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An algorithm, complete with a spec ific FORTRAN implementation, is presented for the problem 
of determining whether or not two undirec tr d graphs are isomorphic. The algorithm, centered upon 
the eigenvalues and eigenvectors of a modified adjacency matrix and techniques for decreasing the 
size of the automorphism group, is quite different from others (mos t of which are comhinatorially 
based) and tends to work relatively very quickly on difficult tes t cases as well as on typical 
exa mples. Complexity estimates are given for many eventualities. 
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1. Introduction 

Two undirected graphs are said to be isomorphic if there exists a one-to-one correspondence 
between their nodes which preserves adjacency. A computationally difficult issue in the theory of graphs 
is the determination of isomorphism. For example the graphs in figure Ia are pairwise isomorphic while 
those in Ib are not. 
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The ability to divide a set of graphs into maximal subsets whose elements are pairwise isomorphic 
has several immediate applications. If nodes are identified with atoms of a particular compound and if 
edges are identified with the existence of a chemical bond, then, for instance, such an ability is of use 
to the chemist in distinguishing among many theoretically produced compounds. Other applications 
include physics (e.g. "hearing" the shape of a drum [1]) 1, electronic circuit theory, linguistics etc. 

Much effort has been devoted to the development of an algorithm which will determine whether or 
not any two graphs are isomorphic in an amount of time that is bounded by a finite polynomial in the 
number of nodes of the graphs considered. At the moment, the authors are unaware of the existence of 
any such algorithm. Many approximate or heuristic procedures have been developed however. Many 
such algorithms check conditions combinatorially necessary for isomorphism, some also attempt to 
construct a permutation that would exhibit isomorphism. Corneil presents a review of many such tech· 
niques. All known exact methods grow exponentially in required time. Unfortunately, as pointed out in 
[4] such procedures could take very long to determine whether or not two graphs of order 15 are 
isomorphic. Hence, such methods are clearly inadequate for large order graphs. 

If a computer is to be used to determine whether or not two graphs are isomorphic, the graphs must 
be represented in a form suitable for machine processing. The adjacency matrix of a graph is such a 
standard form. First, the nodes of the graph are arbitrarily associated with the integers 1,2,3 ... n where 
n is the order of the graph. The (i,j) component of the adjacency matrix is then defined to be 1 if there 
is an edge connecting the ith node and the jth node and is 0 otherwise. The (i,i) entry commonly con· 
tains the label given the node. In the case of an unlabeled graph, (i,i) entries are typically zero. While 
different orderings of the nodes produce different adjacency matrices, two adjacency matrices are 
isomorphic if and only if, independent of labeling, they correspond to the same graph. Figure 2 
illustrates this. 
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Figure 2c 

The algorithm about to be described is divided roughly into three sections each satisfying a specific 
purpose. The first section consists of several basic tests for nonisomorphism. These tests are all 0 (n3 ) or 
better and are surprisingly effective in distinguishing nonisomorphic graphs. Since nearly all pairs of 
graphs that pass through the initial tests undistinguished are likely to be isomorphic, the second part of 
the algorithm involves the attempted construction of a permutation between the adjacency matrices of 
the graphs. In the great maj ority of cases, this is easily and quickly accomplished. The second section 
simultaneously serves as a more complicated test for nonisomorphism should it be found impossible to 
generate a satisfactory permutation. 

1 Figures in brackets indicate the literature references at the cnd of this paper. 
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The final section is specifically designed to deal with certain classes of matrices that do not easily 
yield to the tests or efforts to construct a permutation found in the previous two components. In general 
the tests in this section are more time consuming, generally 0 (n4 ), and are quite detailed. Methods of 
finding a satisfactory permutation are included as well as tests for non isomorphism. 

A complete FORTRAN listing of th e algorithm, including explanatory comments, follows its 
description in section 3 and the test results provided in section 4 demonstrate the efficiency of the 
algorithm. 

2 . The Algorithm 

Initially, the algorithm employs four basic tests, each of which checks for the failure of a condition 
necessary for isomorphism. The first test determines whether or not the node labels of the two graphs 
are identical. If they are not, then the corresponding graphs are not isomorphic. In the case of unlabeled 
graphs, the test yields no information and is unnecessary. This test is performed by SUBROUTINE 
LABEL and takes 0 (n 2 ) amount of time wh en n is the order of the graphs. 

