2: IXj - Yi Ip]I /P (1) 
j = 1 

for some real p 2:: 1. When referring to a particular such distance for a specified p we write dp(X, Y). 
For 1 :s; i :s; m, letJi be a continuous (strictly) increasing function with domain [0, 00). In particular apply 

Ji to the distance d(X, Pi) of X from Pi and define the functionJ on R" by 

J(X) = max {Ji[ d(X, Pi)]}' 
l:sism 

The problem of interest, denoted by PO, IS 

minJ(X). 
XeRn 

Problem PO may have a variety of applications depending on the dimension of the space R", the distance 
d and the functions Ji. For example, suppose the existing facilities are locations of demand for emergency 

service and are represented as points in the plane R2. Suppose that travel distance is approximated by the 

Euclidean distance (p = 2), and the functionsJi are chosen to express the time of travel as a function of the 
distance from Pi. Then the functionJ expresses the maximum time of travel between the new facility location X 
and any existing fac ility. 

In a recent study for the New York City Fire Department, Kolesar et al. [18] conclude from empirical 

observations that in most situations the time of travel for fire trucks is a particular continuous, nonlinear, 
increasing function of the travel distance. The assumptions made about the cost functions Ji allow such 

representations of travel time as a function of travel distance. Also, freight movements often involve transport 
costs which are concave increasing functions of transport distance; these situations also may be represented by 

the!;. 
Next, some properties of the functionJ will be observed and proved, including the existence of a pointX* 

that minimizesJ, the strict quasiconvexity ofJ, a lower bound forJ, some conditions for the bound to be tight, 
and a necessary condition for a minimum solution. Most of these properties of J are motivated by, and are 

extensions to , similar developments in [7]. 

PROPERTY 1: There exists an X* in Rn such that f(X*) :s; f(X)Jor all X in Rn. 

PROOF: For each i, 1 :s; i :s; m,fid(X, Pi)] is a continuous function of X since it is the composition of Ji 
and the continuous function d(P;, X) of X. Thus J, the maximum of finitely many continuous functions, is 
continuous on Rn. It can be shown that the level set S k = {X ERn:J(X) :s; k}, for any value of k in the range of J, 
is compact in R". Thus there exists an X* in 5 k such thatJ(X*) :s; fiX) for all X in 5 k. By the definition of 5 k, 

J(X*) :s; J(X) for all X in R". 
In the following property, the definition of strict quasiconvexity is taken from Mangasarian [21]. 

PROPERTY 2: The Junction f is strict quasiconvex on R n. 
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PROOF: Le t X I and X 2 be any two points in R n with f(! d < f(X 2) ' We must show th atf( AX I + (1 - A)X 2) < 
f(X 2 ) for 0 < A < 1. By the convexity of d and the monotonici ty offi, we have for some S,j(AX I + (l - A )X2) 

= J,[d(AXl + (1 - A)X2, P,)]::5 J,[Ad(X], P,) + (1 - A)d(X2 , Ps)]::5 J,[max{d(!], P,), d(X 2 , P s)}] = 
max{/.[d(X], Ps)],/.[d(X2 , Ps)]} ::5 max{f(X I),f(X2)} = f(X 2 ) . If equality holds in the above, then Ad(X], P,) 
+ (l - A)d(X2 , P8) = max{d(X h Ps), d(X2, P8)}, and this implies d(X I, Ps) = d(X 2 , P,,). Also equality implies 
j(X2) = /s[d(X2 , P8)]. Then j(X I) 2: /.[d(X h Ps)] = /.[d(X 2, 1'8)] = j(X2), a contrad iction, so that stri ct 

inequality holds . 

COROLLARY: If X* is a local minimum of f, then X* is a global minimum of f. 

Since eachfi is continuous and inc reasing, Jil as well as (Jil + fjl) and (Jil + fjl) - I is continuous 

and increasing. These observations a re used next to develop a lower bound for the fun ctionf and cond itions for 
the bound to equal the value off at some point. Such a point is of course a solution to problem PO. 

