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T he rece ntl y obtained compl e te so lution of Ih e s irn ult an eous diagonalizali on of matri ces H A a nd H in the 
hydrody na mi c diffu s ion equat ion has bas ica ll y c han ged the diagona l va lues v" of the sy mme tri c malrix H of 
hydrod yna mic int erac ti o n be lween a ll the beads of the e lasti c random coil mod e l of th e iso la ted mac romo lecul e in 
solution. Si nce these va lues ent er explicitl y th e expression s for the intrinsic stress and refracti ve index tensor in an 
a lt e rnating fl ow fi e ld if based on the conce pt o f inte rnal vi scos it y o f the model one had to reca lc ulat e a ll va lues 
obt a ined form erl y by us in g the th e n ge ne ra ll y acce pt ed e rroneous se t of 11" da ta. Th e new vp equa l uni ty 
independenl of p while th e old va lues were larger than 1 for small p and s ma ll e r for large p. He nce the ir too la rge 
contributions in the fonner range are partiall y compensated by their too small contributions in th e latt er region. As 
a consequence in the who le ran ge in vesti gat ed , be tween 3 and 300 c ha in links, th e diffe rences in rheo logica l and 
rheoopti ca l e ffects are relat ively s mall, up to a fa c tor of 2, a lthough at hi ghe r link number the diffe rences le nd to 
grow wilh the logarithm of this number. 

Key word s: Bead-spring model; eigenvalues; frequency response; intrinsic 0Pli cal tensor; intrinsic stress tensor; 
pol ymer soluti on. 

1. Introduction difference is tn the diago nal elements vp of the te nsor 

(2) The correct simultaneous diagonalization [lJl of H A and 
H matrices in Zimm's hyd rodynam ic equation [2] for the 
ideally flexibl e nec klace mod el of randomly coiled isolated 
linear macromolec ule in laminar flow makes possible a more 
adequate calculation of intrinsic st ress tensor in all those 
cases where the coil is not yet noticeably deformed by th e 
flow. Such a zero gradient case includes the freq uency de­
pend ence of viscosity [2], s hear modulus, shear birefrin­
gence, normal st ress difference, and acousti c birefringence 
but not the gradi en t de pendence of these effec ts. 

which turn s out to be the unity tensor with all vp 
mak es the diagonal e lements of 

1. Thi s 

The main change introd uced by the new solution as com­
pared with the older incomplete solutions [3-8] is not in the 
eigenvalues Ap of H A 

Q - J H A Q = A (1) 

which were already calcul ated correctly in recent papers 
[6-8] and even tabulated for Z between 1 and 15 and h* = 
(3/7r)112 ah / bO = .01, .1, .2, .3, [6] and forZ = 250, h* = 
.3 and Z = 300, h* = 0.4 [1]. Here ah is the hydrodynamic 
radius of the bead, Z + 1 is the number of beads , Z is the 
number and bo the root mean square length of the links. The 

I Figures in brackets indicate the lit erature references al the end of this paper. 
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M = Q"I" A Q = A /N = A (3) 

agree wit h those of A, i.e. /-tp = Ap. Here Q is the transfor­
mation matrix of the original 3(Z + 1) dim ensional vector r 
of bead coordinates to that of dimensionless normal cOOl·d i­
nates u 

r = bo Q u (4) 

and Q1" its transpose. 
Equation 3 completely differs from the ori gina l estim ate [3] 

that in first approximation the diagonal elements of the matrix 
M equal the eigenvalues ApR of the Rouse model with va n ish­
ing hydrodynamic interac tion , i. e. 

/-t~~ = ApR = 4 sin 2 [p7T / 2(Z + 1)] (5) 

and hence 

(6) 
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FIGURE 1. Diagonal eLements vp (new theory) and vb!) = Apz/ApR (old 
theory, broken Lines) for Z = 100 and h* = 0, . 1, .2, .3, .4. 

For h* = 0 (Rouse) the values of both theories co inc ide. 

The subscripts Z and R refer to Zimm and Rouse [9] mod el, 
respec tively. Such an estimate was based [3] on the supposi­
tion that the tran sformation matrix Q c hanges so little by the 
introduction of hydrod ynamic interac tion that M remains 
practically th e same as in the free draining case, i . e. M = 
A R · 

The diago nal e lements Vp for Z = 100 a nd h * = 0 (Rouse), 
. 1, .2 , .3, and .4 (Zimm) a re plotted in figure 1 and the 
eigenvalues Ap coll ected in tabl e 1. The old values of v~l) = 
ApZ/ ApR are connec ted with a broke n line. They are partially 
s itua ted below and partiall y above Vp = 1. This reduces the 
differences be tween the old and new values in quantities 
dependent on Vp. They show up in the excess s tress te nsor as 
soon as internal viscosity, defin ed by the frictional parameter 
cp, is expli c itly cons idered . The very large old values V p for 
small p do not matter very much because in all formulae they 
are multiplied by very small values CPP = pcp / Z . Since the 
differences be tween old and new vp increase with h * , in that 
whic h follows, the comparison of calc ulated effec ts will be 
mainly done for h * = .4-, i.e., for a very large hyd rod ynamic 
interac tion. The differences are smaller for smaller h * and of 
course disappear for the free draining coil with h * = 0 where 
ApZ = ApR' 

The new values J.Lp and Vp do not e nter the conven tional 
expressions for the intrinsic s tress or birefringence tensor of 
perfectly flexibl e nec klace mod e l so that no changes occur in 
these quantities. The s itua tion is com ple tely different if one 
considers the effects of internal viscosity which depend on vp 
[10-26] . They will be most co ns picuous in the values of 
viscosity corresponding to high frequen cy flow fi eld and in 
the phase angle between the stress a nd strain ra te or between 
the birefringe nce and strain rate. 

