Enthalpy of Solution of Sodium Nitrite

Jaime C. Cases*

Departamento de Química, Universidad de Chile, Casilla 2777, Santiago, Chile

and

Vivian B. Parker** and Marthada V. Kilday

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(June 13, 1977)

An adiabatic solution calorimeter was used to measure enthalpies of solution and dilution of sodium nitrite in water in the concentration range of 5 to 200 mmol·kg⁻¹. For the solution reaction where molality, m = 100 mmol·kg⁻¹, $\Delta C_p = -1.394 \pm 0.014$ J·g⁻¹·K⁻¹ (-23.0 ± 0.2 cal·mol⁻¹·K⁻¹). Other ΔC_p values for some dilution reactions were also measured. The value selected for the enthalpy of solution at infinite dilution is

> $\Delta H_{\infty}^{\circ}$ (298.15 K) = 14.006 ± 0.015 kJ · mol⁻¹ $= 3.347 \pm 0.004 \text{ kcal} \cdot \text{mol}^{-1}$

Values for the relative apparent molal heat content ϕ_{Ls} are tabulated and the enthalpy of transition and of fusion derived from differential thermal analysis measurements are also given.

Key Words: Calorimetry, soln.; NaNO₂, enthalpy of dilution; NaNO₂, enthalpy of soln.; NaNO₂, relative apparent molal heat content; NaNO₂, enthalpies of transition and fusion; NaNO₂, melting temperature.

1. Introduction

In the evaluation of the thermal properties of aqueous uniunivalent electrolyte solutions [1],1 the tabulation of the relative apparent molal heat content, ϕ_L , of NaNO₂ in H₂O reveals the absence of data for concentrations between 185 mmol \cdot kg⁻¹ and infinite dilution. The only data available for this evaluation was the work of Perreu [2] who measured the enthalpies of solution and dilution at 287 K between 11.87 and $0.188 \text{ mol}\cdot\text{kg}^{-1}$. The evaluation of the enthalpy of solution at infinite dilution, $\Delta H^{\circ}_{\infty}$, was based on very limited data from various measurements between 130 and 170 mmol \cdot kg⁻¹ in the temperature range, 291 to 298 K. Therefore, a large uncertainty, 1.2 percent, was assigned to the "best" value for $\Delta H_{\infty}^{\circ}$.

In this work we have measured enthalpies of solution and dilution of NaNO₂ in the dilute region where data were not previously available, as well as in the same concentrations previously measured, for confirmation of earlier work. We have also measured ΔC_{p} 's for the reactions. These provide more accurate corrections for the earlier work on enthalpy of solution to the standard temperature.

2. The NaNO₂ Sample

The "unpurified" sample was the ACS reagent grade from a commercial source with specifications of purity of at least 97 percent. The method for purification used for this sample was described previously [3]. It consisted of recrystallization from aqueous solution 3 times, filtration through sintered glass, and finally drying at 383 K under vacuum for more than 72 hours. The material was transferred to a glove box with an argon atmosphere where it was crushed and placed in glassstoppered bottles in a desiccator for storage. The color of the sample was white with a slight yellow tinge.

When a small portion of this material was exposed to the laboratory atmosphere for 17 hours, no significant change in weight was observed. Therefore, calorimetric samples were transferred to the sample holder in the room air.

The purity of the sample was determined by Gaylon Ross, Office of the Director of the Institute for Materials Research, on the basis of its melting behavior, using a differential thermal analysis instrument of high precision which is commercially available. It was estimated that the purity of the NaNO₂ sample was at least 99.9 mol percent providing all of the impurities are liquid soluble and solid insoluble.² The accuracy of the instrument was carefully checked by comparison with melting temperatures of samples of certified highpurity (99.99+ mol%) lead and indium. Using the indium sample as the calibration material, the lead thermogram was analysed (and vice versa); the observed melting temperatures

Guest worker at NBS, July 1972 to January 1973, who received partial support from the Regional Scientific and Technological Program of the Organization of American States.
 ** Refer inquiries about this paper to this author.
 ¹ Figures in brackets indicate literature references at the end of this paper.

² The purity analysis of nearly pure materials involves the use of a plot of T_x versus F^{-1} , where T_x is the temperature of the sample and F is the fraction melted. The slope reflects the impurity in the relationship: $T_x = T_{f0} - N_x^* R T_{f0}^2 (\Delta H_f)^{-1} F^{-1}$. ΔH_f is the enthalpy of fusion, N_x^* is the mole fraction of the impurity, and T_{f0} is the melting temperature of the pure major component. When $F^{-1} = 1$, $T_x = T_f = T_f$ melting temperature where an infinitesimal amount of the solid major component is in thermodynamic equilibrium with the liquid. Analysis of the thermograms resulting from the melting of the NaNO_2 samples indicated that the sample temperature due to change, within the sensitivity of the instrument, during the melting process; the slope was zero for the plot of T_x versus F^{-1} . Therefore, $T_x = T_f = T_f$, $N_x^* = 0$, and the NaNO₂ was pure. The instrument does not have the temperature measurement capability of distinguishing between a sample purity of 99.9 mol percent; consequently, 99.9 mol percent is the lower limit of purity.

were in error by not more than 0.1 K relative to accepted values and the calculated ΔH_f was in error by less than 2 percent.

From his measurements, Ross also reports the following data (where the uncertainties in the enthalpies are twice the standard deviation of the mean of four measurements): for the solid-solid transition at 436.35 \pm 0.20 K (163.2 \pm 0.2 °C), $\Delta H = 2.058 \pm 0.126 \text{ kJ} \cdot \text{mol}^{-1}$ (492 \pm 30 cal \cdot mol}^{-1}); for the solid-liquid transition at the melting temperature, 554.28 \pm 0.1 K (281.13 \pm 0.1 °C), $\Delta H = 14.16 \pm 0.42 \text{ kJ} \cdot \text{mol}^{-1}$ (3.38 \pm 0.10 kcal \cdot mol}^{-1}).

A small evolution of gas was observed during heating of the sample to the melting point; however, the loss in sample mass was approximately 0.1 percent which is about the weighing uncertainty for the 10 mg samples. Subsequent reruns of the same samples showed evidence of thermal degradation with each heating, but the first run indicated that the sample was "pure." In view of the apparently high purity of the sample, the calorimetric data reported here are not corrected for sample impurities.

3. Apparatus and Procedures

The platinum-lined adiabatic solution calorimeter used for these enthalpy measurements was described previously [4]. The reactions were endothermic and required the addition of electrical energy during the chemical reaction to prevent a drop in the temperature of the calorimeter vessel as described in an earlier paper [5]. In each experiment the initial and final systems were calibrated electrically;³ details of these procedures and calculations have been given [4].

The experiments described in this paper were completed between October and December 1972. The calorimeter temperature was measured with a quartz-oscillator using an electronic counter with reference to an NBS standard frequency. The quartz-oscillator was calibrated in June 1972 by comparison with a platinum resistance thermometer. The time and calorimeter temperature readings were automatically recorded on punched tape and a typewriter at precisely 100-s intervals throughout an experiment. Rating period slopes were obtained from a least squares fit to a linear equation of 15 to 20 of the time-temperature readings. Extrapolation of these slopes to the time of initiating the electrical heating gave the initial and final temperatures for the reaction. The difference between these temperatures is the corrected temperature rise, ΔTc (for details, see [4]).

