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Ve ry oft en a non-so lvenl diffuses into a glassy polymer with a s teep co ncentration profil e proceeding a t an 
a lmost consta nt rate v yie ldin g a we ight gain proportio na l to time. Such a diffus io n is ca ll ed type II diffus io n in 
orde r to distinguis h it from the more usual "' Fic ki an" diffus io n proceed in g witho ut such a constant conce ntra tio n 
front and yie lding, at leas t in the beginning, a we ighl ga in proportional to the square root of time . It turns out th a t 
the conventiona l diffus io n equation without a ny spec ial ne w te rm but with" diffus ion coe ffi c ient rapidl y inc reas in g 
wilh concentratio n has a series of solutions representing exactly suc h type II diffus ion with /} as a compl e te ly free 
parame le r whic h de te rmines the stee pness of concentra tion front. With the us ua l boundary condilions a nd infinite 
medium Ihe diffus ion coe ffi c ie nl has 10 become infinit e a l Ihe highest pe netrant concentration. Thi s case ca n be 
cons ide red as an ex treme limit whi ch is approached 10 a high degree in a n ac tual ex perime nt. The finit e sa mpl e 
thic kness, howe ver, requires onl y a ve ry la rge but not a n infinil e diffus ion coeffi c ient. He nce Iype II diffus io n is 
o nl y a s pec ia l case of poss ibl e diffusion processes compatible with the conventiona l diffu s io n eq ua tion wilhout any 
need for new te rms if on ly the diffus ion coe ffi c ient inc reases s uffic ientl y fasl with pe ne tran l conce ntra tion . 

Key words : Concentration de pende nt diffus ion coeffic ie nt ; concentration front ; discontinuous s we lling; un conven­
ti ona l diffus ion; veloci ty of concentratio n front propagatio n. 

1 . Introduction 

In recent yea rs a large amount of expe rime ntal [1- 12] 
and theore ti ca l [13-21] work was done on cl;iffusion of liquids 
in pol yme r glasses with a lmost discontinuous s we lling whic h 
is now gene rally refe rred to as type II diffu sion [2]. It is 
characterized by three basi c conditions: (1) As so lve nt pene­
trates the polymer, a sharp advanc ing boundary se parates the 
inner glassy core from the outer swoll en and rubbery she ll , 
(2) Behind the solvent's advancing front, the swollen gel is in 
an almost equilibrium swelling s ta te, (3) the boundary be­
tween swollen gel and glassy core advances at almost con­
stant rate varying in polystyre ne, de pe nding on tempe rature, 
penetrant and its activity, between 0.2 and 10 X 10- 6 cm/s. 
As a consequence the specific weight gain per unit cross 
section of the diffus ing front , W inc reases almost linearly with 
time as expected from the almost constant veloc ity, v, of 
progress of the swe lling boundary between the low and high 
concentration of the pe netrant. An e ffect of minor importa nce 
for the diffus ion process itse lf is the partial destruction of 
polymer with c raze a nd crac k formati on in the swollen region 
of the polyme r. 

As a glassy polymer is coo led the speed of advanc ing front 
falls off and a critical point is reac hed with ze ro velocity v. 
Type II diffus ion is re placed by a more or less conventional 
Fickian diffusion. In this case the polymer has both a glassy 
shell and glassy core. The swelling by the penetrant is not 
sufficient for the reduction of the glass transition point of the 
swollen material below or to the temperature of the experi-

I Figures in brackets indicate the literature references a l the end of this paper. 

ment. According to some a na lyses of the low molec ul a r 
we ight paraffin diffusion into polystyre ne, the effec t occurs at 
re lative ly hi gh pe ne trant activity [17] , be tween 0.5 and 1, 
whil e olde r data on methyl acetate diffusion into pol y(m eth yl 
me thac ryla te) a nd on acetone diffusion in cellulose nitra te 
show the I inear inc rease of W with time most c learl y at very 
low ac tivity [la]. 

Since the advanc in g of a s ha rp boundary between low and 
high solvent concentration at an almost constant veloc ity is a 
most unexpected feature of a diffusion process, a new name, 
type II diffus ion was c reated [2] and the phenome non tried to 
be expla ined by a new te rm in the diffusion equation depend­
ing on the dive rgence of the stress field originating at the 
boundary be tween the conspicuously swollen and the almost 
non swollen material [15, 16]. An analysis of the diffusion 
process in a nonlinear sorption and diffusion range, however, 
shows that the effect is ne ither so strange nor so unexpected 
to need a new name and a new term in the diffusion equation. 
It follows automatically from the classical formulation of 
diffusion if the sorption (5) and diffusion (D) coeffic ient are 
strongly dependent on concentration c of diffusant o r its 
chemical potential p.. 

In this paper it will be demonstrated that the gene ra l 
diffusion equation in an infinite medium can have a steady 
state solution with a time independent concentration profil e 
progressing uniformly through the polyme r at a constant 
velocity. The sole condition for such a solution is that the 
mobility becomes infinite at the maximum concentration Co or 
maximum chemical potential of the diffusant. Thi s condition 
is a natural consequence of the geometrical boundaries of the 
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sample extending from -XJ to +XJ. A constant currentj from 
the boundary at -XJ can be only sustained if D increases to 
infinity while (dc/ax )-oc goes to zero. The more realis tic 
cons ide ration of the finite dimensions of the sample removes 
the need for an infinitely large diffusion coefficient but also 
makes the mathematics a little more complicated than at­
tempted in this paper. 