For each pa ir of existing facility locations Pi and P j, cons ider the fun cti on (fi l + fj I)- I. We defin e b(i, 
j) as tha t fun ction's value at d(Pi, Pj) , provided d(Pi , Pj) is in the doma in , I. e . , 

(2) 

Only the values b(i, j ) are used in obtaining the lower bound. We next desc ribe the doma in of (/i l + fjl) - I 
and give conditions for b(i , j) to ex ist. 

The domain of (Jil + fj l)- I is an inte rval whose end points a re obta ined as follows. The range offi for 
each i, 1 ::5 i ::5 m, is the interval (fi(O), Mi) for some value of Mi (finite or infinite), and so thi s inte rval is the 
domain of Jil. The domain of (Jil + fjl) is the inte rsection of [j;(0) , Mi) and [}j(0) , Mj) , i. e ., [max{f;(O), 
}j(0)}, min{Mi, Mj}) which we denote by emu, Mu). This inte rva l may be empty, in whi ch case (iiI + fjl) - I is 
not defin ed. If this occurs because Mj ::5 /;(0) , then for all X,}j[d(X, Pj)] < Mj ::5 Ji(O) ::5 Ji[d(X , Pi)]. In thi s 

case the point P j and the fun ctionfj may be deleted from the problem since they do not enter into the definition 
off(X). Similarly Pi andfi may be deleted if Mi ::5 }j(0). We therefore assume, for the remainder of the paper, 
that the intervals [mi;, Mij) are nonempty for all 1 ::5 i i= j ::5 m. 

The range of (Ji l + fj l) is the domain of (.fil + fjl) - I, i. e . , [(.fil + fjl) [mij], (Jil + fjl)[Mij]). 
Using the definition of mij and observing that.fi1[(,{O)] [fj l[fjO)] = 0, the left end point of this interval can 
be written as max {jj1[j;(0)], Ji1(jj(O)]}. Similarly, us ing the definiti on of Mij and obse rving tha tJi I(Mi) = 

fjl(Mj) = 00, the right end point of this interval is seen to be 00. Thus the dom ain of (Ji l + fj l)- I is the 

interval [max lfil[jj(O)] , fjl(f;(O)]},oo). (For a bounded space, with diameter say M, we replace 00 by Min 
the above development.) This yields the following remark whic h gives a way to check whe the r b(i , j ) is defined. 

REMARK 1: d(Pi> Pj) is in the domain of (£;- 1 + f j l)- I if and only if fj[d(P;, Pj)] 2: f; (0) and f;[d (P; , Pj)] 

2: fj (0). 
Next let D be the set of unordered index pairs (i, j) such that b(i, j) is defin ed. Defin e 

B = max b(i , j). (3) 
(i.j).D 

We will show thatB is a lower bound for! We often write B = b(s, t) (orb(s, s» to spec ify th at th e indices s and 
t (ors) give the maximum value ofb(i,j). Also, fori = j , b(i , i) = fiCO), and so an equivalent expression forB is 

B = max {max b(i, j), maxf,{O)}. 
(i.j)fD l s ism 

iiJ 

Clearly the function (.fil + fjl)-I may be difficult to determine for general functionsJi and}j. However, 
if the Ji are piecewise linear approximations to the actual cost functions , the expressions b(i, j) may be 
determined explicitly. As an example, suppose each/; is concave piecewise linear function with domain [0, (0) 
and is spec ified by the k; linear expressions aix + f31 for 1 ::5 s ::5 k; with 
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Then./il(y) = max {(y - .8!)/an, and for each pair (i, j) in D 
ISBSk, 

Finally, 

(fil + fjl)(y) = max {[(ex! + ai)y - (.8!ai + ,Blds)]/dsai}. 
ISBSk, 
IstskJ 

(fi l + fil)-I(X) = mm {(a~aix + .8!ai + .8{a~)/(a! + a{)} 
ISBSk, 
IstskJ 

and b(i, j) is obtained from the last expression with x = d(P;, Pj). 
Some further relationships between B andf are now given. 

PROPERTY 3: For all X in RD , B:s f(X). 