The molecular masses of NaNO₂, 68.9953, and of H₂O, 18.0154, used in the calculations were taken from the 1969 Table of Atomic Weights [6]. For NaNO₂ (c) the density, 2.14 $g \cdot cm^{-3}$ [7] was used in calculating buoyancy corrections, and for the aqueous solutions of NaNO₂ the densities were taken from the International Critical Tables [8]. A density of 0.00118 $g \cdot cm^{-3}$ was used for air under the average atmospheric conditions in this laboratory, 22.5 ± 0.5 °C, 0.10 ± 0.001 MPa (750 ± 10 mm Hg), and a relative humidity of 35 ± 15 percent. For energy conversions, 4.184 joules = 1 thermochemical calorie.

4. Experimental Results

The composition and calorimetric data are given in tables 1 and 2 for the experiments in which enthalpies of solution and dilution of $NaNO_2$ were measured. The Expt. No. is a serial number for experiments with this calorimeter.

In the first three experiments, the NaNO₂ reagent before purification (see sec. 2) was dissolved in water. In Expts. 703 through 714, the purified crystalline sample was dissolved in water. The ΔC_p for the reaction, -1.394 ± 0.014 $J \cdot g^{-1} \cdot K^{-1}$, was obtained from Expts. 709, 711, and 712 (at 309 K) and Expts. 708, 713, and 714 (at 298 K); the average final concentrations for the two groups are essentially equal. The uncertainty in the ΔC_p is estimated to be 1 percent. An estimate of the experimental imprecision may be obtained from Expts. 703–714 where ΔH_m (298.15 K) = 208.01 \pm 0.13 J $\cdot g^{-1}$. The 0.06 percent uncertainty is at the 95 percent confidence level.

It was desirable to measure the enthalpy at a final concentation of 180 mmol·kg⁻¹ in order to compare our results directly with earlier measurements. However, the volume of the largest of the three interchangeable cylinders for the platinum sample holder (see [4]) was only 2.7 cm^3 ; the maximum amount of the crystalline sample which it contained resulted in a final concentration of less than 120 mmol \cdot kg⁻¹. In order to obtain the desired concentration, it was necessary in Expts. 715-719 to reduce the calorimetric solution from 16.8 to 15.4 moles of H_2O and to compress the sample into a pellet 1.2 cm in diameter, 0.9 cm in depth, and weighing approximately 2.5 g. The remaining space in the sample cylinder was filled with the loose crystalline material. Expts. 720–722 were similar to the above except that the standard amount of water (16.8 moles) was used for the calorimetric solution. In Expts. 732-735, the pelleted sample with no loose crystalline material was used. These experiments showed that reducing the amount of water for the calorimetric solution and pelleting the NaNO₂ sample had no significant effect on the enthalpy of solution calculated at infinite dilution (to be discussed later).

In Expts. 723–731, enthalpies of dilution of aqueous solutions of NaNO₂ in the sample holder were measured. The three aqueous solutions were prepared by mixing weighed amounts of the components as follows: No. 1 was 36.78 wt. percent NaNO₂ ($m = 8.432 \text{ mol} \cdot \text{kg}^{-1}$); No. 2, 18.53 wt. percent ($m = 3.297 \text{ mol} \cdot \text{kg}^{-1}$); and No. 3, 45.47 wt. percent ($m = 12.087 \text{ mol} \cdot \text{kg}^{-1}$). ΔC_p , $-1.75 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$, for the dilution of Soln. No. 1 was obtained from Expts. 724 and 731, and $-1.91 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$, for the dilution of Soln. No. 3, from Expts. 725 and 726. The uncertainty in these measurements is relatively large because of the small amount of energy absorbed by the reaction. Therefore, for all of the dilution experiments (723–731) we used an approximate $\Delta C_p = -1.85 \pm 0.10 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$ for the correction to 298.15 K.

In Expts. 738–756, we measured integral and differential enthalpies of solution to provide additional points on the concentration curve.

In table 2, Q reaction is the energy absorbed by the chemical reaction, and Q reaction = $\overline{EEE}(\Delta Tc) - Qe$, where \overline{EEE} is the mean electrical energy equivalent, ΔTc is the corrected temperature rise, and Qe is the electrical energy added during the endothermic reaction to prevent a drop in the calorimeter temperature. $\Delta H_m(T)$ is the measured isothermal enthalpy at the concentration, m, and the temperature of reaction (which is the mean temperature of reaction, \overline{T} reaction, and is equal to -Q reaction per gram of NaNO₂ in the sample. The stirring energy correction is calculated from the slopes of the initial and final rating periods. This correction includes primarily the effects of stirring energy and

 $^{^3}$ The 0.1- Ω_1 10- Ω_2 and 10-k Ω standard resistors were last calibrated at NBS in June 1969. The last NBS calibration (based on the 1968 NBS volt) of the saturated standard cells was in July 1969. The record of these calibrations over the years indicates consistent trends which provide confidence in the values used.