For the sake of simplic ity only the linear case will be 
treated . The swelling boundary has a constant cross-section 
and proceeds with constant veloc ity in the x -axis direction. 
The specific weight gain of the sample pe r unit time, dW/dt , 
is constant as in the case of type II diffusion if one neglects 
the trans ients at the beginning and the end of the experiment. 
The transients are of course completely neglected in the 
cons ideration of the s teady state boundary propagation 
through an infinitely thick sample extending from - XJ to + 00. 

In the actual membrane the diffusant mobility may in­
crease quite drastically with glass to rubbe r transformation 
but s till remains finite . Yet the changes a re quite substantial , 
from D = 10- 12 cm2/s in a glass to 10- 6 cm2/ s in a gel. The 
above mentioned steady state solution in the infinite medium 
is therefore the asymptotic approximation to the ac tual diffu­
sion process if the mobility increases by a few orde rs of 
magnitude while the sorbent concentration inc reases from c 
= 0 to co. This is indeed the case with a diffusant which 
transforms the glassy polymer into a rubbe ry gel. The gel 
must be so much lower in polymer content that the sorbate 
flows through it almost freely and thus eas ily supplies the 
amount of liquid requested for the swelling at the propagating 
concent ration front. 

Transient from the start at t = 0 with c = 0 throughout the 
sample to the steady state solution is a combination with the 
usual type I diffusion with the initial weight gain proportional 
to the square root of time. During this transition time the 
steady state of the concentration tail gets established in front 
of the almost constant concentration profile . The shape of the 
profile depends on the propagation velocity [14]. The total 
we ight gain is a sum of two te rms, one proportional to t 112 and 
one proportional to t [13]. The former soon tapers off while 
the latter remains practi cally unchanged. Another transient 
effec t occurs at the end of the experiment when the steadily 
progressing concentration fronts nearly meet each other in the 
cente r of the film if the liquid enters the film from both 
surfaces. According to Hopfenberg e t al. [8, 9], the spec ific 
weight gain slightly inc reases in the case of propagation of n­
pentane into glassy polystyrene just before the diffusion 
process is completed . Such an effect finds a simple explana­
tion in the superposition of the concentration tails in front of 
the concentration discontinuities as they approach the center 
plane of the film. Hence the concentration at each point 
be tween the advanc ing fronts increases faste r than formerly 
when the fronts were farther apart. As a consequence the 
critical concentration for the transformation from glass to gel 
is reached earlie r. This shows up in an accele ration of 
spec ific we ight gain at the end of type II diffusion. 

The diffusion equation and the bounda ry conditions do not 
impose any limitation on v and hence do not determine the 
ve loc ity of profile propagation . The veloc ity must be con­
nected with some independent material prope rty. It seems to 
be a good suggestion that the increase of conce ntration of the 
penetrant produces by the ensuing membrane swelling a 
suffic iently high stress on the polymer network for the rupture 
or partial disentanglement of most strained chains . But since 
the chain rupture or the pulling out of chains is not an 

instantaneous process an effect of this type sufficiently large 
to pe rmit a substantial swelling is only achieved if the stress 
pers ists for a suffic iently long time. This condition de ter­
mines the propagation velocity of the concentration profile . If 
the condition cannot be met the transport of permeant pro­
ceeds in the usual way as type I diffusion , i. e ., without a 
discontinuous concentration front and with a weight increase 
which is for a long while proportional to the square root of 
time . 

2. Mathematical Description of Type II 
Diffusion 

All the theore tical work up till now is purely descriptive 
without any serious attempt of explanation. Peterlin [13 , 14] 
based his description on the diffusion and sorbate concentra­
tion dependence on time in front of a sorption discontinuity, 
i.e. , a jump from c* to co , moving through the sample at 
constant veloc ity v. In this area the Fickian diffusion equa­
tion reads [13] 

- D - + vc a ( aC ) 
ax' ax' 

(1) 

with the diffusion current 

(2) 

Herex' = x - vt , D is the constant diffusion coefficient , and 
c* the maximum concentration of liquid in the glass beyond 
which a discontinuous transformation to a gel with concentra­
tion Co and so high diffusivity takes place that prac tically no 
driving gradient is needed for the supply of liquid to the 
proceeding discontinuity front. The point x corresponding to 
a constant x ' moves with the constant velocity v to larger x as 
does the conce ntration discontinuity. The Fickian formul a­
tion with the current proportional to the negative gradient of 
concentration instead of that of chemical potential is full y 
legitimate because the sorption coefficient is assumed con­
stant although much smalle r in front than be hind the concen­
tration discontinuity. 

Behind the discontinuity the sorbate concentration is prac­
tically constant (co) and hence the current j' in the x ' ,t frame 
equal to zero. In the laboratory system x, t the diffusion 
current j is by vc larger than j'. Hence it turns out to be 
-D fJc/ax in front of discontinuity and vCo behind it. Exactly 
speaking the very large value of D in the swollen region 
permits even a higher value of current than vCo in order to 
supply the liquid needed for the gradual establishment of the 
steady state concentration tail in front of discontinuity. 