PROOF: For 1 :S i :S m, b(i, i) = fi[ d(P;, P;)] :S fi[ d(P;, X)] :S f(X). Next consider b( i, j) for any i =1= j in D. 
Let X' minimize max {];[d(P;, X)], .iJ[d(Pj, X)]} and suppose.iJ[d(Pj, X')] ~ fi[d(P;, X')]. (X' exists by 
Property 1.) I~can be shown that.iJ[d(Pj, X')] is in the domain ofJil, using the existence of b(i, j). Then 

b(i, j) = ViI + fjl)-I[d(P;, Pj)] :S (./il + fil)-I[d(P;, X') + d(Pj, X)] 

= (fil + fil)-l. (./i1j;[d(P;, X')] + fjYld(Pj, X')]) 

:S (fi l + fjl)-l. (fiyj[d(Pj, X')] + fjYld(Pj, X')]) 

= (fi l + fjl)-l. (fil + fil) ·.iJ[d(Pj, X')] = fld(Pj, X)] 

:S max {fi[ d(P;, X)],.iJ[ d(Pj, X)]} for allX. 

If.iJ[d(Pj, X')] :S fi[d(P;, X')], we get the same result. 

Finally, 

B = max b(i,j):S max max {fi[d(P;, X)],.iJ[d(Pj, X)]} :Sf(X). 
(iJ)d) (iJ)d) 

The next two properties give conditions for B to equalj(X) for some point X in Rn. 

PROPERTY 4: B = b(s, t) = f(X) if and only if the points Ps, PI , and X satisfy 

for all i =f s, t. 

The proof of Property 4 follows from the proof of Property 3. In particular, (a) and (b) imply/.[ d(P., Pt)] ~ 
/.[d(P., X)] = !t[d(Pt, X)] ~!t(O) and similarly!t [d(P., Pt)] ~/.(O), so that Remark 1 applies to assure that 
b(s, t) is defined. 

PROPERTY 5: B = fs[d(Ps• Ps)) = fs(O)for some point Ps if and only iff(Ps) = fs[d(Ps, Ps»); in either case Ps is 
the unique minimum point of f. 

68 



B :5f(Ps) = j.(0) :5 B implies B = j.[d(Ps , Ps)] = f(Ps). 

Suppose B = j.[d(Ps, Ps)] = j.(0) but that for some i, j.[d(Ps, Ps)] < /;[d(Ps, Pi)] = f(Ps). Since B = 

fs(0),j.(0) ~ /;(0) so that/;(O) :5j.(0) :5j.[d(Ps, Pi)]' Thus Remark 1 implies that b(s, i) exists. By assumption 
B = j.(0) ~ b(s, i) = (f;1 + Jiltl[d(Ps, Pi)]. Also,/;(O) :5j.(0) </;[d(Ps, Pi)] < Mi implies thatj.(O) is in 
the domain of (f;1 + Jil), and we have (f;1 + JiI)[fs(O)] ~ d(Ps, Pi)' This impliesJiI[fs(O)] ~ d(Ps, Pi) , 
orj.(O) ~/;Jd(Ps, Pi)] which is a contradiction .Thusj.(O) ~/;[d(Ps, Pj)] for all i andJ{Ps) = j.(0) = B. , 

In either casef(P.) = B so that p. minimizesJ. To prove uniqueness, suppose Xo minimizesJ. Then B = 

fJd(P., P .)] :5 fld(P., XC)] :5 f(XO) = B which implies d(P., XO) = 0 and Xo = P s. 
The next property considers the case where B > f'{O) for 1 :5 i :5 m, and provides a necessary condition 

for a point X* to minimizeJ. The proof of this property is analogous to the proof of a similar result in reference 
[3], and is not given here. 

PROPERTY 6: Let X* minimize f and suppose that B > fi(O), 1 :5 i :5 m. Then there exist distinct points P sand 
Ptsuchthat f(X*) = fs{d(Ps, X*)] = fJd(Pt. X*)]. 

Since B is a lower bound forf, if there is a pointX in R" such thatf(X) :5 B, thenX minimizesJ. For two 
spec ial cases we show that the set S B = {X E R":f(X) :5 B} is not empty, and we characterize all the points in 
S B. In characterizingS B it is useful to write S B = n A i where Ai = {X E R":fid(X, PI)] :5 B}, 1 :5 i :5 m. 

l :sism 

The following lemma is used later but is stated here since it holds for any norm-derived distance in Rn. 

