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In the Euclidean plane: given three non-colinear points (vertices of the “triangle of
reference’”’) any point is uniquely determined by its distances to those vertices. These are
called the “distance coordinates” of the point. The main result of our first paper was to
determine which vectors of three non-negative numbers could be distance coordinates for
the given reference triangle. In this paper we put that result, and others, into matrix form.
This leads to generalizations, and to the effect of a change of the reference triangle on the
distance coordinates and the formulas in which they are involved.
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In [1] * we defined distance coordinates for a point in the Euclidean plane with respect to a
triangle of reference. We exhibited formulas relating these coordinates to the area coordinates
of the point.

In this paper we put those formulas into matrix form, note how they are effected by a
change in the triangle of reference, and generalize them considerably. The results are listed in
section I11, labeled (R.1) through (R.30).

Sections I and II state our definitions and notations, and contain equations (1) through
(27). Sections IV and V contain our proofs and equations (28) through (63).

I. Matrix Definitions

Unless stated otherwise capital Roman letters will denote matrices of order three. For
example I is the identity matrix, and J is the matrix with 1 in each position. Small Greek
letters will denote one by three vectors. For example

e==((Il 1l ).

Given a matrix X = (z,;) its transpose will be denoted by X*=(z;;). Its determinant is
det X. Its adjoint is

LoaX33— T23x32 L13T32 7 L33L12 L1223 T22%13
(1) XA=| 295251 — T35%21 L11%33— L1331 L1213~ L11223
L3221 L22T31 L3112 T11X32 L11%22— T 12021,
Of course
2) XXA=(det X)I=XAX.

The sum of the elements in X is
(3) h(X) :x119322+x11x33‘|‘1‘22$33—$12$21_$13Z31_1'231732—3311(9?23+1‘32) _$22($13+$31> _133(%2‘}‘%1)
+$12123+$13132+l‘21113+$23+7531$31$12+x32$21

Note that (X4)T=(XT)4 and that h(XT)=h(X).

*An invited paper.
**Present address: 731 Monroe St., Apt. #103, Rockville, MD 20850.
1 Figures in brackets indicate the literature references at the end of this paper.
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Given a vector u=(m,; m, mz) we define the matrix

It has the properties

det 8,=0, 4S,=0, S,"=—S,

and

SMA:#T#-
Also
(4) rS,=—uS,

for any vector ». The special notation S is used for S,

We have
(5) SP=c"c=d.

Throughout this paper we shall assume the following results which we shall prove in the
last section.
Given a matrix X and vectors u, » we have

(6) det (X+4uTv)=det X+rXAuT
and
7 (X+pTy)A=X2+S,XTS,T.

Given matrices X, Y, Z, with A(X)#0, such that

(8) h(X)Z=JXA4+YSXTST,
then
9) det Z=h(Y)/h(X).

If A(Y)#0 then

(10) h(Y)Z-'=JY*4XSYTST.

Finally for any matrix X:

(11) XSXTST=h(X)I—JXA4,

or, equivalently,

(12) SXTSTX =h(X)I—XAJ.
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Il. Geometric Definitions

Let t be a triangle in the Euclidean plane with area A,>>0 and vertices p;,p,,ps. With re-
pect to ¢ (the triangle of reference) a point p has unique area and distance coordinates:

p=(b1,b2,b3) =[d;,ds,ds]
respectively. The b; are normalized (i.e. b;4b.+b;=1) barycentric coordinates, and
d=|p—pi 1=1,2,3
is the distance from p to the vertex p;. Define the vectors
Brre=(b1b3by)
and
pr=(di2d5*d5?).

For example for the vertices of ¢ we have

Bpr=(1 0 0)
(13) Bp=(0 1 0)
Bpyr=(0 0 1)
and
Sp=(0 ag® @’
(14) Spyr=(as* 0 a;*)

Spot=(as> a,*  0)

where a; is the length of the side of ¢ opposite the vertex p;, i=1, 2, 3.
Let ¢, be a triangle with area A, and vertices ¢y, ¢s, ¢s. Define the matrices

Bat Oqyt
Bh/l: qu/l; Dh/l: qu/t‘

Byt Oyt
An equivalent definition for D, is
(15) Dur=(lg:—pil?),
so that
(16) Dy, =D

For example, equations (13) tell us that
By=1,
and equations (14) tell us that
0 as® af
17 D,y=ja*> 0 a’}
a? a® 0
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We note that
(18) det D,;,=2a,’a,%a?,
that