From these equations one obtains the weight gain pe r unit 
cross section of the film as function of time 

(3) 

for small t and 

W = c*D /v + covt (4) 
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for large t afte r the concentration profile in front of the 
discontinuity has reac hed its stationary value. The concen­
tration is measured in g of sorbate per cm3 of sorbent. 

The first term desc ribes the effect of Fickian diffus ion with 
cons tant diffus ion coe ffi c ient D in front of the di scontinuity 
whi ch after the initi a l proportionality to t 1/2 reach es the con­
stant vaLue c*D /v . The second term describes the weight ga in 
in the highly swollen region behind the discontinuity propor­
tional to the uniform increase of the volume of the swolle n 
region as a consequence of constant veloc it y v of the profile 
propagation. In these expressions one assumed that the diffu­
s ivity in the gel is so much highe r than in the glass that there 
practically no measurable gradient is needed for the transport 
of the liquid. A rather similar approac h was used by Crank 
[22] in hi s desc ription of different cases of diffus ion in so l ids. 

In the initial state the coex istence of the sq uare root and 
linear term in time according to eq (3) yields ove r appreciable 
time intervals a constant power tn relations hip be twee n 
we ight gain and time, W = Bt III, as can be seen from fi gure 1. 
where log W is plotted versus log t. At sma ll t one has the 
sq ua re root , tn = 0.5 , and at high t the linear, tn = 1, 
dependence. A rather consta nt tn, i.e., a rather co ns tant 
s lope, appli es to inte rva ls extending ove r a lmost two decades 
of time. One ca n guess that within ex pe rimental errors s uch a 
theoretica l predi ction may suffic iently we ll fit the power law 
of we ight ga in observed in so me cases of un conventiona l 
so rption [7]. 

2 

-1 
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FIGURE 1. Bilogarithmic plot of weight gain W over time I according to eq 
(3). 

There is no limita tion about v in eqs 1 to 4 a lthough the 
time de pendence of the concentrations profil e in front of the 
concentration discontinuity [14] and the asy mptotic s teady 
state 'value c*D /v depend on v. The dimens ionless time 
parameter a = (v 2t/4D)I/2 inc reases and the tota l equilibrium 
sorption c*D /v in that region dec reases with increasing v. The 
constant rate progress ion of the concentration discontinuity 
yielding the linear weight gain according to eqs (3) and (4) 
characteristic for type II diffusion hence is a dis tinc t possibil­
ity compatible with the classical diffusion equation as long as 
the supply of the sorbate through the highly swollen section of 

the film is suffic ientl y high. This flux has to fill continuously 
with the so lvent a volume increasing in de pth by v per second 
in spite of the steadil y inc reasing length of the supply route 
from the outer surface of the film to the s teadily progressing 
discontinuity. In all practical cases that requires that the 
diffusion coeffi c ient of the gel (D 2 ) is some orders of magni­
tude higher than in the not swoll en glass (D I) ' In the ideal 
case of an infinite ex tension of the film in the direction 
pe r-pendic ular to the front this conditi on amounts to an infi­
nite va lue of D2 • 

One concl udes that the type II d iffu sion can be suffic iently 
well approx imated on the basis of the c lass ical diffusion 
equation by the limiting case of constant rate propagation of a 
concentration discontinuity. The very beg inning (t = 4Da2/v2 

with a ~ 0) with the weight gain proportional to t 1/2 may be 
ove r in such a short time that it is practicall y unobse rvable. 
After that a linea r increase of we ight ga in with time is 
establis hed. In a sample with a very la rge distance between 
the borde r whe re the liquid ente rs and the concentrati on 
d iscontinuity the weight ga in must show so me inc ipient drop 
as soon as the influence of diffus ion time through the swo ll en 
region becomes preceptibl e on the so lvent supply at the 
conce ntrati on di scontinuity. This does not occur in the 
above-q uoted ex pe riments by Hopfenbe rg et a l. [7-9] , whe re 
for a polystyre ne (PS) film of 38/-Lm thi ckness the diffusion 
from both su rfaces of the film was completed betwee n 12 min 
and 400 hours, de pendent on te mpe rat ur'e, ac ti vity of n­
pentane vapo r, and on polymer ori entati on. The veloc ity of 
conce ntration front propagati on in the sa me cases va ri ed 
betwee n 1.3 X 10- 9 (cast an nea led PS, 25°C, n-penta ne gas 
ac ti vit y 0.63) and 2.65 X 10- 6 cm. s- I (biax ia ll y oriented PS, 
35°C, ac ti vit y 1). Since the maxi mum liquid co ncentration 
was about 13 g pe r 100 g of polymer one needs indeed such 
an extremely small grad ient for steady supply of so sma ll an 
amount of liquid inc rease pe r unit time that its dec rease 
would be ha rd to detec t. 