Expt. Sample Sample description H20 NAVO2 mass Cal. soln. H90 Cal. soln. NAVO2. mess Cal. soln. H90 Cal. soln. NAVO2. mess Cal. soln. H90 Cal. soln. NAVO2. MeSD 699 2.26647 U 0.0328496 302.46 16.7892 700 2.40154 U 0.0348073 302.41 16.7854 703 1.68181 C 0.0239963 302.42 16.7867 708 1.59354 C 0.263998 302.43 16.7851 710 1.46204 C 0.263988 302.44 16.7881 710 1.48043 C 0.26457 302.42 16.7867 712 1.8065 C 0.26503 302.42 16.7867 714 1.90369 C 0.275915 302.42 16.7867 714 1.90369 C			0	T		1	2	
No. mass description H20 NaN02 mass H30 NaN02 8 m01 m01 s m01 so1 so1 so1 699 2.26647 U 0.0328496 302.46 16.7852 701 2.40154 U 0.0349073 302.42 16.7852 704 1.59334 C 0.0249758 302.42 16.7867 704 1.59334 C 0.026998 302.42 16.7867 704 1.82140 C 0.0259167 302.44 16.7867 710 1.78233 C 0.265910 302.42 16.7867 711 1.783843 C 0.275915 302.42 16.7867 713 3.78699 PC 0.053062 277.41 15.3960 714 3.5666	Expt.	Sample	^a Sample	Sample con	mposition	^D Cal. soln.	Cal. soln.	composition
8 mol mol g mol form 699 2.26647 U 0.0328496 302.46 16.7892 701 2.40154 U .0317489 302.39 16.7854 703 1.68181 C .0243758 302.40 16.7856 708 1.82140 C .0263988 302.43 16.7857 710 1.78123 C .0266980 302.44 16.7887 710 1.78123 C .0265167 302.44 16.7881 712 1.81805 C .0265303 302.44 16.7884 712 1.81805 C .0254101 302.44 16.7885 714 1.90369 C .02531052 277.45 15.4009 714 1.90369 C </td <td>No.</td> <td>mass</td> <td>description</td> <td>H20</td> <td>NaNO₂</td> <td>mass</td> <td>H₂O</td> <td>NaNO₂</td>	No.	mass	description	H20	NaNO ₂	mass	H ₂ O	NaNO ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		g		mol	mol	g	mol	mol
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	699	2.26647	U de		0.0328496	302.46	16.7892	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700	2.19053	U		.0317489	302.39	16.7854	
	701	2.40154	U		.0348073	302.41	16.7862	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	703	1 68181	C		02/2750	202 / 2	16 7067	
1.8240 C $$ $.025393$ 302.43 16.7856 $$ 709 1.82404 C $$ $.0266980$ 302.43 16.783 $$ 710 1.78123 C $$ $.0266980$ 302.43 16.784 $$ 711 1.83803 C $$ $.0226353$ 302.42 16.7867 $$ 711 1.83891 C $$ $.0225915$ 302.42 16.7867 $$ 713 1.79891 C $$ $.0225915$ 302.241 16.7867 $$ 715 3.32469 PC $$ $.0053062$ 277.45 15.3009 $$ 718 3.55066 PC $$ $.0534074$ 302.48 16.7901 $$ 720 3.78835 PC $$ $.0534076$ 302.44 16.7892 $$ 721 3.61263 PC $$ $.053405$ 302.46 <	704	1 50354	C		.0243758	302.42	16./86/	
7091.84204C $$.00269303302.4416.7873 $$ 7101.78123C $$.0258167302.4416.7881 $$ 7111.83843C $$.0266457302.4416.7881 $$ 7121.81805C $$.02654503302.4216.7867 $$ 7131.78981C $$.0259410302.4116.7865 $$ 7141.90309C $$.0275915302.4216.7867 $$ 7153.32469PC $$.06333062277.4515.4009 $$ 7163.67788PC $$.0534062277.3515.3950 $$ 7183.55066PC $$.0549074302.4816.7802 $$ 7203.78835PC $$.0524007302.4416.7865 $$ 7213.61263PC $$.05341568302.4116.7865 $$ 7223.73657PC $$.054501277.4315.3956 $$ 7233.1742510.11139.016921287.4215.5954 $$ 7243.237711.11362.007818302.4616.7890 $$ 7253.63183.10179.022166277.4315.3956 $$ 7263.440473.10413.022676277.4415.3877 $$ 7282.932852.13263.007818302.46 <td>708</td> <td>1 821/0</td> <td>C</td> <td></td> <td>.0230903</td> <td>302.40</td> <td>16.7856</td> <td></td>	708	1 821/0	C		.0230903	302.40	16.7856	
11.78123 C 0.025816^{-} 302.45^{-} 16.7881 710 11.78123 C 0.025816^{-} 302.45^{-} 16.7884 711 1.83805 C 0.0263503^{-} 302.42^{-} 16.7867 713 1.78981 C 0.027915^{-} 302.42^{-} 16.7867 714 1.99369 C 0.027915^{-} 302.42^{-} 16.7867 715 3.32469 PC 0.053062^{-} 277.45^{-} 15.4009 718 3.55066 PC 0.054074^{-} 302.48^{-} 15.9870 720 3.78835 PC 0.054074^{-} 302.46^{-} 16.7892 721 3.61263 PC 0.0523605^{-} 302.46^{-} 16.7865 722 3.73657 PC 0.052360^{-} <td< td=""><td>709</td><td>1 84204</td><td>C</td><td></td><td>.0203900</td><td>302.43</td><td>16.7873</td><td></td></td<>	709	1 84204	C		.0203900	302.43	16.7873	
1.1 1.1 1.1 1.0	710	1 78123	C		.0200900	302.44	16.7881	
12 1.00000 0 1 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000 1000000000 10000000000 10000000000 10000000000 1000000000000000000000000000000000000	711	1 838/3	C		.0256167	302.45	16.7884	
1.3 1.78981 C $$ $.0239303$ 302.42 16.7867 $$ 713 1.78981 C $$ $.0275915$ 302.42 16.7867 $$ 715 3.32469 PC $$ $.0275915$ 302.42 16.7867 $$ 716 3.67788 PC $$ $.05314624$ 277.45 15.4009 $$ 718 3.55066 PC $$ $.05314624$ 277.45 15.4006 $$ 720 3.78835 PC $$ $.0549074$ 302.48 16.7901 $$ 721 3.61263 PC $$ $.0549074$ 302.46 16.7892 $$ 722 3.73657 PC $$ $.0523605$ 302.44 16.7865 $$ 724 3.2371 1 0.11139 $.016921$ 287.42 15.9544 $$ 725 3.36318 3 $.10179$ $.022166$ 277.14 15.3995 $$ 726 3.464047 3 $.10413$ $.022676$ 277.43 15.3995 $$ 727 2.91050 2 $.13162$ $.007818$ 302.46 16.7880 $$ 731 3.227278 1 $.11485$ $.017446$ 277.44 15.4000 $$ 732 1.49300 P $$ $.0216392$ 277.44 15.4000 $$ 733 1.50551 P $$ $.0216392$ 277.44 15.4000 $$ 734 <td>712</td> <td>1 81805</td> <td>C</td> <td></td> <td>.0200457</td> <td>302.44</td> <td>16.7881</td> <td></td>	712	1 81805	C		.0200457	302.44	16.7881	
114 1.90361 C .0239410 302.41 16.7865 714 1.90369 C .0275915 302.42 16.7867 715 3.32469 PC .0533062 277.45 15.4009 716 3.67788 PC .0545001 277.45 15.9850 719 3.76025 PC .0545001 277.45 15.4006 720 3.7885 PC .0540074 302.48 16.7901 721 3.61263 PC .0523605 302.46 16.7892 723 3.17425 1 0.11139 .016921 287.42 15.9544 724 3.23771 1 .11362 .01729 277.38 15.3935 725 3.36318 3 .10179 .022166 277.43 15.3935 728 2.93285 2 .13263 .007818 302.45 16.7886 </td <td>713</td> <td>1 78981</td> <td>C</td> <td></td> <td>.0203503</td> <td>302.42</td> <td>16./86/</td> <td></td>	713	1 78981	C		.0203503	302.42	16./86/	
1.1 1.1	714	1 90369	C		.0239410	302.41	16.7865	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/ 14	1.90309	C		.0275915	302.42	10./86/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	715	3.32469	PC		.0481872	277.45	15.4009	
718 3.55066 PC0514624 277.35 15.3950 719 3.76025 PC0545001 277.45 15.4006 720 3.78835 PC0523605 302.46 16.7892 721 3.61263 PC0523605 302.46 16.7892 722 3.73657 PC0541568 302.44 16.7865 723 3.17425 1 0.11139 .016921 287.42 15.9544 724 3.23771 1.11362.017259 277.38 15.3968 725 3.6318 3.100179.022166 277.43 15.3995 726 3.44047 3.10413.022676 277.43 15.3995 728 2.93285 2.13263.007878 302.45 16.7880 731 3.27278 1.11485.017446 277.39 15.3975 732 1.49300 P0216392 277.44 15.4000 733 1.50651 P0218204 277.39 15.3975 734 1.51162 P0218349 302.44 16.7881 738 1.9156 C0172701 302.47 15.7300 0.017209 744 1.20844 C0178533 302.68 16.7386 744 0.54210 <t< td=""><td>716</td><td>3.67788</td><td>PC</td><td></td><td>.0533062</td><td>277.41</td><td>15.3987</td><td></td></t<>	716	3.67788	PC		.0533062	277.41	15.3987	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	718	3.55066	PC		.0514624	277.35	15.3950	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	719	3.76025	PC		.0545001	277.45	15.4006	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720	3.78835	PC		.0549074	302.48	16,7901	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	721	3.61263	PC		.0523605	302.46	16,7892	