The interac tion tensor H depe nds on the inve rse intrabead 
dista nces I / rjk which ma kes the hyd rodynamic diffus ion 
eq uation intrins ically non-linear. By replacing 1/ rjk with its 
average value (I/rjk) the tensor H becomes a constan t whic h 
ma kes the diffus ion equation linear and hence allows the 
introduction of normal coordinates according to eqs (1) to (4). 

Such a procedure eliminates the possibility of any realis tic 
conside ration of the gradient dependence of any rheological 
or rheooptical effect because it does not tak e into account the 
c hange of shape of the random coil in flow which expands the 
molecule and he nce increases the interbead distances rjk' 
Note also tha t by preaveraging over all angles be tween the 
velocity and the interbead vec tor the formulation of H as 
fun ction of I/rjk co mpletely evades the cons ideration of ani­
sotropy of hydrodynamic interac tion which b y itself yields a 
gradient dependence of intrins ic viscosity [27] la rge enough 
for explaining experimental data. 

The general toleration of such a profound modification of 
hydrodynamic interac tion by the replace ment of I / r) •. with its 
average (I / rjk) makes hard to und ers tand the almost general 
objections to the introduction of interna l viscosity as a res ist­
ance of the nec klace model against the deformational compo­
nen t of the normal e igenmodes [28-30). If one accepts the 
rather questionable linearization of the hydrodynam ic diffu­
s ion eq uation one has to accept also the next step , i.e . , the 
co ncept of internal viscosity based on this linea rity a nd its 
introduction in suc h a ma nner that the math ematical treat­
ment re mains as s imple as possible. 

In tha t which foll ows the results of the ne w theory will be 
compared with those of the old one for h* = .4 and Z = 100 
in the whole freque ncy ran ge and the depende nce of the 
limiting values for w = 00 on Z in the range be twee n Z = 3 
and 300 and on h * in the ra nge be tween . 1 and .4. In all 
cases the ra tio between the internal viscosity coeffi c ient cp 
a nd the fri ctiona l coeffi c ient of the bead f = 67TahYJs will be 
assumed constant , cpl! = 2. He re YJ s is viscosity of the 
solve nt. The subscript s applies to the properties of the 
solvent. The corresponding non- subscripted qua ntiti es relate 
to solution . 

2. Internal Viscosity 

The concept of internal viscosity was introduced in order to 
express the inabilit y of the randomly coiled polyme r molec ule 
to change ra pidly its shape [31, 32, 10, ll]. Such c hanges 
occur during the rotation of the macromolecule in a fl ow with 
a rotational component, e.g., the lam inar fl ow with transverse 
gradient , when the individual segmen ts a re a lte rn ati vely 
passing from the direction of compress ion to the di rec tion of 
extension and vice versa. The direc tions of maximum 
compression and extension of the volume ele ment are in the 
flow plane perpendicular to eac h other. The rapidit y of 
c hange is given by the transverse gradie nt which equ als twice 
the angular velocity of the ideally fl exible coil whi ch rotates 
with the volume element. The other case is the oscillating 
flow fi eld where the oscillation frequency determines th e 
rapidity of c hange from co mpression to extension and vice 
versa . 

In the limiting cases of zero gradient and zero frequency 
the deformation inability of the macromolecule does not play 
any rol e. All the changes occur so slowly that the effects are 
identical for completely rigid and ideally fl exi ble coils if onl y 
their conformational distributions agree with each other. 
With increasing grad ient and/or freq ue ncy, howeve r, the 
time effec ts a re playing a gradually increasing role. They are 
maximum in the second Newtoni an regime cOITesponding to it 
~ 00 or w ~ 00. 

The rigidity of the macromol ec ule can be ass igned to 
different properties of the chain. It can be caused by the 
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TABLE 1. Eigenvalues ApJor Z = 100 an d h* = a (Rouse), .1 , .2, .3, .4 (Zimm ) 

P H* = 0 . 1 .2 .3 .4 

1 0.000967 0.002170 0 .003345 0.004506 0.00564-3 
2 .003869 .007318 .0 10718 .014084 .0 17417 
3 .00870] .014650 .020541 .026383 .032173 
4 .015460 .023986 .032447 .040848 .049177 
5 .024139 .035175 .046144 .057043 .067854 
6 .034730 .048140 .061482 .074746 .087907 
7 .047220 .062802 .078315 .093745 .10906 
8 .061602 .079111 .096552 .11391 . 13 11 13 
9 .077859 .097010 . 11610 .13509 . 15395 

10 .095974 . 1164-6 .13688 '.1572 1 . 17740 

11 . 115932 . 13742 .15884 .18017 .20135 
12 .137713 . 15984 .18192 .20390 .2257 1 
13 . 16 1295 .18370 .20605 .2283 1 .25040 
14 . 186656 .20895 .23120 .25335 .27533 
15 .21377 1 .23556 .257:30 .27896 .30044 
16 .242614 .26350 .28434 .30509 .32566 
17 .273158 .29272 .3 1224 .33 169 .35095 
18 .305372 .32320 .34099 .35870 .37623 
19 .339225 .35490 .37053 .38610 .40148 
20 .37468 1 .38778 .40084 .41383 .42664 

21 .411 719 .42180 .43 J86 .44186 .45168 
22 .450288 .45694 .46358 .4701 5 .47655 
23 .490356 .49316 .49594 .49867 .50 J23 
24 .53 1886 .5304 1 .52892 .52738 .52568 
25 .574835 .56867 .56248 .55626 .54987 
26 .619 163 .60788 .,59659 .58527 .. 57378 
27 .664827 .64802 .63 122 .61438 .59738 
28 .711782 .68905 .66632 .64356 .62065 
29 .759984 .73093 .70 187 .67279 .64357 
30 .809386 .77361 .73784 . 70205 .666 1.3 