Hence the contras t between types I and II diffus ion is one 
of the conseq uences of the extreme nonidea lity of transport 
prope rties in the latte r case. A di scontinuous s ubstantia l 
increase of sorption and diffusion takes place afte r a li miting 
concentration c* of sorbent is attained in th e film by more or 
less conventiona l type I diffus ion. The cons tant rate propaga­
tion of the concentration discontinuity represents a pseudos­
tationary state of diffus ion in such a nonid eal med ium. The 
veloc ity v, however, is not derivable from the diffus ion equa­
tion and boundary conditions and must b e determined by 
some othe r mechanism of solvent-polymer inte rac tion . 

The non-ideality of the medium , i. e., an almost discontin­
uous increase of diffusion coeffic ient as soon as the pene trant 
concentration reaches a critical value c* was already sug­
gested by King [l] for explanation of the unconventiona l 
diffusion of alcohol vapor into wool and keratine. Hi s results 
cannot be directly compared with eqs (1 to 4 ) because he uses 
an expansion of D in powers of c which makes the results 
more complicated, depe ndent on the coefficients of the power 
expans ion . But he actually estimates the e ffec t of rap idl y 
inc reasing D with concentration yielding a s teep concentra­
tion front propagating with almost constant ve loc ity into the 
medium. 

Frisch et a1. [15, 16] assume that the diffusion current 
density is caused by the gradient of chemi ca l potenti a l and 
the divergence of the partial stress tensor of the penetrant 

j = -Bc[a/-L /ax - (l/c)aSxx jax] (5) 
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if one puts 

(6) 

i.e. , if one makes the assumption that the pmtial stress tensor 
S of the penetrant at any location and time is proportional to 
the total uptake of the penetrant up to that location and time. 
With a constant proportionality factor s one obtains from 

as xxi ax = sc(x,t) (7) 

a current 

j = -Bca}.L lax + Bsc= - Bc(x,t)(a}.L lax - s) (8) 
= - Bca}.Llax + vc. 

With constant D and }.L = RT e n c one obtains 

c{x, t) = {co/2){exp(xv/D)erfc[(x + vt )/2(Dt )1 /2] 
(8a) 

+ erfc[(x - vt )/2(Dt)1/2]} 

for diffusion into the half space with x ;;,: O. According to thi s 
solution the steepness of concentration " discontinuity" a t co/2 
soon tape rs off in exac tly the same manner as in conventional 
diffus ion . The point with c = co/2 proceeds into the medium 
at almost constan t veloc ity v . Points with s maller c move 
faster and those with higher c move more slowl y so that the 
maximum slope, located at c = co/2, gradually diminishes 
and finally becomes zero. The weight gain W /co is initially 
proportional to t 1/2. With increasing time it approac hes stric t 
proportionality to t. The assymptote goes exactly through the 
origin of W,t coordinate system. 

The " theory" de pe nds on the "natural" assumption formu­
lated in eq (6) that the partial s tress tensor of the liquid S xx in 
the highly swollen section of the sample linearly increases 
with x and he nce goes to infinity in an infinite medium. Since 
to our know ledge no suc h stress exists one gets the impres­
sion that all the naturalness of the above assumption is rather 
pragmatic based on the success, i.e., on the yielding of a 
cons tant term in eq (5) one wants to have in order to fit the 
experimental da ta. There is no correlation between any prop­
e rty of the polymer or penetrant and the coeffi c ie nt s whic h 
together with B determines the velocity of propagation v = Bs 
of the concentration front. Hence the derivation of the au­
thors, the introduction of the new term depe nding on the 
s tress gradie nt , a nd the choice of stress which yields the 
constant compone nt Bsc of the current can be labelled mathe­
matical d escription but not explanation of the type II diffu­
S IOn . 

The differe nce between the solution of Frisch e t a!. and 
that of Pete rlin is in the shape of concentration profile and in 
limiting weight gain. According to the former concept the 
shape of concentration front gets gradually less steep and 
finally becomes perfectly fla t as at the end of conventional 
diffusion. In the latter formulation it rathe r soon reaches a 
finit e shape which afte r that does not change any more . The 
asymptotic we ight gain is stric tly propOttional to time in the 
former case and still contains a square root te rm in time in the 
latte r case. 

None of the two concepts yields a front propaga tion con­
taining linear and square root terms in time. Both yield a 
constant or almost constant velocity of propagation of conce n­
tration front if this is taken as the point of fastest concentra-

tion increase, i. e., at c = co/2 (model of Frisch), or at the 
point where the conce ntration jumps from c * to Co (model of 
Peterlin) . H ence the experimental data of Kwei and Zupko [6] 
yielding such a combination of linear and square root of time 
terms cannot be described by any of the two concepts. 