7233.1742510.111390.16921287.4215.9547243.237711.11362.017259277.3815.39687253.640473.10179.022166277.4315.39957272.910502.13162.007818302.4616.78907282.932852.13263.007878302.4516.78867313.272781.11485.017466277.4315.39957321.49300P0216392277.4415.40007331.50551P0218204277.3915.39757341.51162P0218204277.3915.39757401.20844C0175149302.4616.78897421.23180C0175149302.4516.78667433.52127PC0510363302.6816.73000.0172097440.54210C0506310302.2216.7458.0078377463.53682PC0512618302.4816.79037473.50550PC0506310302.2416.7457.0511257480.01335C0370332301.7916.7463.0013977540.10432C0373304302.4716.7891 <t< td=""><td>722</td><td>3.73657</td><td>PC</td><td></td><td>.0541568</td><td>302.41</td><td>16,7865</td><td></td></t<>	722	3.73657	PC		.0541568	302.41	16,7865	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700	2 17/05		0 11120	01(001	0.07 (0	1.0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	723	3.1/425		0.11139	.016921	287.42	15.9544	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	724	3.23//L 2.26219		.11362	.01/259	277.38	15.3968	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	725	3.30310	3	.10179	.022166	277.43	15.3995	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720	3.44047	3	.10413	.022676	277.14	15.3837	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720	2.91050	2	.13162	.007818	302.46	16.7890	
731 3.27278 1 $.11485$ $.017446$ 277.43 15.3995 $$ 732 1.49300 P $$ $.0216392$ 277.44 15.4000 $$ 733 1.50551 P $$ $.0218204$ 277.39 15.3975 $$ 734 1.51162 P $$ $.0219090$ 302.46 16.7889 $$ 735 1.50651 P $$ $.0218349$ 302.44 16.7881 $$ 738 1.19156 C $$ $.0172701$ 302.47 16.7895 $$ 740 1.20844 C $$ $.0175149$ 302.45 16.7886 $$ 740 1.20844 C $$ $.0178533$ 302.58 16.7300 0.017209 743 3.52127 PC $$ $.0510363$ 302.68 16.7346 $.017458$ 744 0.54210 C $$ $.0078570$ 302.46 16.7346 $.017458$ 745 3.49330 PC $$ $.05103610$ 302.22 16.7458 $.007837$ 746 3.53682 PC $$ $.0512618$ 302.48 16.7872 $$ 747 3.50550 PC $$ $.0014979$ 302.44 16.7872 $$ 748 0.10335 C $$ $.0014979$ 302.49 16.7463 $.001397$ 748 0.10335 C $$ $.0014979$ 302.47 16.7890 $$	/28	2.93285	2	.13263	.007878	302.45	16.7886	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/31	3.2/2/8	1	.11485	.01/446	277.43	15.3995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00	1 40 200	D		0016000	077 //	15 /000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.32	1.49500	r D		.0210392	277.44	15.4000	
734 1.51162 P $$ $.0213090$ 302.46 16.7889 $$ 735 1.50651 P $$ $.0218349$ 302.44 16.7881 $$ 738 1.19156 C $$ $.0172701$ 302.47 16.7895 $$ 740 1.20844 C $$ $.0175149$ 302.45 16.7886 $$ 742 1.23180 C $$ $.0178533$ 302.58 16.7300 0.017209 743 3.52127 PC $$ $.0510363$ 302.68 16.7346 $.017458$ 744 0.54210 C $$ $.0506310$ 302.222 16.7458 $.007837$ 745 3.49330 PC $$ $.0506310$ 302.248 16.7903 $$ 747 3.50550 PC $$ $.0512618$ 302.48 16.7457 $.051125$ 748 0.10335 C $$ $.0014979$ 302.43 16.7872 $$ 751 3.41103 PC $$ $.0014979$ 302.43 16.7463 $.001494$ 752 0.99665 C $$ $.0014008$ 302.49 16.7906 $$ 754 0.10432 C $$ $.0370332$ 301.79 16.7891 $.000170$ 756 2.57355 C $$ $.0374189$ 302.47 16.7891 $.000170$	735	1.50551			.0210204	277.59	16 7000	
7331.30631P0218349 302.44 16.7881 738 1.19156C 0172701 302.47 16.7895 740 1.20844C 0175149 302.45 16.7886 742 1.23180C 0178533 302.58 16.7300 0.017209 743 3.52127 PC 0510363 302.68 16.7346 017458 744 0.54210 C 0078570 302.46 16.7892 745 3.49330 PC 0078570 302.48 16.7903 746 3.53682 PC 0512618 302.248 16.7457 007837 746 3.53650 PC 00508078 305.21 16.7457 051125 748 0.10335 C 0014979 302.43 16.7872 751 3.41103 PC 0078032 301.73 16.7429 001494 752 0.09665 C 0014008 302.49 16.7906 753 2.55512 C 00370332 301.79 16.7861 0001397 754 0.10432 C 00374189 302.47 16.7891 000170 756 2.57355 C 0374189 302.47 16.7891 000170	7 34	1.51102	r D		.0219090	302.40	16,7009	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ 35	1.50051	r		.0218349	302.44	10./881	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 38	1.19156	C		.0172701	302.47	16.7895	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	740	1.20844	С		.0175149	302.45	16.7886	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	742	1.23180	С		.0178533	302.58	16.7300	0.017209
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	743	3.52127	PC		.0510363	302.68	16.7346	.017458
745 3.49330 PC .0506310 302.22 16.7458 .007837 746 3.53682 PC .0512618 302.48 16.7903 747 3.50550 PC .0508078 305.21 16.7457 .051125 748 0.10335 C .0014979 302.43 16.7872 751 3.41103 PC .0494386 301.73 16.7429 .001494 752 0.09665 C .0014008 302.49 16.7906 753 2.55512 C .00370332 301.79 16.7463 .001397 754 0.10432 C .00371039 302.47 16.7891 .000170 755 2.58173 C .0373004 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	744	0.54210	С		.0078570	302.46	16.7892	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	745	3.49330	PC		.0506310	302.22	16.7458	.007837
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	746	3.53682	PC		.0512618	302.48	16.7903	
748 0.10335 C .0014979 302.43 16.7872 751 3.41103 PC .0494386 301.73 16.7429 .001494 752 0.09665 C .0014008 302.49 16.7429 .001494 753 2.55512 C .00370332 301.79 16.7463 .001397 754 0.10432 C .0015119 302.47 16.78909 755 2.58173 C .0374189 302.47 16.7891 .000170 756 2.57355 C .037404 302.47 16.7891 .000170	747	3.50550	PC		.0508078	305.21	16.7457	.051125
751 3.41103 PC .0494386 301.73 16.7429 .001494 752 0.09665 C .0014008 302.49 16.7906 753 2.55512 C .0370332 301.79 16.7463 .001397 754 0.10432 C .0015119 302.47 16.7909 755 2.58173 C .0373004 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	748	0.10335	С		.0014979	302.43	16.7872	
752 0.09665 C .0014008 302.49 16.7906 753 2.55512 C .0370332 301.79 16.7463 .001397 754 0.10432 C .0015119 302.47 16.7909 755 2.58173 C .0374189 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	751	3.41103	PC		.0494386	301.73	16.7429	.001494
753 2.55512 C .0370332 301.79 16.7463 .001397 754 0.10432 C .0015119 302.47 16.7909 755 2.58173 C .0374189 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	752	0,09665	С		.0014008	302.49	16.7906	
754 0.10432 C .0015119 302.47 16.7909 755 2.58173 C .0374189 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	753	2.55512	С		.0370332	301.79	16.7463	.001397
755 2.58173 C .0374189 302.47 16.7891 .000170 756 2.57355 C .0373004 302.47 16.7891 .000170	754	0.10432	С		.0015119	302.49	16.7909	
756 2.57355 C0373004 302.47 16.7891 000170	755	2.58173	C		.0374189	302.47	16 7891	000170
	756	2.57355	C		.0373004	302.47	16.7891	000170

