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Maxwell's equations can be interpreted as two conservation laws in a four-dimensional geometric mani­
fold, expressed as the vanishing of a divergence and of a curl. These natural derivatives are invariant under 
holonomic coordinate transformations in any geometric manifold, and contain no reference to properties of the 
manifold such as its metric tensor and linear connection. 

The relation between the D-H and E-B fields is classically determined by the metric tensor. If a general 
asymmetric connection is considered, the field relations can still be derived from-Hamilton's principle with the 
addition of an anholonomic constraint. 

The basic effect of the inclusion of asymmetry (a non-vanishing torsion) is to destroy the parallelism be­
tween the Poynting vector E X H and the momentum vector D X B. 
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Maxwell's equations can be interpreted as conservation laws : 

a)..!p=o (1) 

(2) 

These equations are invariant under holonomic coordinate transformations in any geometric 
manifold. 

In a holonomic coordinate system, (1) and (2) imply 

g>.=ap. (j, [>.p.] 

Fp..=2a[p.A.] 

(3) 

(4) 

and, in fact, (1) and (2) become identities if g and F are defined by (3), (4), with (j,)..p. and A. 
arbitrary. 

Equations (3) and (4) can be combined to yield the identity 

a1r(Fp.>. (j,)..1r)+~ (j,>'1rap.F)..1r=Fp.)..g ).. (5) 

which has a physical interpretation in terms of energy and stress. 
Consider an arbitrary scalar density function of of Av, a [p.A.], and various parameters of the 

manifold. Define 
d Fp.v= 2a[p.Av] (6) 

(j,p..~ aof 
a(a[p.Avl ) 

(7) 

g>.gap. (j,)..p. (8) 

Expressing the Lie· derivative of £ in two ways [1]1 yields (5) as an identity arising from the 
condition that the arguments of ,£ must combine to yield a scalar density. Thus any scalar 
density function of an arbitrary Av and its rotation yields (5) as a mathematical identity among 
the quantities defined by (6), (7), and (8). 

1 Figures in brackets indicate the literature references at the end of this paper. 
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To attach physical meaning to all these identities, we assume a 4-current gx, satisfying 
(1), as a source, and require that the resulting fields satisfy Hamilton'& variational principle. 
Since (1) and (2) are valid in any geometric manifold, gx and Av are gauge invariant, i. e., if 
we assign a metric tensor g"f3 to the manifold, gx and Av are invariant under conformal trans­
formations of g"f3 . The gauge invariance of FI'Y' O,I'V, and of follows. 

Since the only gauge-invariant tensor density associated with the manifold is gl/2g"pgf3U , a 
gauge-invariant 0£: comprises terms of the form 

where S"i is any gauge-invariant tensor. 
If the manifold is endowed with a linear connection, its torsion satisfies the conditions 

on S"i. A linear connection has no other gauge invariant parameters of this form, so it is 
natural to consider S"l to be the torsion of a connection and investigate its effects on 0£: as a 
Lagrangian. 

If we add a torsion term to the familar Lagrangian for a riemann space, we have 

(9) 

which gives 
(10) 

so that 0£: can also be written as 

(11) 

Now 0£: satisfies Hamilton's principle if the allowed variations of Ax are subjected to the 
anholonomic constraint [2] 

(12) 

If the constant C is taken to be -2, then 

(13) 

which is a covariant generalization of the riemannian case 

(14) 

Now consider the effect of the constraint on the change of fields resulting from a change of 
the 4-current source, gx: 

The last term vanishes by virtue of the constraint, leaving 

(16) 

2 



Allowing g). to build up from zero to its final state givfls 

(17) 

which can be expressed in terms of 3-dimensional fields as 

oL=-J·A+pcp+fH.dB- f D·dE. (18) 

Note that the torsion does not explicitly appear in (16)-(18); its effect is implicit in the fields 
resulting from a given source. 

On the other hand, if we compute the Poynting vector, E X H, and the momentum, DXB, 
from (10), we find interesting differences. The Poynting vector contains only spatial asymmetry 
terms, Sij).; i,j = 1, 2, 3,. The momentum contains only SOI\ r epresenting time-space asym­
metries. Thus, in general, the Poynting and momentum vectors will not be parallel. 
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