A further difficulty for the model of Frisch e t a!. shows up 
in desorption experiments [4, 8] which correspond to purely 
Fickian diffus ion. Peterlin's formulation is not affected be­
cause it only describes the diffusion process if a concentra­
tion front moves with a constant veloc ity through the medium. 
If there is none the diffusion is conventiona l. Frisc h's formu­
lation , however, stalts with a la rge S xx which at completed 
sorption increases linearly from 0 at the first boundary, x = 
0, to scc4 at the other boundary, x = d. The gradient as xxi ax 
would simply continue to pump the liquid th rough the film at 
the same rate v and in the same direction as during the 
preceding type II diffusion. There is no end to the process. 
The way out of this impass is the simultaneous consideration 
of the identical type II diffusion pumping the liquid at the 
same rate v and in oppos ite direction from the other boundary 
as a consequence of S xX<d) starting with value 0 at x = d and 
inc reasi ng to scc4 at x = o. At the end of sorption the sum of 
S xX<O)and S xX<d) is constant, scc4, throughout the sample. Its 
gradient disappears and so does the current corresponding to 
type II diffusion. This happy end effect has however the 
di sadvantage that it yields the same negative result for all 
previous and later times. The sum of both S xx is a constant as 
far as x is concerned although it inc reases with time during 
sorption and decreases during desorption as does the total 
uptake of penetrant. Hence it cannot generate any s teady flow 
as observed in type II diffus ion. The modification of S xx in 
eqs (5) and (6) whic h explains the end of sorption and the 
Fickian type of desorption process excludes the explanation 
of the unconventional sorption the equations were formulated 
for. 

The formulation according to eq (5) leads to another quite 
unexpected consequence . The coefficient s in the stress 
tensor, eq (6), which multiplied by B yields the veloci ty of 
conce ntration front propagation seems to be a cons tant of the 
penetran t-polymer syste m and hence independen t of c. All 
the concentration dependence is in the factor B which affects 
equall y the type I (the first te rm) and type II (the second te rm) 
diffus ion. Hence v is proportional to the conve ntional diffu­
s ion coeffi c ie nt. The proportionality fac tor s depends on the 
penetrant-polymer combination but not on concentration. 
That leads to the peculiar conseque nce that the normal type 
of diffusion is not the class ical "Fickian" diffusion but the 
type II diffusion. 

In contrast to that the experiments by Hopfenberg et a1. [7 , 
8] on the dependence of type II diffusion on vapor activity 
convincingly show a rapid decrease of v with decreasing 
activity a and the comple te cessation of such diffusion below 
a limiting activity a* - 0.3. Hence s cannot be a constant but 
must be a function of a-a* vanishing at a* and for any a below 
a*. Although this depe ndence is the crucial point of explana­
tion of type II diffusion it was never attempted to be derived 
from material properties. 

Moreover the presence of the term B s in diffusion equation 
completely changes the concentration increase in time ahead 
of the concentration front as soon as the local concentration c 
surpasses the value c* corresponding to the limiting activity 
a*. This conseque nce may be less disturbing if one assumes 
that ahead of concentration front c is always smaller than c* 
and behind it larger than or equal to c*. But it still may cause 
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some proble ms in the front itself if the concentration does not 
jump discontinuously from c I = c* a head of the front to C2 

behind the front. The variation of propagation ve loc ity with c 
must create a spec ia l type of front profile whic h was neve r ye t 
analyzed from this point of view. Wi thout any more de ta il ed 
analysis one can onl y guess that any concentra tion inc rease 
in the front will become stee pe r until . it will be almost 
discontinuous . 

3. Constant Rate Propagation of 
Concentration Profile 

On the basis of the ge neral diffusion eq uation wi th Sand D 
de pende nt on chemical pote ntial one can eas il y formulate the 
conditions for a constant rate propagation of a concentra tion 
profile 

c(x, t) = C(x - VI) = C(x /). (9) 

The coordinate system x / moves to the right with the same 
veloc ity v as the concentration profil e. Hence in thi s system 
the concentration C is consta nt a t eac h x / a nd the c urrent 
density j' = O. With these absumptions the so lution of the 
diffus ion problem is trul y conventional without a need for any 
additional more or less arbitrary term in the diffusion equa­
tion. 

Accord ing to the thermod ynamics of in·eve rsible processes 
the diffusion c urre nt de ns ity in the laborato ry fi xed syste m x 
is proportional to the c he mical pote ntial gradient of the 
diffusant 

steady s ta te solution a nd the conditions for a constant ve loc ity 
of profil e propagation. 

The the rmodynamic equilibrium corre la tion between con­
centration and vapor pressure pe rmits to exp ress th e conce n­
tration profil e according to eq (9) as a profil e of vapor 
pressure proceeding with a constant ve loc ity v 

p(x, t ) = q(x - VI) (13) 

because the mate ria l prope rty S(p) is independe nt of x and t. 
Hence the va lue ~ p(x, t) ca n be ex pressed as func tions of a 
s ingle va riable x / = X - vt. That means that the parti a l 
derivatives in eq (0) can be ex pressed as tota l de ri va ti ves by 
x /. In such a case the diffe rent iation on time is eq ui va lent to 
diffe rentiation on locati on 

aq/at = - v dq/dx ' (14) 

whic h with consta nt v transforms eq (l0) into the stra ightfor­
wa rdly integrable total diffe rentia l equa tion 

~ (_p!!!L _ vSq) = dj' = o. 
dx' dx' dx' 

(15) 

This formul a tion ac tua ll y means that there is ne ither a c ur­
re nt nor a c hange of concentration s ince the coo rdinate 
system x / trave ls with the same ve loc ity vas the conce ntration 
or vapor pressure profile . This yie lds 

vdx' = - D(q) dq / q (16) 

j = -(e/J) af..t /ax = -DS ap/ax = - pap/ax (10) with the solution 

where f is the fri c tional res is tance yie lding the diffus ion 
coeffic ient D = RTIf. The chemical potentia l f..t can be 
expressed as fun ction of vapor pressure p(x,t) in equilibrium 
with the sorbate at pos ition x at time t 

f..t = RT tn p(x,t) + f..t0 (ll) 