—at  aa? a12a32

(19) =) w'a’ —at  alad’ |;
a'as  aas’  —as'

that

(20) eD;‘,,=(a1"’cl a’c;  as’cy)

where

ci=a’+a’+as’—2a?, 1=1,2,3
and that
(21) h(D,;;)=eD#,eT=16A2.
It is also important to note that
_2(1112 C3 Co
(22) SD,MSTZ C3 —20,22 C1
Ca ¢ —2a,?
For any point p define g,,, to be the negative of the power of p with respect to the circum-

circle of ¢. That is, g, is the square of the circumradius of ¢ minus the square of the distance
from p to the circumcenter of ¢. Define the vector

(23) Yt = (Ga:tGa:/tGaslt) -

Note that g,,,=0 if and only if p is on the circumcircle of ¢. Since each vertex of ¢ is on its
circumcircle, it follows that v, ,=0.

To the results listed in the next section should be added the following which are well known
(see [2], pages 218-219).

(24) | det th/tl =At1/A3.

Thus B, is non-singular if and only if A, >0. In that case

(25) By, =B,
and
(26) By =By Bup,

for any point p. Moreover, if £, is any triangle with A, >0 then
27 Beyt Bt = Buyta-

Finally, if 8 is any real one by three vector such that Be*=? then there is a point p such
that =8y
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IIl. List of Results

If 6 is any real, non-negative one by three vector, then there is a point p such that 6=46,,, if
and only if

(R.1) det (D,/,— €6 — 6%¢)=0.
If A;,=0 then Dy, is singular (as is By). But
(R.2) if Ay >0 then Dy is singular if and only if the circumcircles of ¢ and ¢, are orthogonal;

i.e. the circles intersect and the respective radii to a point of intersection are perpendicular.
For any two points p, ¢ we have

(R.3) [P—q*=(8p1:—541)B)+-

Thus

R.4) (8p/0—84s0) (BpsetBud)™=0.

Also

(R.5) Bt DeyiBe = p—qI*+gomtgar ~ Au>0.

In some cases we may desire a formula to be independent of the dimensions of ¢, or inde-
pendent of the distance or area coordinates. The following three equations show that this can
be done for ¢,,,:

(RG) gzz/tzap/tﬂg/t
1 -
(R.7) gp/t:§ Bo1:D /i85
(R-S) gp/t:(IGAtz)—l (det Dt/t_ap/lDtA/leT)'

We can replace é,,, in a formula by using

(R.9) 8p10=Bos1Duv—Gorie.

And we can replace 8,,, in a formula by using

(R.10) Bpre=(164,") " (eD4-6,/SD 1 ST).

If we wish to change our triangle of reference from ¢ to ¢, it turns out that we require
h(Dy) #0. The following formulas show that this is equivalent to A; >0:

(Rll) h(Dtl/z)ZlﬁAt2 det le/p
(R.12) |h(Dyy) |=16A4,A,.

The first three ‘‘change of basis” formulas are

(R-13) 6p/tx=ﬁp/tD;f/t—gp/tf

(R.14) h(Deye)Bp=eDinet0, S DapST A0

(R.15) h(Dey) gpm=det Dy—5,,Diee™  4,>0.
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Note that the last two equations depend only on distance coordinates. (For reliance on area co-
ordinates alone equations (25) and (26) tell us that 8, =8 Biyt if A, >0.)

These three equations can be rewritten

(R.16) pi=Bpt (Duyp— € dp)™
(R17) h(Dh/t) BZ)/h:e(Dtl/t_ t‘:T‘Sp/t)A At1>0
(R.18) h(Deye) gpm=det (Dy—€™opr) Ay >0.

We note that A(Dy— €Tpp) =h(Dy,). Also
(R. 19) det (Dyys— €T8ps—dpys, €)=0.

Other “change of basis” formulas are

(R. 20) Spin—0p1=Bpit (Dtyr— D)™
(R. 21) Dujy—Dup=Bup (Dee—De)*
(R. 22) Dej=Buye Disp—viiue

and

(R. 23) k(D)) Byy=J Diu+Duye S Diye ST

Recall that Dy,=D7 (equation (16)), and that By, =Bi; if A, >0 (equation (25)).

The similarities between many of these equations is due to the fact that they are special
cases of the following formulas.

Let ¢4, ts, t3, ts be any triangles. Then

(R.24) Bu, Dee;—Dip) =Du,—Dup, A, >0
(R.25) h(Dee)Bi=d D, +DueS DE, ST A,46,>0
(R.26) h(De) Bun—Ber) = Dup—Der)S DF, ST ArA,>0.
Also

(R.27) Bit.Det=Dup e Au>0

(R.28) Buvpy ="t — Vi Aebu>0

(R.29) Buwviy=—"r, — Auwde>0

and

(R.30) But:DeeBL,=Dupt v et €T vun 8edy>0.