3 1 .859939 .8 1706 .77419 . 73 130 .68829 
32 .911596 .86124 .8 1089 . 760 ,53 .7100,5 
33 .964-305 .906 10 .84790 .78970 .73 140 
34 1. 01802 .95160 .88521 .8 1881 .7523 1 
35 1.07268 .99771 .92277 .84782 .77279 
36 1.]2824 1.0444 .96055 .87672 .7928 1 
37 1.18464- 1.0916 .99852 .90548 .8 1238 
38 1.24183 1.1392 1.0367 .93410 .83 148 
39 1.29975 1. 1873 1.0749 .96254 .8,50 11 
40 1.35835 1. 2358 1.1133 .99079 .86826 

4 1 1.41758 1.2846 1. 15 17 1.0188 .88592 
42 1.47736 1.3338 1. 1902 1. 0467 .903 11 
43 1. 53758 1.3832 1.2287 1.0742 .91980 
44 1. ,59839 1.4328 1.2671 1.1016 .93601 
45 1. 65952 1. 4825 1.3056 1. 1286 .95173 
46 1. 72098 1. 5324 1.3439 1.1554 .96696 
47 1. 78270 1. 5824 1.3821 1.1819 .98171 
48 1. 84464- 1.6324 1. 4202 

I 
1.2021 .99597 

49 1. 90673 1.6824 1. 4581 1.2339 1.0098 
50 1.96890 1. 7324 1. 4959 1. 2594 1.0231 

energy barrier se parating the gauche and trans conform ations 
which makes any co nformational change more time consum­
ing than in the case of perfectl y soft model [10). Since the 
height of the energy barrier is independent of the viscosity of 
the solvent its relative effec t as measured by the ratio of 
internal frictional resistance cp caused by the barrier and the 
frictional resis tance f of the segment decreases with the 
viscosity of the solvent. The macromolecule acts as very rigid 
in a low viscosity liquid, e .g. , acetone with TIs = .322cPoise 
= 32 .2 mNs/m3 , and as very flexibl e in a high viscosity 
solvent, e. g. , Arodor with TIs up to 100 Poise (= 1 kNs/m3) 

and higher. 

99 

P h* = 0 . 1 .2 .3 .4 

51 2.03111 1. 7822 1. 5334 1. 2846 1.0359 
52 2. 09329 1.8320 1. 5707 1. 3094 1. 048.3 
53 2. 15538 I 1. 8815 1.6077 1. 3339 1. 0602 
54 2.2173 1 1.9308 1. 64-43 1.3579 1. 07 16 
55 2.27904 1.9799 1.6807 1. 38 16 1. 0826 
56 2.34050 2 .0286 1. 7167 1.4049 1.0932 
57 2.401 53 2. 0770 1. 7523 1.4277 1. 1033 
58 2.46236 2 . 1249 1. 7875 1.4502 1. 11 30 
59 2.52265 2.1 725 1. 8223 1.4722 1. 1223 
60 2.58244 2.2195 1.8566 1.4938 1.1311 

61 2.64166 2.2661 1.8905 1. 5150 1.1396 
62 2.70026 

, 
2 .3120 1. 9238 1..5357 1. 1477 

63 2.75819 2 .3574 1. 9566 1. 5559 I. 1554 
64 2.81538 2.4021 1. 9889 1. 5757 1. 1627 
65 2.87178 2.4462 2.0206 1. 5950 I. 1697 
66 2.92734 2 .4895 2.0517 1.6139 I. 1763 
67 2.98200 2. 5321 2. 082 1 1.6323 1. 1826 
68 3.03571 2.5738 2. 11 20 1.6502 1. 1885 
69 3.08842 2.6148 2. 14 11 1.6676 1.1941 
70 3. 14007 2.6548 2. 1696 1.6845 1.1995 

71 3. 19063 I 2.6940 2. 1974 1.7009 1.2045 
72 3.24003 2 .7323 2. 2245 1.7 168 1. 2092 
73 3 .28823 

I 
2 .7695 2.2,508 1. 7322 1. 2 137 

74 3.33518 2.80,58 2.2764 1.747 1 1.2179 
75 3.38085 

I 
2.84 10 :2.:301 2 1.7614 1.22 18 

76 3.425 18 2.8752 2.3252 1.7753 1.2255 
77 3 .46812 2 .9083 2. :3484 1.7886 1.2290 
78 3.50965 2.9402 2.3708 1.80 14 1.2.322 
79 3.54972 2.97 10 2. :W24 1.8 137 1.23,52 
80 3 .. 58829 3.0007 2.4 13 1 1. 825,5 1.2380 

81 3.62,532 3 .0291 2.4329 1.8367 1.2406 
82 3.66078 3 .0563 2.45 18 1. 8474 J.2430 
83 3.69464 3 .0823 2.4699 1. 8575 1.2453 
84 3.72685 3. 1069 2.4870 1.8672 1.2474 
85 3. 75737 3. 1303 2. 50:33 1.8762 1.2493 
86 3.78624 3. 1524 2. 5 186 1.8848 1.2510 
87 3.81335 3. 173 1 2. 5329 1.8928 1. 2526 
88 3.83871 3. 1925 2.,5464- 1.9002 1.2541 
89 3.86229 3.2105 2.5588 1.9071 1.2554 
90 3.88407 3.2272 2. 5703 