Table 1. Composition data for the measurements of enthalpies of solution and dilution of NaNO, in water.

^aCode describing sample: U, the crystalline sample before purification; P, pelletized sample; PC, pelletized sample plus loose crystals; C, loose crystals; 1, 2, and 3 are aqueous solutions of NaNO₂ (see text for details).

^b In the following experiments, the initial calorimetric solution was the final solution from the experiment number given in parentheses: 742 (738), 743 (740), 745 (744), 747 (746), 751 (748), and 753 (752). In Expt. Nos. 755 and 756 the initial solution was from a stock solution which was 0.00381 wt. % NaNO2. In all other experiments the initial solution was distilled water.

						1	2				
Expt.	Electric	al energy	^a Stirring	Reaction	ΔTc	Qe	^b -Q reaction	T reaction	∆н _m (т)	Corr. to	∆H _m (298.15 K)
	Initial	Final	correction	reriou						250.15 K	
	-1	-1	correction						-1	_1	-1
	J•K -	J•K -	К	min	К	J	J	К	J•g ⁻¹	J•g ⁻¹	J•g 1
699	1736.708	1732.549	0.014881	18	0.304035	993,756	466.438	298,5597	205,799	0.571	206.370
700	1737.558	1733.851	012864	17	533987	13/8 669	400.400	308 5110	192 568	14 44	207.01
701	1735.632	1732,669	.014874	18	631986	1593 831	497 871	297 9980	207 313	-0 212	207.101
	1755.052	1, 52.005	.014074	10	.031900	1575.051	477.071	257.5500	207.515	0.212	207.101
703	1734.699	1732.663	.014844	18	.717747	1593.696	349.352	298.4071	207.743	0.358	208.081
704	1733.731	1731.610	.015520	18	.729057	1595.077	331.861	297.7545	208.254	-0.551	207.703
708	1/35.0/4	1/32./32	.016102	18	.700192	1594.294	380.228	297.7758	208.756	-0.522	208.234
709	1/3/.260	1735.069	.014912	18	.714352	1595.175	354.942	309.1662	192.690	15.36	208.05
710	1/35.09/	1/32.888	.015452	18	.705976	1593.563	369.406	298.6768	207.388	0.734	208.122
711	1737.004	1734.292	.013098	18	.715541	1596.396	354.468	309.1660	192.810	15.36	208.17
712	1736.737	1734.350	.012439	18	.716719	1593.878	349.980	309.1710	192.503	15.36	207.86
713	1734.896	1733.147	.014391	18	.703541	1592.088	372.132	298.1853	207.917	0.049	207.966
714	1735.212	1733.101	.014860	18	.692035	1595.264	395.167	298.3586	207.580	0.291	207.871
715	1632.247	1627.872	.018920	28	.554092	1594.848	692.187	297,9692	208.196	-0.252	207.944
716	1632,442	1628.024	.021918	32	.763477	2012.228	767.633	297.6505	208.716	-0.696	208.020
718	1631.665	1625.475	.017749	18	.681564	1851.769	741.792	297.7919	208,916	-0.499	208.417
719	1631,986	1627.497	.018551	20	.655632	1853.375	784.880	297.8108	208.731	-0.473	208.258
720	1737.288	1731.810	.017210	18	.738584	2068.456	787.347	298.3596	207.834	0.292	208.126
721	1738.439	1732.286	.018661	22	.759738	2070.775	752.354	297.8344	208,256	-0.438	207,818
722	1737.505	1732.071	.016594	25	.744509	2069.979	778.414	297,9716	208.323	-0.249	208.074
70.0	1600 7/0	1670 500	017005	17	170(1/	200 011	(/ 001	200,0005	55 (00	0.000	55 516
725	16/2 651	16/1 7/2	.01/295	12	.1/9014	50.014	04.921	298.0995	33.009	-0.095	55.510
724	1640 255	1620 020	.015/91	17	.004950	53.702	43.500	300.1082	50.201	10.4	50.7
725	1640.233	1625 029	.010975	10	022384	53.696	90.624	298.1167	59.256	-0.062	59.194
720	1740.001	1720 707	.014061	17	.038027	157.543	62.479	308.2330	39.935	18.0	20.0
727	1744.532	17/6 056	.016730	10	.076976	154.037	17.255	298.2151	31.991	0.120	32.111
720	1720 122	1627 /07	.010229	10	.083874	103.530	17.138	298.2144	31.332	0.119	31.031
/31	1/39.133	1037.407	•014424	10	.190070	379.001	00.000	290.2099	33.307	0.111	22.010
732	1630.606	1628.153	0.014424	18	0.788107	1594.242	310.116	298.2476	207,713	0.136	207.849
733	1629.900	1628.316	.015054	18	.419007	995.012	312,405	298.2127	207.508	0.087	207,595
734	1736.115	1731.992	.016204	18	. 392407	994.463	314.095	298.1400	207.788	-0.014	207.774
735	1734.750	1733.082	.008288	18	.647929	1436.127	312.672	298.2531	207.548	0.144	207.692
738	173/ 72/	1722 766	006109	10	1960/5	1000 100	0/5 050	000 0507			
7.0	173/ 973	1732.700	.000100	10	.480945	1090.190	245.952	298,858/	206.413	0.988	207.401
740	1720 2/0	1707 600	.003429	14	.489061	1098.156	250.386	298.2353	207.197	0.119	207.316
742	1729.240	1729 / 60	.005996	23	.481188	1088.852	257.137	298.2122	208.750	0.087	20 8. 837
745	1732.000	1720.409	.010085	28	.761484	2053.149	/35.448	297.7176	208.859	-0.602	208.257
744	1724.000	1720.032	.005597	13	.023138	152.021	111.928	298.1199	206.473	-0.042	206.431
745	1727 9/2	1720.025	.007290	26	./91632	2098.396	/2/./24	298.0514	208.320	-0.137	208.183
740	1733 19/	1728 330	017611	20	.059200	1878.524	/34.603	298,1803	207.701	0.042	207.743
748	1733.104	1733 202	.01/011	23	.0084/5	18/9.2/2	/22.302	298,1900	206.048	0.056	206.104
751	1733 672	1728 546	017706	7.2 T.2	.07/420	155.249	21.036	298.1814	203.557	0.044	203.601
752	1735 371	1732 162	005099	33	.141827	951.131	/10.81	297.9105	208.38	-0.334	208.05
753	1732 901	1729 217	015069	15	600779	152.001	19.901	298.1645	205.919	0.020	205.939
754	1733 809	1732.736	005605	12	0690/2	1/1 107	533.214	297.6658	208.685	-0.675	208.010
755	1736,601	1732.497	01 31 05	16	611747	1507 200	21.612	298.2122	207.176	0.087	207.263
756	1736 132	1732.027	01/180	18	661020	150/ 022	536.284	298.0920	207.723	-0.081	207.642
/50	1/30.132	1, 32.027	.014100	TO	.001020	1394.923	535.300	298.2146	208.026	0.090	208,116