For example (R.5) is a special case of (R.30) as follows:
Reduce triangle ¢; to a point p and triangle ¢4 to a point ¢. Then

Biyts=€"B i, Bror=€"Byjt, Deye=|p—4|* I, vo=gpr.e and yi,=gpre. All terms reduce to mul-
tiples of J=¢"e whose equality is (R.5) with ¢,—¢; and t;—t.
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IV. Proofs

We will refer to several equations in [1] and will use the notation “(12”)”’ for “(12) in [1]”,
or “equation (12) in [1].”

Equation (12") can be written
3 3
32A12f(fl/'1, Iy, 1'3)22 Z akzckxk—2a12a22a32—2 E a2k1k2+201f22f3+202$113+2C3l'11'2'
= =

Let 6= (zxo25) and look at equations (20), (18), and (22). Then we have
(28) 32A,2f(x1, I, xa) :2€D?/16T_det D,/t-i-és D,/,STBT
We shall prove that the r.h.s. is—det (D,,,—e™6—6¢). Since the Theorem in [1] states that
(assuming 6 >0) there is a point p such that 6=4,/, if and only if f(x, @, 23) =0, we will have
proved (R.1).
From equation (6) we have
(29) det (D,;,—e"6—Te)=det (D,/,—€"6)—e(D,;,—€T8)45T
=det D,/,—BD;‘,,eT—e(D,/,—eTﬁ)AeT.
From (7) we have
E(Dt/t—6T5)A=eDf}:—eSaD;I‘/tST
=D 4-6SDyS™

because Dfjy =Dy, and S;= —6S (see (4)). Substituting into (29) yields

det (Dy— e 6—8"€)= det Dyy—oDise” — Do —6SDyS 6™

Since BDﬁteT:(eDf},aT)T, the two scalars are equal. Comparison with the r.h.s. of (28) proves
our result and thus (R. 1). We shall prove (R. 2) at the end of this section.

Given points p, ¢ let B,,,=(b:bsbs) and B,,,= (b1b;b;).
From (28’) we have

3
(30) 2|p_Q|2:k2=1 cx(by—by)?

From (33’) we have

3
(31) 2.‘]17”:"271 cp(by—07).
Thus
3
(32) 2|p_9|2+2gp/z+29q/1:1§ ¢, (b +b5—2b,b;)

Using ci=a,’+a,*+a5>—2a,?, k=1, 2, 3, this becomes
(33) |p—(1I2+gp/z+gq/z:a12(bzb:’;+bab;)+a22(blb§+bsb{)‘I‘as?(blb;‘*‘bzb;)-
The r.h.s is just 8,,,D,,,87,, so that

(34) |Z)_Qi2:611/1])1/13;/:'—gp/t_gq/t-
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We proceed to show that 8,/ Dy 87,:=0s:+85:87/:- Wehave 8/, D= (ba5+bsar* . .. .. ).
From (43’) this becomes 3,,,D,;,=(d*+gpi ... ...)or

(35) Bp/tDt/zzap/t‘f‘gp/ze-

Since ¢8},,=1 we have

(36) Bo1eD1Be1:=0801:827:FGor13-

Substituting this into (34) we get
(37) Ip_9|2=5p/tﬁ§/t""gqlt~

From (37') we get
(38) gp/;=5p/ﬁ;/t.

Then (37) becomes | p—q|>= 8, Bee—>541 By and (R. 3) is proved. Interchanging p and ¢ yields
|p—q|?= (50— 0p1) Bpi- Equating the two r.h.s. proves (R. 4). And (R. 5) was proved by the

remarks at the end of the last section (once (R. 30) is proved).

We have already proved (R. 6) with (38). Setting g=p in (36) and using (38) proves (R. 7).
Multiply (35) on the right by D) ¢" to get det Dyy=0, Diji € +h(Dy) gpe. Using (21) com-
pletes the proof of (R. 8).

We have already proved (R. 9) with (35). Equations (16”) can be written

(39) 16A.2 by=a,® ¢;— 20, d,>+ ¢5 2+ ¢, d3? etc.
Equations (20) and (22) trans'ate this into
(40) 16A2 By =€ Diji+ 8y SDyy ST
which is (R. 10).
Setting 7= q1, ¢z, ¢s in (40) yields
(41) 1642 By =JDii+ Dy SDye S™.