, 
1.9 134 1.2566 i 

91 3.90403 3.2424 2.,5808 1. 9 192 1.2577 
92 3.9221 5 3.2563 2.5904 1.9245 1.2586 
93 3.93840 3 .2687 2.5989 1. 9292 1. 2595 
94 3 .95278 3.2796 2.6065 1.9333 1.2602 
95 3 .96527 3.2892 2.6130 1.9369 1. 2608 
96 jl. 97586 3 .2972 2.6186 1.9400 1. 2614 
97 3.98454 3 .3038 2.6232 1.9425 1. 2618 
98 3.99130 3 .3090 2.6267 1.9444 1.2621 
99 3.99613 3 .3 127 2.6292 

I 
1.9458 1. 2624 

100 3.99903 3.3 149 2.6308 1.9466 1. 2625 

Another cause of slow molec ular response to the rapid ly 
changi ng flow fi eld res ides with the conformational restra ints 
of the chain which permit only an inte rchange of ga uche and 
trans conformations [20, 23, 24). With a lmost ri gid length of 
valency bonds this means that most changes of length and 
position of any chain segment require a much la rge r segment 
displacement than formul a ted in the ideall y ll exible nec klace 
model which does not cons ider any inhe rent I imitati on of 
bead motion. Generally an axial di splace ment of the segment 
requires also some lateral di splacement and vice versa . As a 
consequence the res is tance of beads to pos ition change is 
larger than assumed on the bas is of hydrodyna mic radius a h. 



The ratio of the so obtained coefficient cp to f is independent 
of solvent viscosity because cp andf are both proportional to 
'Y/s. Their ratio just measures the ratio of true displacement to 
the minimum displacement explicitely considered in the 
diffusion equation. It seems to be close to 2 for vinyl poly­
mers 

The effect of internal viscosity is formulated in the system 
of normal modes [10]. For the pth normal mode of deforma­
tion one has a res istance coeffic ient cp p/Z. Such a choice is 
reasonable for both origins of internal viscosity as just dis­
cussed. In the first case one can argue that the changes to 
comply with any deformational mode are linearly increasing 
with the number of chain atoms between subsequent nodes, 
i.e., with Zip , because a conformational change takes place 
with equal probability at any of these chain atoms. This 
makes the resis tance increase with p/Z. In the seco nd case 
the displacement at lower modes ca n be achieved in many 
ways so that the ac tual lengthening of displacement path is 
much less noticeable than at higher mod es where the confor­
mational restrictions are soon beco ming of ovenvhelming 
importance . 

One may argue that the whole concept of intemal viscosity 
can be discarded because it is not based on so me s tri ctly 
fundam ental analysis of chain dynamics . It was indeed intro­
duced in a rather pragmatic mann er which also permitted an 
easy mathen:Iati cal treatment [10]. But it turn s out that all 
more detailed treatments of Brownian motion of beads or of 
correlation between the motion of two or more beads [33-35] 
lead to some, often hidden , statement of molecular rigidity 
which is needed for the results of such a study to reproduce 
the characteristic rheological features of polymer systems, 
e.g. , the non-vanishing limiting intrinsic viscosity at very 
high frequency [36-51]. Such a s tate of affair seems more to 
support than to refute the concept of internal viscosity in spite 
of its more pragmatic than fundamental way of introduction. 

3. The Distribution Function of the Beads 

The continuity eq uation of the ideally flexible necklace in 
laminar flow which determines the distribution function t/J(ro, 
rl ' • • r z) reads 

-at/J/at. (7) 

Here Do = kT /f is the translational diffusion coeffi cient of 
the bead. By introduction of normal coordinates , eq (4), one 
transforms eq (7) into a system of Z + 1 partial differential 
equations 

Vp [v p t/Jp - (3Do/bo2)'Apup - (Do/bo2 )vp Vp IjIp] 

= -at/Jp/ at (8) 

each depending only on the coordinates of the pth eigenmode. 
Note that Vp in normal coordinates has the dime nsion S- I. 
The distribution function of the coil is the product of all t/Jp 

(9) 

The functions t/Jp depend on the kind of flow field v . The Oth 
mode does not show up in t/J because it represents a uniform 
translation of the whole necklace which does not affect t/J. 

The introduction of internal viscosity adds a viscous type 
resistance coefficient CPP = pcp/Z opposing the pth eigenmode 
of the true deformat io n rate of the coil. This rate is obtained 
by subraction of pure rotational velocity D X Up from the 
total deformation rate au p/ at. This yields an internal viscos­
ity force [10, 11] 

If one introduces this force in the pth diffusio n equation (eq 
(8)) one obtains after some rearrange men ts 

(1 + Vpcpp/J)-l Vp {[v p - (3Do/bo2)'ApUp + (vpcpp/!)f! 

X up - (Do/bo2)vpV p]t/Jp} = -Jt/J/at. (11) 

The distribution func tion t/Jp depends on the kind of flow and 
on the angular velocity vertor !l. 

In a jet or plane flow with longitudinal gradient without a 
rotational flow component one has f! = O. In a flow with 
transverse gradien t, v = y(y ,o,o), the angular veloc ity 
equals - y/2 

n = ~O, 0, - y/2) (12) 

for relatively soft mol ecules which rotate in phase with the 
volume element. This is the case with practically all conven­
tional macromolecules if the degree of polymerization is so 
high tha t a truly random coil is formed. Very short chains, 
chains with a great man y double bonds, ladder type and 
multiple s trand molecules, however, are more rigid and tend 
to rotate with a non-uniform angular velocity which de pends 
on orientation of the molecule. It is different from that of he 
volume ele me nt. Assymptotically, at very high rigidity and 
fully extended shape of the macromolecule, it approaches 
that of rigid bodies, e.g., rods or ellipsoides. In that which 
follows only the case of practically und eform ed relatively soft 
coils with f! = - y/2 will be considered . 