Table 2. Calorimetric data for the measurements of enthalpies of solution of NaNO, in water.

^aThe stirring rate was 250 rpm in Expt. Nos. 735, 738, 740, 742, 744, 745, 748, 752, and 754; 450 rpm in all other experiments.

^b The following corrections (in J) were made in experiments where the temperature of the vessel was less than that of the shield during a part of the reaction period: No. 699, 0.070; No. 715, 0.542; No. 716, 0.051; No. 719, 0.015; No. 725, 0.340; No. 734, 0.087; No. 743, 0.074; and No. 751, 5.20.

 $^{c}\Delta Cp = -1.85 \pm 0.10 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$ for Expt. Nos. 723 through 731; for all other experiments, $\Delta Cp = -1.394 \pm 0.014 \text{ J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}$.

22

			2	2	-	2 3		2 2	-
n	m	1/2	ф	T.	n	m	1/2	φ.	r,
	mol·kg ⁻¹		J.mol ⁻¹	cal·mol ⁻¹		mol·kg ⁻¹		J•mol ⁻¹	cal·mol ⁻¹
∞	0.00	0.00	0	0	40	1.3877	1.1780	-623	-149
500,000	.000111	.01054	19	4	37	1.5000	1.2247	-720	-172
100,000	.000555	.02356	42	10	30	1.8503	1.3602	-1016	-243
50,000	.00111	.03332	59	14	27.75	2.0000	1.4142	-1125	-269
20,000	.00278	.05273	93	22	25	2.2203	1.4901	-1289	-308
10,000	.00555	.07450	130	31	22.2	2.5000	1.5811	-1481	-354
7,000	.00793	.08905	151	36	20	2.7753	1.6659	-1659	-396
5,000	.01110	.1054	176	42	18.502	3.0000	1.7321	-1791	-428
4,000	.01388	.1178	193	46	15.859	3.5000	1.8708	-2063	-493
3,000	.01850	.1360	217	52	15	3.7004	1.9236	-2163	-517
2,000	.02775	.1666	252	60	13.88	4.0000	2.0000	-2305	-551
1,500	.03700	.1924	277	6 6	12.335	4.5000	2.1213	-2523	-603
1,110	.05000	.2236	305	73	12	4.6255	2.1507	-2573	-615
1,000	.05551	.2356	314	75	11.101	5.0000	2.2361	-2724	-651
900	.0617	.2484	318	76	10	5.5508	2.3560	-2916	-697
800	.0694	.2634	326	78	9.5	5.8429	2.4172	-3008	-719
700	.0793	.2816	335	80	9.251	6.0000	2.4495	-3059	-731
600	.0925	.3041	343	82	9.0	6.1674	2.4834	-3105	-742
555.1	.1000	.3162	347	83	8.5	6.5304	2.5554	-3205	-766
500	.1110	. 3332	351	84	8.0	6.9385	2.6341	-3305	-790
400	.1388	.3726	356	85	7.9297	7.0000	2.6458	-3318	-793
300	.1850	.4301	347	83	7.5	7.4011	2.7205	-3402	-813
277.5	.2000	.4472	343	82	7.0	7.9297	2.8160	-3489	-834
200	.2775	.5268	305	73	6.938	8.0000	2.8284	-3498	-836
150	. 3700	.6083	252	60	6.5	8.5397	2.9223	-3565	-852
111	.5000	.7071	155	37	6.1676	9.0000	3.0000	-3607	-862
100	.5551	.7450	117	28	6.0	9.2514	3.0416	-3628	-867
75	.7401	.8603	-42	-10	5.551	10,0000	3.1623	-3669	-877
55.51	1.0000	1.0000	-272	-65	5.5	11.0924	3.1768	-3674	-878
50	1.1102	1.0536	-372	-89	5.0	11.1016	3.3319	-3707	-886
					4.5	12.3351	3.5121	-3724	-890
1			1	1					

Table 3. Relative apparent molal heat content of NaNO₂ \cdot n H₂O at 298.15 K [n = moles H₂O (moles NaNO₂)⁻¹; m = moles NaNO₂(kg H₂O)⁻¹]

vaporization energy (the calorimeter has an opening to the atmosphere). The uncertainty is estimated to be 1 to 5 percent of the correction and contributes significantly to the experimental imprecision.

The length of the reaction periods (table 2) indicates that the reactions were sometimes prolonged when pelleted samples were used. This probably occurred if the pellet remained on the cylinder of the sample holder when opened instead of falling to the bottom of the vessel where the solution was relatively well-stirred.

In several experiments as listed in footnote b of table 2, the rate of electrical heating during the chemical reaction was not sufficient to compensate for the initial rapid absorption of energy. The temperature of the calorimeter vessel dropped below that of the shield and for a brief period adiabatic conditions were not maintained. The method of calculating these corrections has been described previously [4].