LEMMA 1: For each pair of indices i, j with 1 :5 i, j :5 m, Ai n Aj =t= cp. 

PROOF: Observe that Pi EA ;for each 1 :5 i :5 m, sincefid(P i, Pi)] :5 B. Thus for i = j, the conclusion holds. 
For i =t= j there are three cases. 

1. fl(O) > fM(P i, Pi)]: This implies PiE A i since fi(O) :5 B. 

2. fj(O) > Jid(Pj, Pj)]: Thus Pi E Ai. 

3 . f,{O) :5 fld(P j, Pi)] andfiO) :5 fid(P i, Pj)]: This implies b(i,j) = 

(fil + J;I)-I [d(Pj, Pj)] or that Jil[b(i, j)] + J;1[b(i , j)] = d(P j, Pi) ' 

Each summand on the left-hand side is nonnegative so Jil[b(i, j)] :5 d(Pj, Pi) ' By the intermediate value 
theorem, there exists a point Xo on the line segment between P i and Pi such that d(Xo, Pi) = Ji1[b(i, j)]. 
Substituting this expression together with d(P j, Pi) = d(P i, Xo) + d(Xo, Pj) into the last equation gives d(Xo, 
P j) = jjl[b(i , j)]. Thusfid(Xo, Pi)] = f;[d[(X 0, P j)] = b(i , j) and since b(i , j) :5 B, X 0 is in A i and Aj. This 
proves the lemma. 

3. The Rectilinear Distance Problem in R2 

A special case of problem PO is cons idered that uses the rectilinear distance in R 2. The rectilinear 
distance is denoted by d\ (X, Pi) and is defined by taking p = 1 in (1). For the case where the cost fun ctions 
are linear functions of distance, an explicit solution procedure is reported in reference [9). This procedure is 
extended here to the functions fi of distance. 

Note that if B is not in the range offi' thenfid\ (X, Pi)] :5 B for all X ER2 and A i = R2. Otherwise B is in 
the domain ofJiI andAi = {X ER2: d l (X, Pi) $Ji l (B)}. LetE be the index set of all i such thatB is in the 
domain ofJi I. Thus S B = n A j. 

lEE 

Using the rectilinear distance in R2 , each setA i, i E E may be further characterized, as in reference [9], by 
a system of linear inequalities. Denoting X = (x, y) and Pi = (ai, bi), we may write 
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Ai = {(x, y) E R2: _.fil (B) + ai + bi :S x + Y :S.fil (B) + ai + bi, 

-iiI (B) + ai - bi:S x - Y :S.fil (B) + ai - bi}' 

Then 58 = n Ai implies that 5 B is the set of all points (x, y) in R2 such that 
uE 

max {_.fil (B) + ai + bi} :S x + y:S min {til (B) + ai + b;}, 
uE uE 

and 

max {_fil (B) + ai - bi} :S x - y:S min {til (B) + ai - bi}' 
uE i,E 

The above inequalities imply that 5 B is nonempty if and only if 

and 

for all pairs (i , j) i, j E E or equivalently if 

If b (i,j) is defined, the above inequality holds since b (i,j) :S B. If b (i,j) is not defined, then either B :::::: 
f;(O) > fMI (Pi, Pj)] orB ::::::fi(0) > fi[d t (Pi, Pj)]. Thefirst case implies.fil (B) :::::: 0 andJjl (B) > d 1 (Pi, Pj), 
and adding gives the desired inequality. The second case is similar. This proves the following result. 

PROPERTY 7: Using the rectilinear distance in R2, B = min f(X). 
x,It" 

Interestingly, the above solution procedure does not extend to the rectilinear problem in R n for n > 2, that 
is, it is possible that B <f(X) for all X in R n. As an example, consider existing facilities at the points PI = (1, 

0, 0), P 2 = (0, 1, 0), P3 = (0, 0, 1), P 4 = (1, 1, 1) in R 3 , and letfi be the identity function forl :S i :S 4. Then 
b (i ,j) = 1 for all pairs of distinct i and j and all b (i, i) = 0, so B = 1. The sets A i in R3 intersect pair-wise (in 
fact any three of the sets A i intersect) , but the intersection of all four sets A i is empty. 