In the steady s tate flow with transverse gradient the pth 
eigenmode distribution function of the soft necklace reads 

( J-tp)3 /2( 1 + {3~2 - (3p2) 1/2 
t/Jp(~p , 'Y/p , gp) = --;;: 1 + {3~2 

exp ( - 1 :~~2 {(1 + {3~2 - {3p2)gp2 - 2{3pgp'Y/p 

+ [1 + {3~ ({3~ + (3p)J'Y/p2) + (1 + (3?)~/}) 
{3p = yb02/ 6Do'Ap 

{3~ = (3p(1 + vpcpp/f)· (13) 

The index p run s from 1 to Z. The value ° is excluded. 
W ithout internal viscosity , CPP = 0, one has {3' p = (3p and one 
obtains the conventional distribution function. Note that eq 
(13) and the distribution function eq (6.1) in Ref. [1] refer to 
different flow fields: y(y,o,o) in the former and y(z,o,o) in the 
latter case. 
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Equation (13) explic itely contains the diagonal terms Ap, 
/1-1' and lip . In the ave rages (dyadic formulation) 

Z 

(rTAr) = b02~TMu) = b02 L /1-p(upUp ) (14) 
1'=1 

which appear in the intrinsic s tress and optical tensor the 
coefficie nts /1-1' drop completely because the averages (upU p) 
are proportional to 1//1-1" The coefficients lip, however , re­
main in f3' l' as long as C{J + O. As already mention ed they are 
equal to un ity (new theory) while formerly they were approx i­
mated by (Az/AR)p = Ap(h*)/Ap(h* = 0) + 1 (old theory). 

In the oscillating flow field the gradient is a function of 
time 

(IS) 

The amplitude Yo is so s mall that the molec ule remains 
practically unde formed so that the zero gradi en t eigenvalues 
Ap and d iagonal ele ments lip, calculated for the coil a t res t, 
are applicable. 

4. The Intrinsic Stress Tensor 

In dyadic formulation the intrinsic stress tensor reads 

[ ] (1' - (1' s NIT) 
(1' = l im = - " F . 

c---+O c M 
(14) 

Here N is Avogadro number, M is molec ular weight, and F is 
the vec tor of forces exerted by the beads of the necklace 
model on the flowing liquid. One has in the space of normal 
coordinates 

F = (1 + N~IJ)-lQ- 11'[(3kT/bo) Mu 

+ bo~(v - n X u) + (kT/ bo) V In tjI] (IS) 

which yields 

[(1'] = ; [3kT(u™ u ) 

+ b02(U T cf>(v - n X u)) + kT(uT V In tjI)]. (16) 

(1 + N~/f)- l 

The" type of laminar flow s hows up in v and n. 
The b ilinear coordinate averages in eq (16) can be der ived 

from the d iffusion eq uation, eq (11), by mult ipl ication by 1;1'2 , 
I;pYJp, ... a nd integration ove r the whol e space. 

5. Flow With Transverse Gradient 

In the case of laminar flow with transve rse gradient v + 
y( y,o,o) , one obtains the se t of lin ea r diffe re ntial equations 

(1;1'2) - IIp /3Ap - 2Tpy(1 + lI pC{Jp / 2j)(l;pYJp) = -T~ d(l;r,z) / dt 

(l;pYJp) - Tpy(vpC{Jp / 2j)(I;/) - Tpy(1 + vpC{Jp / 2j)(YJ/) = -T~ d(l;pYJp)/ dt 

( YJ/) - IIp /3A p + Tpy(vpC{Jp/j)(l;pYJp~ = -T~ d(YJp2)/dt 

(YJp~p)+ Tp)r(vpC{Jp/2j)(~pl;p)= -T~ d(YJp~p)/dt 

(~/) - V p/3 Ap = -T~ d( V) / dt 

(~pl;p) + Tpy(1 + lIpC{Jp/2j)(YJp~p) = -T ~ d(~pl;p)/dt 

(17) 

The s teady state solutions which apply after the complete 
decay of transient phe nomena read 
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The averages are cut off beyond the lowest power it which is 
needed later in zero gradient expressions for intrinsic viscos­
ity, normal stress difference and birefringence. These aver­
ages have to be inserted in the expression for the intrinsic 
stress tensor. 

[0"] = (N /M) [3kT(u 'I'M u) 

+ (yb02/2)(u T<I>(T), g,o» - kTl] X (1 + N$IJ)-1 (19) 

yielding the frequency dependence of intrinsic viscosity 

. 1) - 1)8 . 0"12* - 0"128 [ ]*/ . = lIm --- = lIm = 0"12 1)i Y 
c->O c1) 8 c->O cO" 128 

= RT ~ (3/Lp(c )+ b02epp /, 2»)/(1+ V pepp) 
M ~ . ",p1)p 2kT \1)p f 

1)8 P- I 'Y 

= RT L T 1 + iW(T~ - Tp) 

M1)8 P 1 + iWT~ 

RT 
= - [\ + IV - i(II - III)l/w 

MYl8 

A rather similar but not identical expression applies to 
intrinsic streaming birefringence 

Lln* - Lln8 Lln* - Llns = lim = lim -----''-
c->O cn81)8'Y c->O cn80"12S 

RT 
= K - (I - i1I)/w 

M1)s 

tan On = II/I. (21) 

In the case of dynamic birefringence Lln is the difference 
between the refractive indices in the diagonal d irec tion in the 
first and second quadrant. The ex tinc tion angle X = 45° as 
long as the grad ient ampli tud e it is small enough. The 
birefringence [LlnlJl11)8/KRT and the phase angle On are 
plotted in figure 3 for the same values of Z, ep/J a nd h * as in 

tan (1) = (II - III)/(I + IV). (20) figure 2 . 