The constant f..t0 is s till a fun ction of T and of any othe r 
parameter indepe ndent of p and x. The concentration c is a 
product of sorption Sip) a nd pressure. The conse rvation of 
mass yields the concentration variation with time 

ac/at = a(Sp)/at = -aj/ax = a(pap/ax)/ax. (12) 

In this well-known class ical one dimensional diffusion equa­
tion the sorption S, the diffusion coefficient D and permeabil­
ity P are functions of p or concentration c and not constants as 
assumed in the ideal Fic kian case . But they a re inde pe ndent 
of time and location. The membrane is homogenous and does 
not change although at eac h point x its swelling and diffusiv­
ity vary drasti call y with time. There is a lso no te mpe rature 
effect conside red. 

The drastic c hange of sorption in the trans ition from glass 
to gel implies quite a substa ntial swe lling of the polyme r 
causing eventuall y the formation of mac roscopic crac ks as 
observed in the earlie r ex perime nts [2 , 3]. For s impli city 
sake, these dimensiona l ch anges are not at all conside red in 
the above formulation of the diffus ion equation. Such an 
omission affects the nume rical res ults but not the fun c tiona l 
properties of the solutions a s for instance the ex iste nce of the 

Jq(x /) 

- vx/ = D(q)d1n q. 
q(O) 

(17) 

The bounda ry condi tion q = p( + :xl) = 0 a t x / = + x is me t 
automatica ll y with a finite , not vani s hing D at q = o. The 
finite q = Po at x/ = - 00 de mands a n infinite va lue of D(Po). 
Eq uation (17) is com ple tely ge ne ra l not impos ing a ny condi­
tion on the c hoice and continuity of D beyond those me n­
tioned in connection with the bou nda ry condition, i. e ., at x/ 
= - 00 . Note that the value of S and its de pe nde nce on p OI' C 

do not enter eqs (16) and (17) ex plic itely. 
One sees that in an infinite medium the diffusion eq (10) 

permits solutions with a constant concentration o r th ermo­
dynamically eq uivalent pressure profil e movi ng with a con­
stant velocity v if only the diffusion coefficient goes to infinity 
at the maximum pressure Po applied at the infinite ly distant 
negative boundary x / = - :xl of the medium . The profil e q(x /) 
depe nds on D(P) and v as shown in eq (17). For a ve ry s imple 
dependence of D on p 

D = A + Bpo/ (Po - p) (18) 

yielding Do = A + B at p = 0 and D = Xl atp = Po , i. e. , a t 
the maximum pressure of the so rba te at the infinite ly di stant 
film boundary, x / = - Xl, one obtains the profile 

en (q(x/) / po) - (B/Do) en (1 - q(x/)/po) 
(19) 

= - vx/ / Do + const. 
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shown in figure 2 as function of vx ' /Do = y for different 
values of B/Do• If the constant is equaled to zero one only 
displaces the q(x')/po curves horizontally. This does not affect 
their shape which is our primary interest. The larger v and the 
smaller Do the steeper the true profile if plotted against x' 
(figure 3). The constant pressure profile q starts at high 
positive y with a long tail which only s lightly differs from that 
calculated formerly [14] for a constant Db continues with a 
sharp rise of pressure and asymptotically approaches the 
limiting pressure Po at Y = - 00. The time independent 
concentration profile is obtained by multiplication of q by 5ip) 
which exhibits a large increase with p approaching Po if one 
wishes to describe the transition from a glass at p = 0 (5 
small) to a highly swollen gel with c = Co at p = Po (5 large). 
Hence the concentration profile is expected to vary substan­
tially faster than the pressure profile. 

B/(A + BI = 

0,5 

yx'/(A + BI 
OL-~ ______ ~ ______ L-____ -L ____ ==~ __ 

-4 -2 o 2 4 

FIGURE 2, Pressure profiles according to eq (19) moving to the right with 
constant velocity v for different values of B/(A + B) as functions of vx' I(A + 
B). 
The s maller the increase of diffusivily wilhp as measured by BltA + B) the Sleeper is the profile in this 

representation. 

p/po 

.5 

x'lOo [s/em] 

0 
-4 -2 0 

FIGURE 3. Pressure profiles according to eq (19) moving to the right with 
constant velocity v (parameter of the curves)for B/(A + B) = 0.5 asfuru:tions 
of x' I(A + B) 1 = x 'IDo. 

The shape of the profile can be varied as freely as the 
dependence of D and 5 on p. In partic ular, one can choose 
constant D and 5 in the glass and rubber with a discontinuity 
at p* thus producing a change of slope of P and a step-like 

concentration profile at p* (figure 4) as already partially 
treated by CTank [22]. Hence the case treated formerly [13, 
14] with two concentration independent diffusion constants, 
D I ~ D2 , is contained in the present more general treatment. 