Since 164,2=h (Dy) and Dy,=D; we can apply the results following equation (8) with X=Dyy,
Y=D,; and Z=B,;. Equation (9) proves (R. 11) and equation (10) proves (R. 23) since B;;=
By if A, >0. Result (R. 12) follows from (R. 11) and (24).

Interchange p and ¢ in equation (37) and rewrite it as |p—q|>=8,,6%7,:— s/ Letting ¢=g¢;,

s, g3 yields (R. 13). Multiply (R. 23) on the left by 8,,,. Since 8,,,Bye=B8upu, Borid =€, Bo D=
61t gore, and eS=0we get (R. 14). Result (R. 15) follows from (R. 13) and (R. 14) with the for-

mula gp,=Bpudms,. In the calculation use STeT=0 and SD7STD;=h(Dy)I—Did (from (12).)
Result (R. 16) is (R. 13) rewritten to conform with the two following results. They in turn
follow from (R. 14) and (R. 15) by using the same kind of calculations as those surrounding
equation (29). Multiply (R. 17) on the right by €T, note that 8y,e*=1 and that the r.h.s. is
h(Dyr—€"8,,,) to show that the latter equals A(Dy). To prove (R. 19) write (R. 13) as

ﬁp/:(Dn/t— eTép/,— 5g/t1€)’r:0'

Since B,,, cannot be the zero vector (because 8,,,¥=1) it follows that the matrix D;;—€"s,/,

—3p/ne cannot be non-singular.
Result (R. 20) is (R. 13) minus (R. 9). Then p=q,, ¢z, g3, in (R. 20) proves (R. 21).

Similarly (R. 22) comes from (R. 13) by setting p=q¢i, ¢z, ¢s, and recalling the definition (23).
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Let t,;=t; in (R. 13) and then set p=gq,, ¢, ¢3, to get

T_ T
Dujes=BuDyye—vi,€

with ¢=¢, (thus requiring A,,>0) and D%, =Dy, we get (R. 27). In that equation set t;=t,
and subtract from the original to get (R. 24). Let ¢;=¢, in (R. 14) and then p=q;, ¢,, ¢5. This
yields (R. 25) with t=t,.

Result (R. 26) comes from the following observation: Let X=Dy, in equation (11) to get
IDA,=h(Duy;) I— Dy, SDF, ST
Substituting this into (R. 25) yields
(42) h(Duses) (Buye;—1) = (Dyyty— D) SDL, ST
Subtract this from the same expression with ¢;,=t, to get
h (D) Bryt,—Buje) = (Deyty—Diyes) SD;5, S ™.
The cyclic permutation (1 2 3 4) transforms this into (R. 26).
Use the cyclic permutation (1 2 3) on (R. 27) to get
But.Dwe=Duntyape  Au>0.
Assume A, >0 and multiply on the left by Bys,. Using (27) we get
B Deyti=Bu:Deyes+ Buasvigse.

NOW Bh/taDtx/tl:D“/g,—*-‘y;r,/gxe and Bt,/zthz/h:Dt,/g,—{—’yg‘/gze (using (R 27) Wlth the proper permuta—
tions). Thus

T T T
Yisjts€ =Yt + Buyrvarjise.

With #,=t, the first column of this matrix equation is (R. 28). In (R. 28) set #;=t, and recall
that v;,,=0 to get (R. 29).
Assume A, >0 and multiply (R. 27) on the right by B/, to get

(43) By Do Bioty=DuyeBiy+vopme  Audi>0

Using (R. 27) we have Bh,hDh/,l:D,4,,1+7,T,/,35. Transposed this is Dz./zaBEm:Dtl/tri— "y, Substitu-
tion into (43) yields (R. 30).

We finish this section by proving (R.2) in the course of which we will use capital Roman
letters which do not denote matrices. Specifically R, and O, will denote the circumradius and
the l(l;irtcumcenter respectively of the triangle ¢. The distance from O, to each vertex of ¢ is R,
so tha

(44) do=R,%.
Letting p=0,1in (R.15) yields
det Dye=h(Dyyr) (gop+R2) Ay, >0.
By definition, gpu=Ry*—|p—0y|% Thus
(45) det Dyy=h(Dyy) (R24+Ri2—|0,—04|?) Ay >0.
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Since R 2+ R;?>=|0,—0y|? if and only if the respective circumcircles are orthogonal, we have
proved (R.2).