The absolut e value of intrinsic viscosity [1)lJl1Y18/RT and the 
phase angle 01] as fun ction of WT I are plotted in figure 2 for Z 
= 100, ep/J= 2, h* = .4 according to old and new theory. 

40 ° r---,----,----,----.---,----.----.---, 

20 0 

Ol--------~~----------~------~ 

1.0 1----------_ 
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. 6 
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h·=.4 

</> /1= 2 

'----------
O~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ 

-3 -2 -1 o 2 3 4 5 

log (WT,) 

FIGURE 2. Relative intrinsic viscosity [Yllw/[1)lo and phase 
angle 01]jor Z = 100, h* = .4, and ep/f = 2 as function of 
WT I according to new (full line) and old (broken line) theory. 
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FIGURE 3 . Relative intrinsic streaming birefringence 
[Lln lw/[ Lln lo intrinsic accoustic birefringence [LlnJ ac and phase 
angle onfor Z = 100, h* = .4, and ep/f = 2 as funct ion of 
WTj according to new (full line) and old (broken line) theory. 

102 



The meaning of the sy mbols ]/1 eqs (17) to (21) IS as 
follows: 

T1' = b02 / 6DoA1' 

T~ = T1'(1 + v1'cp1'/!) 

, 
T1' - T1' = T1'V1'cp1'/! 

K = ~21" e=-~rc~1 -a 2) 
5 3n kT 

1 = L WT1'/(l + W2T~2) 

II = L W2T1'T~ /0 + W2T~2) 

III = L W2Tp(T~ - T 1')/( l + W2T~2) 

IV = L W3T1'T~ (T~ - T1') /(1 + W2T~2) 

The sums III and IV go to zero fo r va nishin g internal 
viscos ity cp ~ O. [n this limiting case th e intrinsic viscosity 
and s tream ing birefrin ge nce are propOl-tional to eac h othe r. 
He re R is th e gas constant , K is the rheoo pti cal coe ffi c ie nt , n 
is refracti ve index, 8 is the phase angle between the fl ow 
gradi e nt and viscos ity or birefringe nce, a l and a2 are the 
opti cal polarizabilities of the lin k in the directions para llel 
a nd perpe ndic ular to the link respec tively. 

Both definitions of intrins ic viscosity and birefrin ge nce in 
eqs (20) and (21) te nd to mak e the intrins ic va lues as mu ch as 
possible independent of the specifi c prope rti es of the sol vent, 
i.e., of YJs a nd ns whic h influence the orien ta tional forces, 
rigidity and op ti cal anistropy of the di ssolved macro mol ec ul e 
[52]. 

It is important to note that as a consequ ence of the new 
terms III and IV, i.e . , (YJ1'2), caused by the introduction of 
internal viscosity the express ions for intrinsic viscosity and 
streaming birefringence, eq. (20) and (21) , respec tively , are 
not proportional to each other. Hence the rheooptical law 
does not apply to such a model. In particular [Iln]w cannot be 
written as K[ YJ]w ~ [<T]J2 . 

The proportionality , however, still holds in the first New­
tonian region , W ~ 0 , where all the terms but f /w go to zero. 
This means that the intrinsic viscosit y [YJ] and the Maxwell 
constant [Iln] and hence the s tress and the optical tensor are 
proportional to each other for y ~ 0 and w ~ O. This is the 
case in most applications of flow s tress ma pping by means of 
streaming birefringence of dilute polymer solutions. 

With increasing freque ncy and finite internal viscosity, 
[Iln lw goes to zero while [YJ]w tends to finite value. The 
rheooptical law breaks down completely . In this second 
Newtonian range the intrinsic viscosity is independent of 
frequency. One derives from eq (20) 

(23) 

FIGURE 4. Second Newtonian intrinsic viscosity [7]]'", as 
Junction of number of Links Z and hydrodynamic interaction h 
as parameter!or cp/f = 2. 

New !full tinf') und old (brohn tinf') tlU'IJr;. . 

The limiting values [YJ] oo M7]s/RT for Z between 3 and 300 
and h* = .1, .2 , .3, .4 a re ploued in fi gure 4 for the new (full 
line) a nd old (broken line) theory. One sees tha t th e absolute 
values for v1' = 1 and v~JJ) = A1'z / A1'R differ by less tha n a 
fac tor of 2. But their dependence on Z , i. e., on molec ular 
weight, is just the oppos ite for h * = .4. In the incolTect 
formulation of the old theo ry [YJ] oc slightly inc reases with Z 
whil e in the co rrect formulation of the new theo ry it decreases 
with Z. Such a depend e nce on Z is much more in agreement 
with ex pe rime ntal data on polys tyre ne in Arodor [44]. The 
seco nd New tonia n viscosi ty [YJ] oo is 14.3 c m3/g if one goes 
with M from 20,000 to 860 ,000. The old theory yields a 
steady increase of [YJ] oc with M in sharp disagreement with 
these data. 

The often used real and imaginary part of intrinsic shear 
modulus 

[G]* = [GJ' + i[G]" = iW7]s[7]~ 

1 <T* - <T _ _ [ ]* _ 1. 12 12s 
- . <T12 - 1m . 

y c->o cy 
(24) 

are plotted in figure 5. The difference betwee n the old a nd 
new theory is relatively small for Z = 100 but would be larger 
for Z = 300. 