0,5 

-2 

VX'/Ol 

c* 2 

o 2 4 
FIGURE 4. Pressure and coru:emration profile moving to the right with 
constant velocity v as furu:tions of vx' ID for a discontinuous change of 
diffusion constantfrom D, to D2 = 100 D, and of sorptionfrom S, to S2 = 4S, 
at p = p* = 0.8 fO' 

Notc the continuity 0 p and the di scontinuity of c at the boundary between glass and gel. The 
constancy of D and S in .he glass (10 the right) and in the gel (to the left) yields p = Po at a finite value 
x' 0 = D/v instead of at x'o = - Xl as postulated by the steady state solution (eqs (9) and (13»). As a 
conseq uence the propagation velocity v has to slow down as soon as x' 0 - vt approaches and reaches 
the outer boundary of the medium by which the penetrant enters because from that moment on the 
diffus ion through the gel is unable 10 supply the necessary amount of diffusant. Note that one has 
ass umed that up to this time the equi li_hrium pressure a t the entrance to the medium rises continuously 
and at a constant rate from p* to Po-

The boundary between un swollen and swollen regIOn 
moves with the constant veloc ity v. The value of v is still 
completely free and is not at all determined by the diffusion 
equation or the boundary conditions. From the uniform trans­
lation of the concentration profile one derives the weight gain 

w = j(- oo)·t = v5pot = vCot (20) 

proportional to time in perfect agreement with the observa­
tions of the steady state of type II diffusion . 

One hence has the rather unexpected result that the same 
mathematical formalis m (eq (12)) yields both types of diffu­
sion: Type I for constant or approximately constant and Type 
II for extremely pressure or concentration dependent D, 5, 
and P. Actually the diffusion constant must be infinite for p 
= Po in order to satisfy the boundary condition at x' = - 00. 

From a pure mathematical point of view the values of 5 are 
irrelevant and can be c hosen at will. Type I diffus ion is a very 
special case confined to ideally linear systems with constant 
D and 5. Type II diffusion is more or less close to the 
diffusion in actual polymer-sorbent systems with D and 5 
rapidly increasing withp, after the initial transient has abated 
and before the great transport length from the boundary to the 
moving front starts to reduce perceptibly the velocity of front 
propagation. 

The diffusion coefficient D of the pene trant or permeability 
P of an actual medium certainly may become very large but 
can never assume infinite values. In going from a glass to a 
swollen rubber or gel the increase in D may be many orders of 
magnitude, from 10- 12 to 10- 6 cm2/s, so that the steady state 
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solution with D(po)/D(o) - 00 is a very good asymptotic 
approximation of the actual material transport. But the finite 
maximum va lue of D imposes a reduction of the permeant 
supply with inc reas ing transport length Ltr because the pres­
sure gradient at the outer boundary of the sample, (dp/dx)x=o 
- (Po - p( etr))/ et , dec reases with this length. That means a 
slow but steady dec rease of propagation veloc ity of the con­
centration profile with increasing distance of the profile from 
the outer boundary of the sample. In a very thic k sample the 
initially constant velocity propagation of the profile and 
hence the linear increase of we ight gain with time are ex­
pected to show an observable decrease . But since the most 
precise measurements were made on extremely thin films 
with total liquid path less than 0.1 mm one was never faced 
with this limitation. 

A very instructive general picture of the effects caused by 
the finite although very large diffusion coeffi cient D2 in the 
highly swollen material can be de rived from the very sche­
matic figure 4. It is based on a constant D 2 , independent of 
concentration which varies from C*2 at the concen tration front 
to the maximum Co in thermodynamic eq uilibrium with the 
pene trant pressure Po at the outer boundary of the sample. In 
order to s implify the matter one assumes in that which follows 
that the profile shown in fi gure 4 is es tablished immed iate ly, 
at time I = 0, a t the outer boundary, x = 0 , so tha t the initi a l 
transient effects can be completely neglected. At I = 0 one 
hence has x' = x - vI = O. 

One first notices that the concentration c(0) at the oute r 
boundary has the initial value C*2 which steadil y inc reases 
with time up to the maximum value Co. If one assumes that 
during this time the concentration front moves with a constant 
velocity v one deduces a slight increase of current density and 
a more than linear inc rease of weight ga in with time 

The parameter v2t/D 2 remains small during the whole experi­
ment. Its maximum value is reached at the moment when the 
front hits the opposite boundary of the sample or meets the 
front proceeding from this boundary. In the latter case one 
derives from film thickness d and t max = d/2v the maximum 
value of this parameter 

(22) 

In the diffus ion of n-pentane into cast annealed PS film [8] 
the film thickness was 38 /-Lm = 3.8 X 10- 3 cm, t max = 60 
hours = 2.16 X l()5s for Po = 550 mmHg at 30°C. From 
these data one obtains max imum values for the parameter 
between 1. 7 X 10- 4 and 1. 7 X 10- 2 if D2 varies be tween 
10-7 and 10- 9 cm2s- \. In biaxially oriented film at penetrant 
activity 1 and T = 35°C the values are up to 300 times 
higher so that a suffic iently small value of the parameter is 
only obtainable with the higher diffusion coefficient which is 
indeed more probable than the lower limit. One can be rather 
certain that in most cases the parameter is so small that the 
currentj is practically constant, the weight increase Walmost 
linear with time, and a very small difference c(O) - C*2 

required for a constant supply of liquid to the progressing 
concentration front. The small value of the parameter also 
tells that the ideal case, eqs (9) through (20), is a good 
approximation of the actual polymer-penetrant systems dis­
playing type II diffusion. 