V. Matrix Proofs
Let X=(z,;) be a matrix of order three, let »= (n,n,n;), and let
o=y XA=(818283).

Since h(Q)=eQ*T, eTe=J, and S.=S, we see that letting w=p=¢ in equations (60),
(61), and (63) yield equations (8), (9), and (10) respectively (with Y=P, X=Q). Similarly,
letting p=v=e in equations (51) and (52) yield equations (11) and (12, resp ctively. Finally,
equation (55) is equation (6), and equation (54) is equation (7).

By inspection of (1) we have
(46) 81="=21 (N3T32—N2T33) + X2 (1133 — N3 31) +Xo3 (NoT31— N1 230)
= — 231 (NaTan— Nalag) — L32(N1 23— NaZoy) — L33 (NaZor— M1 T20)
(47) 82 =131 (N3T12— No13) + 32 (N1 13— N311) + T33(Mo 1, —N1219)
=— 211 (N3x32— NoT33) — T12(N1 33— N3T31) — 13 (Nakay— M T35)
(48) 83=111(NaZos— NaTa3) +X12(N1T 23— N3Ta1) T 13 (MaZo— N1 T0s)

=—o (N 12— Mo13) — oo (M1 13— N311) — Tog (Mo11— My 12)

Let v1, 72, s denote the rows of XS,*, where

0 —ns Mo
SyT: N3 0 —MN;
— Ny n; 0

We have
V1= (N3Z12—No13 Ny I13— N3y NoZ11-— M1 Z12)
Yo=(TgZoo— N3 ML 93— N3y Moo — T L22)
Ys= (N332— NaiLs3 N1 233 — N3 31 N3 — T L32)

Let py, ps, ps denote the rows of X:

pi=(TuZuls) 1=1, 2, 3.
Clearly
pIYzT:O 'l:"_**17 2, 3.

From equations (46), (47), (48) we see that
$1=pyys" =—psv2"
Se=pgY1 =—prVs"

S3=prye' =—p7:".

0 83 —8
<_‘S3 0 81>:Sg.
S —& 0
That is

(49) XS, XT=8,=8S ;4.

Thus X(XS,")T=(ps,T) equals
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Let u be a one by three vector. Since
(50) SeS,"=(ou") I — 4"

(a general result), we have

(51) XS, XTS,T= (pXAuT) [—pTyXA.
Taking transposes and substituting X* for X yields

(52) S XTS,TX = (pXAuT) I X4y,
Let

W=XA+8,X78,T
(X4 uT) W= (det X) T+XS,XTS,T+ 4T XA,
since XXA=(det X)I and »S,=0. Using (51) yields
(53) (X+ ) W=(det X+»rXAuT)]1.

Then

Since this is an identity in the variables X, u, » (or rather, their elements) we conclude that W
is a scalar times (X—+u"p)A. In the latter the elements of order two in the z,; form X* as is
true of W, so that the scalar is 1. Thus W=(X+pn"»)*:

(54) X+uTy)A=X24S,XTS,T,
and from (53):
(55) det (X+uTv)=det X+, XAuT.

Let P, Q be matrices of order three, and let w be a one by three vector. In equations (54)
and (55) we will set X=PS Q"S,T and y=wQ*. Since S,A=n"u we have

(PS wQTSuT> AT (S“T) A (QT) AS wAPA

(56) —Tu(Q) TP

= (0QuT)pTwPA.
(The scalars u(Q*) "™ and wQ*u™ are equal). From (49) we have S,qa=QS.Q". Thus
(57) (PSQ™S, +1TQM) A= (Q*%") pT P4+ (QS.QT) (S,QS.PT)S,™.
From (51) we have QTS,QS." = (wQ*»") I —wu(Q*)". Since S,w"=0, (57) becomes
(58) (PSQTS, 1T wQ) A= (wQ*%") (1" wP44-QS.PTS,T).
In using (54) we recall that det S,=0. Thus
(59) det (PS.QTS,"+uTwQ") = (wQ*) (wQ*p") nT P u"

= (0Q*u™)*wPAu".

Suppose wQ4™ is not 0, and define the matrix Z by

(60) («Q*T)Z=PS.Q"S,"+n"wQ*.
From (59) we have («Q*u™)? det Z=(wQ*u")2(wP44")

or

(61) detZ = (wP*u")/(wQ*").

71



The 1.h.s. of (58) is (wQ*kT)?Z* so that

(62) (0QAuT)ZA=QS ,PTS, T+ uTwPA.
Assume wPAuT#0. Then ZA=(det Z)Z~! so that
(63) (0PAuT)Z'=QS ,PTS, T+ uTwPA,

Comparing with (60) we note that the transformation P — Q takes Z into Z~!.
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