The consequence of the non-vanishing second Newtonian 
viscosity, [7]] 00 f. 0, is the linear increase of[C]' with WTJ in 
the assymptotic high frequency region. Such a be havior is in 
perfect agreement with experimental data on polystyre ne in 
highly viscous Arodor [44-51]. These data together with the 
zero gradient intrinsic orientation data of s treaming birefrin­
gence of polystyrene in solven ts of inc reas ing viscosity [53] 
constitute the main support of the theory. 
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FIGURE 5. Intrinsic shear moduli [G]' and [G]"for Z 
100, h* = .4, and cp/f = 2 as functions of WT1 a ccording to 
new (full line) and old (broken line) theory . 

The intrins ic first normal s tress differe nce turn s out to be 

(25) 

[1 + C 
= A*e2iwt + B* 

while the second normal s tress difference vanishes in all 
isolated necklace mod els with ideal elastic links independent 
of internal viscosity. In app lying eq (25) one must not forget 
that the phase angle 01 of A * is dependent only on the factor 
of exp (2iwt) and that the angle 02 only red uces the constant 
vertical displace ment to B cos 02 but does not yield a ny phase 
shift. 

The term 1 in the parenthesis, i.e., B*, keeps the firs t 
normal stress difference positive during the whole period up 
to very high frequencies. The oscillation is taking place with 
twice the frequency of the flow field. All these effects are very 
much the same as in the case of no internal viscosity. The 
difference is mainly in the replacement of T p by T' p and the 
term proportional to T' p - Tp. The amplitude A of the 
oscillating term 

RT Z Tp 1 
= -M 'Yp2 L 1 + . , (1 + 2' , 

P = l lWTp lWTp 

_ RT . 2 ± T 2 - iW[T~ + 2Tp + 4W2T~ 2(T~ - Tp)] 

- M 'Yo P = l p (1 + W2T~ 2)(1 + 4w2T~ 2) 

(26) 

is proportional to the square of the amplitude of the osc illat­
ing grad ient as in the case of no internal viscosity. The value 
(Aho2)(M / RT) , the phase angle OJ, and the freque ncy inde­
pende nt displacement 

Z 2 

(B' COS 02Ii'o2)(M / RT) = L -1 +TP2 , 2 (27) 
P = I W Tp 

are plotted in figure 6 as fun ction s of WT 1 for Z = 100 and h * 
= .4. Both quantities A and B are going to zero with 
increasing frequ ency. In contrast to intrinsic viscosity the 
limiting first normal stress difference, a t W ~ 00, does not 
become finit e by introduction of internal viscosity although it 
goes to zero more slowly, as w- 1 in stead of as w- 3 . 

B+A 
2F----_ 

r---==~--~~----------~D 

B 

B-A 
D F-'-=-=-=--=-=-=-"=--

-3 -2 -1 D +1 
log WT1 

Z=1DD 
h*=.4 

#1=2 

+2 +3 

FIGURE 6. The coefficient B, the sum B + A, the differ­
ence B - A of the relative intrinsic normal stress difference 
[0"1I-(T22lw/[0"11-0"22lo = A e l2iwT- iB l + Bfor Z = 100, h* 
= .4 and cp/f = 2 as functions of WT1 according to new (full 
line) and old (broken line) theory . 
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6. Flow With Longitudinal Gradient 

In je t fl ow, v = y( -x/2, - y/2,z) the intrins ic s tress 
tensor 

NA 
[u] = M [3kT(u M u) 

+ (Yb02/2)(u cp(-g, - f1 , +2f1 » + kTl] (28) 

X (1 + N f/J /j) - I 

is independent of coil rotation in flow because the fl ow fi e ld 
has no rotational compone nt , n = o. The bilinear coordinate 
averages are derivable from the set of diffe re nt ial equations 

(1 + YTp)(gr,2) - vp/3Ap = -T; d(gp2)/dt 

(l + yT 1')( gpTJp ) = -T~ d(gpTJp) / dt 

(l + YTp )(TJ /) - vp/3 Ap = - T; d(TJ /)/dt 

(l - YTp/2)(TJp~p) = -T; d(TJp~p)/dt 

(1 - YTp)(~p2) - vp/3 Ap = - T; d(~p2)/dt 

(1 - YTp/2)( ~pgp) = -T~ d(~pgp)/dt 

(29) 

U nder co nsidera tion of the sy mmetry or fl ow fi e ld one 
obtains 

(I IT'p 
X Jo ex p [x + (YoTp /iwT~)ei"'T'I>X] dx 

(~p2) = - l- exp {-[t - 2(YoTp/iw)eiuJl ]/T~} 
3/Lp 

lIT'p 

X 1 ex p [x - 2(YoT p/ iWT; )eiuJT' pX] dx 

(gp'T/p) = (TJpgp ) = (gp~p) = O. (30) 

These averages still co ntain the transi ent whic h, in the 
general case, cannot be easi ly separated from the s tatio na ry 
solution l·eached after the transien t has tapered off (fi g. 7). 

The separation ca n be pe lformed if YOT p/WT' p is so s mall 
tha t one can replace the expone ntial fun ction by its linea r 
ex pansion. In such a case one obtains for the stat iona ry 
solu tion 

( 2) 1 ( . eiuJt) 
gp = 3- 1 - YOTp 1 +. , 

/Lp LWTp 

(~/) = 3~ (1 + 2YoTp 1 +e
uu

_
t 

-, ) 
/Lp LWTp 

The intrinsic Trouton viscosity turn s out to be 

(31) 

(32) 

= [U33 - <T1l]*/YTJs 
z 

= MRT L 3/Lp[(~/ - gp2)h + (Tpvpcpp/f)(2~p2 - gp2)] 
1/s 1'=1 
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3RT z 
= - (I / w + L (T~ - Tp) /3 - iII / w). 