But the finite inc rease in time of penetrant concentration at 
the sample boundary in contact with the liquid or gas seems 
to be an important feature of type II diffusion. It is a 
consequence of the fac t that the polymer glass simply cannot 
expand instantaneously to such an extent that the equilibrium 
concentration of penetrant could be accommodated. Since the 
polymer is quite inhomogeneous on molecu lar scale it ex­
hibits a wide variation of penetrabilit y in very small regions . 
The more penetrabl e areas expa nd substantiall y more and 
faster than the less penetrable sec tions . The forces exe rted by 
the penetrant on taut mol ec ul es connecting the latter sec tions 
across the forme r regions will e ithe r rupture these cha ins or 
pull them out slow ly. Both effects req uire a finite time. As a 
consequence of such enforced polymer expa nsion the sample 
crazes and eve n c racks. One gets convinced that just this 
relaxa tion of the spec ime n under the os moti c pressure of the 
penetrant determines the velocity of propagation of the con­
centration front which is independent of D and of any other 
parameter of the diffusion equa tion. 

In a more realist ic approach the ina bility of the polymer to 
expand suffic ientl y for the accommodation of the eq uilibrium 
amount of penetrant most likely s tarts at a s ubstantially 
smalle r conce ntration than C*2' let us say c* \. This means 
that at low ac tivity with e(O) < e* \ the sorption and diffusion 
are conventional without any concentration front propagating 
at constant velocity through the glass. If, however , the ac tiv­
ity is so high tha t c(O) > c* \ a finite time is needed for proper 
polymer expans ion thus c reat ing the c ircumstances observed 
with type II diffusion. The highe r the driving force c(0) - c* \ 
as compared with e* I and the higher the volume change with 
the linear expansion of the polymer the more rapidly the glass 
adjusts to the space req uiremen ts of the penetrant, i.e., the 
hi ghe r the velocity of concentration front propagation in 
pe rfect agreement with observations. 

On the other hand , the steady state profile cannot be 
established instantaneously. Even if a constant propagation 
rate is imposed it takes a certa in time before the pressure or 
concentration distribution in the frontal tail assumes time 
independent values. This was explicitly demons trated for a 
concentration discontinuity moving with a constant velocity 
[14). The result can be gene ralized for any profile . In first 
approximation the weight gain in this transient is proportional 
to the squa re root of time. The duration of a substantial 
contribution of the transient can be unobservably short so that 
the we ight gain does not exhibit a significant initial compo­
nent proportional to the square root of time but instead is 
directly proportional to time. 

4. Conclusions 

The steady state solution of the simple diffusion eq ua tion 
with the constant rate of propagation of the fixed concentra­
tion profile according to eq (9) is a good approximation of the 
pseudo-stationary situation of Type II diffus ion. Its range is 
between the usual initial trans ient with concentration and 
weight gain dependence on t I /2 and the final s tage with the 
weight gain less than proportional to I because at fixed 
maximum values of D and P the sorbate has to be transported 
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to the concentration front through a s teadily increasing de pth 
of the full y swoll en film. The large ratio between Dmax and 
D min and the small maximum linear extens ion f Ir , max of 
films through which the mate ria l transport takes place may 
make ve ry short the duration and rather difficult the observa­
tion of the initi al and final stages. Therefore, as a rule, the 
scene is dominated by the pseudo-stationary type II diffusion 
as formul ated in eqs (9) and (19). In the case of thin film with 
the liquid entering from both plane surfaces the superposition 
of concentration tails in front of the propagating concentration 
discontinuity may overcompensate the latter effect and yield 
a final increase of weight gain rate. 

But one also sees that type II diffusion is nothing excep­
tional requesting any change or modification of diffusion 
eq uation. It is a s imple conseque nce of a very rapid change of 
P, i. e . , of 5 and D with sorbate activity. The inc rease in 5 is 
only needed for a rapid increase of penetrant mobility. There 
is no need for introduc tion of a new mechanism although a 
new name ma y have some prac tical use. The old Fickian 
formulation in concentration terms is of course rather inade­
quate for the desc ription of such less conventional effects 
because it is applicable only to perfectly ideal material with 
activity independent so rption. But this limitation was already 
so thoroughly demonstrated [23] that it has no sense to reopen 
the subjec t again. 

An important result of this investigation is also the confir­
mation of the very early finding [13] that the veloc ity v of 
propagation of co ncentration discon tinuity is not in the slight­
est manner determined or limited by the diffusion equation 
and the dependence of D on concentration. Experiments, 
however, ve ry clearly show a dras tic increase of v with 
activity of the permeant and temperature of expe riment. 
There is also a substantial dependence of v on thermody­
namic properties of penetrant and polymer and on mechani­
cal and thermal his tory of the polyme r. Hence one will have 
to consider the molecular effec ts connec ted with swe lling 
much more thoroughl y than it was done up till now in order to 
be able to find the co nnection between the velocity and the 
mechanical and the rmodynamic properties of the penetrant­
polymer system. A next paper will try to discuss some 

possible approaches to such a molecular theory of unconven­
tional diffusion . 
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