To describe further why the bound B may not be tight in R n, we use the following set intersection property: 
a finite collection of sets is said to satisfy the pair-wise intersection property if the nonempty intersection of each 
pair of sets in the collection implies that the intersection of all sets in the collection is not empty . Observe that 
when using the rectilinear distance, each set Ai is an octahedron in R n (with appropriate definition for n > 3), 

and Lemma 1 implies that the A i intersect pair-wise. However, it is shown in reference [19] that octahedra in 
R n satisfy the pair-wise intersection property if and only if n :S 2 . The "if' part provides an alternate proof of 

Property 7. 

4. Minimax Problems on a Network 

Consider a minimax location problem with respect to a system of existing facility locations and given 
transportation links between the facilities. As in reference [3], such a system may be modeled as a network 
metric space N. The m existing facility locations correspond to nodes ai, 1 :S i :S m, of N, and transportation 

links correspond to edges of N. Each point along a given transportation link is a feasible location for a new 

facility and is represented by a point x on the corresponding edge of N. For any two points x and y in N, the 
distance between x and y, denoted by d (x, y), is the length of a shortest path between x and y, denoted by 

P (x, y). For each i, d(x, ail is a continuous function of x on N [3]. 
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As above, letJi be an increasing, continuous function of distance and defineJN on N by 

iN(X) = max {f;[d(x, ai)]}, (4) 
1 si:sm 

and the problem PN by 

It is shown in reference [3] that N is a compact metric space, and as in the proof of Property 1, J N is 

continuous on N. Thus there exists a point x* in N that minimizesJN' 
Next observe that a lower bound 8 may be defined analogous to (2) and (3). It follows that 8 is a lower 

bound foriN since the proof of Property 3 used only the triangl e inequality. Properties 4, 5, and 6 also may be 
proved for IN by following the respec tive proofs above and using similar results in reference [3] for linear 
functions of distance. 

For the spec ial case of a tree network T, additional properties may be proved and a solution procedure 
obtained. Let JT denote the fun ction defined on T by express ion (4). Observe that the proof of strict 

quasiconvexity of J in Property 2 req uired only the convex ity of d and the assumption of inc reas ingJi. In 
reference [4], it is shown that the dis tance d on a ne twork is co nvex if and only if the network is a tree. Thus an 

argument s imilar to the proof of Property 2 shows thalIr is stric t quasiconvex. 

Analogous to the above development, we may define the se ts A i, 1 :S i :S In and the se t 5 B = n A i for 
Js is m 

the problem on a tree. We may also show, analogous to Lemma 1, that eac h pair of sets A i and A j have 
nonempty intersection. It is shown in reference [17] that the pair-wise inte l'sec tion property holds for 
connected subsets of a tree. This development implies that 5 B is not empty and we conclude that Property 7 

holds forJT' that is, 8 = min Jr{x) . This development also gives a procedure for m inimizingJr: determine 8 = 
X€7' 

b (s, t), then the point x* such that dCa"~ x*) = lsI (8) on the path P (as, at) minimizesh-. It may also be shown 
using results in reference [3] that x* is the unique minimum ofJT on T. 

In conclusion we note that for a general network N, the points that minimizeJN may be charac terized 111 

terms of spanning trees of N. Let Tj , 1 :S j :S v, be a ll the spanning trees of N. 

PROPERTY 8: A point x* in N minimizes fN if and only if x* minimizesJTkJor some T k such that mill B(fT ) 
I s j :sv 

B(fT). 

Using the a bove developments forJN, the proof of Property 8 is a direct extens ion to the proof of a simila r 
result in reference [3]. This property provides an interesti ng characterization of the minimum solutions of 
problem PN in terms of the network structure. However, at the present no efficient solution procedures are 
known for solving PN, even for identity cost functions. 

The author is grateful to A. J. Goldman for his helpful comments and suggestions during the course of this 

work and to the referees for their constructive comments, especially concerning the conditions for b (i,j) to 
exist. 
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