5. Relative Apparent Molal Heat Content

The method used to obtain the values of ϕ_L , the relative apparent molal heat content, in the dilute region from m =340 mmol·kg⁻¹ to infinite dilution is the chord area method as described in Harned and Owen [9]. This method involves plotting $\Delta\phi_L$ ($\Delta m^{1/2}$)⁻¹ vs. $m^{1/2}$ on a large scale graph. Since

₫L, cal/mo

 ϕ_L is the negative of the enthalpy of dilution from concentration *m* to infinite dilution, we may obtain $\Delta \phi_L$ by taking the difference between two enthalpies of solution at concentrations m_1 and m_2 . Numerous short chords were obtained from the integral enthalpies of solution and plotted. A smooth curve was drawn through all the data points. The extrapolation to infinite dilution was made using 472 cal·mol^{-3/2} [9] for the limiting value of $d\phi_L (dm^{1/2})^{-1}$. The resultant $d\phi_L (dm^{1/2})^{-1}$ curve was integrated to obtain ϕ_L . These values of ϕ_L were then plotted vs. $m^{1/2}$. The direct meaurements of $\Delta H_{\rm diln}$ (Expt. Nos. 723–731) were then used with the ϕ_L values previously determined to obtain the ϕ_L values at m =8.432, 12.087, and 3.297 mol·kg⁻¹. These values were added to the plot of ϕ_L vs. $m^{1/2}$. A smooth curve joining the two sections was then made. The final smoothed values of ϕ_L are given in table 3 and figure 1.

6. Enthalpy of Solution at Infinite Dilution

Tables 4A and 4B⁴ show the values obtained for ΔH_{∞}^{*} from the measured values for the enthalpy of solution and the smoothed values for ϕ_{L} at concentration *m*. The value for ΔH_{∞}^{*} , 14.006 kJ·mol⁻¹ (3.347 kcal·mol⁻¹), obtained from the table 4A on the purified material, excluded Expt. Nos.

 $^{^{-4}}$ In these tables, the subscripts *i* and *f* indicate initial and final, respectively.

FIGURE 1. Plot showing smoothed values for ϕ_L , the relative apparent molal heat content, of NaNO₂ in H₂O obtained from the present work and from the previous evaluation of Parker [1].

A	. FIOM the H			.1011.					
Expt. No.	m	m ^{1/2}	∆Hm(298.15K)	ф ₁	∆H°∞	∆Hm(298.15 K)	^ф т.	∆H∞∞	
				$J \cdot mo1^{-1}$			cal·mo1 ⁻¹		
Unpurified a	sample:								
699	0.10860	0.3295	14,238.6	349.4	13,889.2	3403.1	83.5	3319.6	
700	.10499	. 3240	14,282.7	349.4	13,933.3	3413.6	83.5	3330.1	
701	.11510	.3393	14,289.0	351.5	13,937.5	3415.2	84.0	3331.2	
				(ave.)	13,920.0			3327.0	
				(sdm)	±15.4			±3.7	
Purified a	sample:								
703	0.08060	0.2839	14.356.6	336.8	14,019.8	3431.3	80.5	3350.8	
704	.07637	.2764	14,330.5	334.7	13,995.8	3425.1	80.0	3345.1	
708	.08729	.2954	14,367.2	342.2	14,024.8	3433.8	81.8	3352.0	
709	.08827	.2971	14,354.5	343.1	14,011.4	3430.8	82.0	3348.8	
710	.08536	.2921	14,359.4	341.0	14,018.4	3432.0	81.5	3351.5	
711	.08810	.2968	14,362.8	343.1	14,019.7	3432.8	82.0	3350.8	
712	.08713	.2952	14,341.4	342.2	13,999.2	3427.7	81.8	3345.9	
713	.08578	.2928	14,348.7	341.0	14,007.7	3429.4	81.5	3347.9	
714	.09123	.3020	14,342.1	343.9	13,998.2	3427.8	82.2	3345.6	
715	.17369	.4167	14,347.2	349.4	13,997.8	342 9. 0	83.5	3345.5	
716	.19215	.4384	14,352.4	343.1	14,009.3	3430.3	82.0	3348.3	
718	.18555	.4308	14,379.8	347.3	14,032.5	3436.8	83.0	3353.8	
719	.19643	.4432	14,368.8	343.1	14,025.7	3434.2	82.0	3352.2	
720	.18152	.4261	14,359.7	347.3	14,012.4	3432.0	83.0	3349.0	
721	.1/311	.4161	14,338.5	349.4	13,989.1	3427.0	83.5	3343.5	
722	.17909	.4232	14,356.1	347.3	14,008.8	3431.2	83.0	3348.2	
732	.07800	.2793	14,340.0	334.7	12,005.9	3427.5	80.0	3347.0	
733	.07000	.2005	14,323.1	330 5	14 004 0	3423.3	80.0	3343.0	
735	.07244	2687	1/ 320 8	330.5	13 999 3	3420.2	79.0	334/.2	
738	.07219	2380	14,329.0	313.8	13 995 9	3420 1	79.0	2245.9	
740	05791	2406	14,303.8	313.8	13,990.0	3418 7	75.0	3343.1	
740	02508	1612	14,242.8	246.0	13,996.8	3404 1	59.0	3345 3	
744	.02596	.1012	14,242.0	349.4	13,983.9	3425 7	22.0	3342.2	
740	.10947	0704	14 047 5	122.6	*13,924,9	3357.4	29.3	*3328 1	
740	00495	0680	14 208 8	118.8	*14,090.0	3396.0	28.4	*3367 6	
754	00500	.0707	14,300.2	123.4	*14,176.8	3417.8	29.5	*3388.3	
/ 54	.00500	.0707	14,500.2	(ave.)	14,005.6	0417.0	27.5	3347.5	
				(sdm)	±2.7			±0.6	
						1			
* Exclude	d from average	2.							

Table 4. The Enthalpy of solution of $NaNO_2(c)$ in H_2O at infinite dilution at 298.15 K

Table 4. (cont.)

Expt. No.	"i	^m f	m _{1/2}	m _f ^{1/2}	^{∆H} diff	^{∆H} int, m _f	ΔH_{diff}	^{∆H} int, m _f	φ _{L, m_f}	ΔH [•] _∞
					٦•	$mo1^{-1}$	cal	mol ⁻¹	cal.mol ⁻¹	cal.mol-1
742 (738)	0.05710	0.11633	0.2390	0.3411	14,408.8	14,360.1	3443.8	3432.1	84.0	3348.1
743 (740)	.05791	.22718	.2406	.4766	14,368.8	14,352.2	3434.2	3430.2	79.0	3351.2
745 (744)	.02598	.19380	.1612	.4402	14,363.6	14,347.4	3433.0	3429.1	82.0	3347.1
747 (746)	.16947	.33788	.4117	.5813	14,220.2	14,277.0	3398.7	3412.3	64.0	3348.3
751 (748)	.00495	.16886	.0704	.4109	14,354.5	14,345.2	3430.8	3428.6	84.0	3344.6
753 (752)	.00463	.12738	.0680	.3569	14 ,3 51.7	14,346.1	3430.1	3428.8	84.5	3344.3
755	.000562	.12428	.0237	.3525	14,326.3	14,325.2	3424.1	*3423.8	84.0	3339.8
756	.000562	.12439	.0237	.3520	14,359.0	14,357.6	3431.9	*3431.6	84.0	3343.6
				1					avg. =	3347.3
*Calculated	using $\Delta H_{m}(29)$	98.15 K)(m ₁ =	0.562 mmol·1	kg^{-1}) = 3357	cal·mol ⁻¹					