MTJs 1'=1 

The add itional term L (T~ - Tp)/3 is independe nt of w and 
he nce represe nts the Trouto n viscosity in the seco nd Newton­
ian range where I/w a nd JI/w di sappear. As in the case of 
conve ntional intrins ic viscos ity, eq (20), the finite va lue a t W 

-7 00 is a co nsequence or internal viscos ity, i. e., of parti al 
co il rig idity. The rreq ue ncy dependence or [1/]", and phase 
a ngle 011/ a re plotted in fi gure 8 for Z = 100, h * = .4, a nd 
cplf = 2. 

The int rin s ic birefrin gence reads 

(33) 

whic h ror small amplitude red uces to 

3KRT z 3KRT 
[Lln]iw = -- . L Tp / (l + iWT;) = -- . (I - ill) 

MTJ s P= I M'T/ s", 

tan Olll = IIO (34) 

Thi s ex press ion differs from th e s treaming bire frin gence in an 
osci lla tin g fl ow fi e ld eq (21), onl y in the rac tor 3. The non­
propo rti onality be tween viscosity and birefrin gence is aga in 
the co nseq uency of the addi tional inte rnal viscos ity term in 
eq (33) . 

OL-______________ L-______________ L-____ ~ 

o 2 
t / 27rT 'p 

FIGURE 7. Time dependence of (gp2) (1/1'2) according 
to eq (30) plotted versus t/2 7TT' pfor the special case CPT' p = 1 
and a = YoT p/WT' I' showing the short duration of transient 
effects and the rapid approach to the asymptotic periodic 
solution . 

The stabilization is slower for low W'T'p. 
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FIGURE 8. Relative intrinsic Trouton viscosity (1)ltwl[ 1)lLO 
and the phase angle OtT/for Z = 100, h* = .4, and <p/f = :2 as 
function of WT t according to new (full line) and old (broken 
line) theory. 

Acousti c birefringe nce is in many res pec ts closely related 
to birefrin gence in an osc illating je t Oow. The main differ­
ence is the absence of lateral co ntrac tion as represe nted by 
- yx/2 and - yy/2. In c ontras t to je t Oow with cons tan t 
spec ific volume (incompress ible liquid ) the volume element 
subjected to an acous ti c wave is pe riodicall y compressed and 
expanded. That means a cons tant (gp2) yieldin g in eq (34) the 
replace me nt of the factor 3 by 2 . 

One has 

N WT 
= - K ac ( 2 2) t /? s in [w(t - zo/ca) - Qae] 

M l+wT-

N ~ -iwTp 
= M . Kae . L.J e k.J(/-zo/ea ) 

p~ t 1 + iWT~ 

tan Qac = II/ I 

(35) 

Here Zo is the location of the ce nt er of hydrod yna mi c res ist­
a nce of the macromolec ule, B is a mplitude, l ac is intens ity 
a nd Cae is propagation veloc ity of acous ti c wave, a nd p is th e 
density of solution . The frequency depe nd ence of acoustic 
bire frin gence a nd phase angle is exactly the same as in the 
case of osc illating jet Oow. 

The differencp between acoustic birefringence according to 
the correct new and the incorrec t old values Vp can be seen in 
figure 3 where [Jln lac is plotted versus WT 1 for Z = 100, h * = 
.4 and <p/j = 2 . The phase angle Qac is identical with an and 
Oln. 

7. Conclusions 

The pape r presents the calcul atio n of mos t of the intrinsic 
rheological and rheooptical effects of linear homopolymers in 
an oscillat ing Oow fi eld wh ic h may be explored experime n­
tally. In the case of rheooptical e ffects only the intrinsic 
birefringence of the polymer is included. The form-birefrin­
gence is comple tely neglected. The same appli es to the 
inOue nce of la rge s ide groups which may effec t indepe nd­
e ntly the optical anisotropy of the segme nt and its freq ue ncy 
de pende nce . 

The introduction of the appropriate vp = 1 values in stead 
of the old values vp = ApZ/ ApR does not change dras tically the 
effects depending on internal viscosit y. As a rul e the ratio 
be twee n the new a nd old values of intrins ic viscosity, bire­
fringe nce, and first normal s tress differe nce is less than 2 , at 
leas t in the ra nge of Z be tween 3 and 300. W ith highe r Z the 
diffe rences increase as a linear fun ction of log Z. 

As already me ntioned , the smallness of the differe nce is a 
co nseque nce of the pec uliar depend ence of old vP(I) on p: 
much larger than 1 a t small p and s maller than 1 a t hi gh p. 
He nce the larger contributions in the forme r part of the sums 
are partially compensated by the smaller contributions in the 
la tte r part. 

The most importan t changes occ ur in the seco nd Newton­
ian intrinsic viscosi ty whi ch is the most co nspic uous co nse­
quence of inte rnal viscosity. He re the de pende nce of (1)l ", on 
Z is much less accord ing to the new theory than it was in the 
case of the old theory. 

No calculation of the grad ient effec ts was attempted be­
cause one knows that in a Oow with a finite ve loc ity grad ient 
the randomly coiled macromolec ule is deform ed with a con­
sequent change of all interbead dis tances. Thi s yields a 
change of interac tion tensor H which leads to a mod ifi cation 
of "Ill e igenvalues Ap. The rest values Ap used in thi s paper 
are on ly applicable to effec ts where an extrapola tion to zero 
grad ient is straightforward. This is the case with dynamic 
effects where one uses very small grad ie nts a nd co nce ntrates 
on the frequ ency dependence of the effects measured . The 
s ituation, however, is bas ically differe nt in the non-linear 
range of gradient depe ndence of excess stress and optical 
tensor. 
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