B. From the differential enthalpies of solution; purified sample.

Table 5. Enthalpies of dilution at 298.15 K

Expt.	m		ml	/2	φı	[,	∆Hdiln	
No.	initial	final	initial	final	initial	final	calc	meas
					cal•mo	-1	cal•m	01-1
727	3.297	0.02565	1.8158	0.1601	-468	58.6	526.6	529.5
728	3.297	.02584	1.8158	.1608	-468	58.6	526.6	521.9
723	8.432	.05846	2.9038	.2418	-849	75.0	924.0	915.5
724	8.432	.06177	2.9038	.2485	-849	75.5	924.5	934.7
731	8.432	.06242	2.9038	.2498	-849	76.0	925.0	918.1
725	12.087	.07937	3.4766	.2817	-890	80.0	9 70.0	976.1
726	12.087	.08127	3.4766	.2851	-890	81.0	971.0	966.1

748, 752, and 754 because of relatively large experimental uncertainties; Expt. Nos. 755 and 756 of table 4B were also excluded since the enthalpy of solution for the initial solutions where $m = 0.562 \text{ mmol} \cdot \text{kg}^{-1}$ had not been experimentally determined. The total or integral enthalpies of solution shown in table 4B were obtained from the combination of the experimental ΔH_m (298.15 K) of NaNO₂ (c) at the initial concentration and the measured differential enthalpy of solution.

As is evident from the values for the purified sample in table 4A, ΔH_{∞}^{*} is not dependent upon the form (pelleted or loose) of the sample used. However, the unpurified sample results in $\Delta H_{\infty}^{*} = 13.920 \text{ kJ} \cdot \text{mol}^{-1}$ (3.327 kcal $\cdot \text{mol}^{-1}$) which is 0.6 percent less than that for the purified sample.

Table 5 shows the agreement obtained between the calculated enthalpies of dilution, $\phi_{Lf} - \phi_{Li}$, and the measured values.

7. Discussion

Parker [1] tabulated the ϕ_L values based on Perreu's [2] measurements of $\Delta H_{\rm diln}$ (287 K, m = 11.87 to 0.19 mol·kg⁻¹) which she corrected to 298.15 K using the tabulated ϕ_C values for NaNO₂ (aq). Our own measurements of $\Delta C_p = -1.85 \pm 0.1 \, \rm J \cdot g^{-1} \cdot K^{-1}$ (-30.5 cal·mol⁻¹·deg⁻¹) for the dilution are in reasonable agreement with those she used; therefore we have plotted the values of ϕ_L as tabulated by Parker in figure 1 as well as those calculated here. Parker assumed $\phi_L = 40 \, \rm cal \cdot mol^{-1}$ at the mole ratio, $n_{H_2O} = 300$; our value is 83 cal·mol⁻¹. As is evident, the values are not in agreement, nor will a shift of 43 cal·mol⁻¹ bring the two curves into better agreement.

Table 6 summarizes the values for $\Delta H^{\circ}_{\infty}(298.15 \text{ K})$ obtained from various investigations corrected to 298.15 K where necessary and using the presently obtained values for ϕ_L .

Source	T of Meas.	Concentration Range	∆H° _∞ (298.15 K)					
	K	mol.kg ⁻¹	cal·mol ⁻¹					
Perreu [2]	287	0.14 to 0.22	3303					
Bureau [7a]	293	0.14	3367					
Matignon and Marchal [11]	293	0.16	3319					
Dode [12]	285	0.13	3150					
Swietoslawski [13]	291	0.16	3298					
Reshetnikov [14]	298	0.07	^a 3300					
Wu et al [15]	298	0.04 to 0.007	^b 3262					
This work	298	0.005 to 0.20	334 7 <u>+</u> 17					
a Magnumenta in machanical mintures of NaOU(a) and NaNO (a)								

Table 6. Literature values for $\Delta H_{\infty}^{\circ}$ of NaNO₂(c) in H₂O

^aMeasurements in mechanical mixtures of NaOH(c) and NaNO₂(c).

^bMeasurements in dilute NaOH solutions.

Our own measurements for $\Delta C_p = -1.394 \pm 0.014$ $\mathbf{J} \cdot \mathbf{g}^{-1} \cdot \mathbf{K}^{-1} (-23.0 \text{ cal} \cdot \text{mol}^{-1} \cdot \mathbf{K}^{-1})$ at $m = 100 \text{ mmol} \cdot \text{kg}^{-1}$ indicate that the absolute value for ϕ_{C_p} tabulated by Parker is too negative by 4 cal·mol⁻¹·deg⁻¹. We have made the adjustment for this in correcting those measurements not at 298.15 to 298.15 K. The "best" value for $\Delta H^{\circ}_{\infty}$ (298.15 K) $NaNO_2$ (c) would now appear to be 14.0056 ± 0.0076 $kJ \cdot mol^{-1}$ (3.347 \pm 0.002 kcal $\cdot mol^{-1}$) with the uncertainty at the 99 percent confidence level. However, we have increased the over-all uncertainty to $\pm 0.015 \text{ kJ} \cdot \text{mol}^{-1}$ $(\pm 0.004 \text{ kcal} \cdot \text{mol}^{-1})$ to include an uncertainty in the extrapolation to infinite dilution.

8. References

[1] Parker, V. B., Thermal Properties of Aqueous Uni-univalent Electrolytes, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 2; 66 pages (April 1965).

- [2] Perreu, J., Compt. rend. 212, 442 (1941).
- Cases, J. C., Revue de Chimie minerale 10, 577 (1973). [3]
- [4] Prosen, E. J., and Kilday, M. V., J. Res. Nat. Bur. Stand. (U.S.) 77A, (Phys. and Chem), No. 2, 179–203 (Mar.-Apr. 1973).
- [5] Prosen, E. J., and Kilday, M. V., J. Res. Nat. Bur. Stand. (U.S.) 77A, (Phys. and Chem.) No. 5, 581–597 (Sept.–Oct. 1973).
- [6] Commission on Atomic Weights, Pure and Applied Chem. 21, 91 (1970).
- [7] (a) Bureau, M. J., Ann. Chim. 8, 1-142 (1937); (b) Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M., Nat. Bur. Stand. (U.S.), Circ. 539, IV, page 63 (1955).
- [8] International Critical Tables, Vol. III, 82 (1928) (McGraw-Hill Book Co., Inc., New York, N. Y.).
- [9] Harned, H. S., and Owen, B. B., The physical chemistry of electrolyte solutions, American Chemical Society Monograph Series, 3rd edition, 803 pp (Rheinhold Publishing Corp. New York, 1958).
- [10] Ferrer, P., Thesis, Madrid (1950).
- [11] Matignon, C., and Marchal, G., Compt. rend. 170, 232 (1940).
- [12] Dode, M., Bull. Soc. Chim. France [5] 4, 2093 (1937).
 [13] Swietoslawski, W., Z. physik. Chem. 72, 49–83 (1910).
- [14] Reshetnikov, N. A., Zhur, Neorg. Khim. 6, 682 (1961).
- [15] Wu, Ch., and Hepler, L. G., J. Chem. Eng. Data 7, 536 (1962).