A more useful test involves the comparison of the node valences of the two graphs. The valence of 
a node is the number of edges connected to it. The valence of each node, once computed, is combined 
with the node's label to form a new label for th at node. Two nodes of a graph wi ll have the same new 
label if and only if they have the same valence as well as identical initial labels. Thus two graphs with 
different sets of new labels are themselves nonisomorphic. For example, the graphs in fi gure 3 share the 
same set of node valences and of initial labels yet when these two qualities are considered mutually, the 
graphs are found to be nonisomorphic. 

c C 

A A A B oC C 

B A 
C C 

Figure 3 

The set of initial node labels is (A,A,B,C,C,C,C) for each graph. Similarly the set of node valences 
is (1,~,~,2,2,3,4) in each case. When combined to produce sets of new labels, however, the following 
two dIstmct sets are formed: (A3,A4,B2,Cl,Cl,C l ,C2) and (A2,A3,B4,Cl,Cl,Cl,C2). Since these two 
sets are clearly not identical, the two graphs are not isomorphic. This test takes 0(n2 ) time and is per
formed in SUBROUTINE VALENC. 

The third basic test involves the search for and labeling of duplicate nodes. A given node is called 
an ordinary duplicate of degree k if there exist k - 1 and no more than k - 1 other identically labeled 
nodes in the graph which are connected by edges to the same nodes as is the given node. A given node 
is called a connected duplicate of degree k if the k - 1 nodes just mentioned are all mutually connected. 
To further illustrate consider the graph in figure 4. The numbers are only for use in referencing the 
nodes while the letters correspond to actual labels. 

Nodes 1 and 3 are connected duplicates of degree 2. Nodes 2 and 4 are ordinary duplicates of 
degree ? Nodes 6 and 7 are not duplicates since they have different labels. Finally nodes 10, 11, and 12 
are ordInary duplicates of degree 3. All other nodes are trivially duplicates of degree l. 

Node duplicate degrees are easily found from the 0,1 adjacency matrix of a graph. Groups of 
ordinary duplicate nodes correspond to groups of identical rows (with identical labels) of the adjacency 
matrix with O's entered on the diagonal. If l's are entered on the diagonal, then the connected dupli
cates can be similarly found . It is easily seen that two graphs are not isomorphic if the ordinary and 
connected duplicate degrees of their nodes differ in .any manner. 
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10 11 12 
Figure 4 

As before, the node labels of each graph are updated to reflect the newly obtained information and 
then compared. This is done in SUBROUTINE DUPLIC and takes ° (n3 ) time. 

While the identification of duplicate nodes serves as a worthwhile test for nonisomorphism, a 
potentially much more useful purpose is also served. A graph with a large number of nodes with 
duplicate degrees greater than one yields an adjacency matrix, A, and a large number of nontrivial 
automorphisms, that is permutations P such that pT AP = A. For reasons explained further on, graphs 
whose adjacency matrices have this property are especially difficult to analyze and any procedure which 
efficiently reduces the number of such permutations through appropriate labeling of the nodes of the 
graph, will greatly reduce the complexity of following computations. Labeling of duplicate nodes was 
found to be a particularly fast and simple way to achieve this end for many graphs. It should be noted 
that this labeling alone does not necessarily reduce the automorphism group to the identity. 

A well·known necessary condition for isomorphism involves the comparison of spectra (set of 
eigenvalues) of the 0,1 adjacency matrices of two graphs. Much effort has been devoted to nonisomor
phic pairs for which the 0,1 adjacency matrices have the same spectrum. Such pairs of graphs are called 
cospectral [5]. Many cospectral pairs of graphs are distinguishable, however, through comparison of 
the spectra generated from adjacency matrices with numbers different from 0 ,1 used to represent non
edges and edges [6]. It appears that the use of ° and 1 in the computation of the spectra of graphs 
ignores much of their inherent structure. A greater amount of information about the graph can be 
discovered from the examination of the spectra of adjacency matrices with 1's representing no edges, 
and a variable x representing an edge. Due to the nature of the characteristic polynomial, no generality 
is lost by replacing x with either a transcendental number or certain large functions of the number of 
nodes in the graph. Unfortunately neither option is feasible for use with the computer since a trans
cendental number is truncated to a rational and a large value of x yields errors in computation small in 
comparison to x but large in comparison to 1. A compromise solution was developed that allows x to be 
a function that increases linearly with the order of the graph yet is essentially as effective in distin
guishing nonisomorphic graphs as is the more general procedure. 

In order to utilize the information stored in the updated labels of the nodes, the diagonal elements 
of the adjacency matrices are assigned the value of the appropriate label. The eigenvalues of each 
modified adjacency matrix are then computed and compared. Should the resulting spectra not be 
identical, the graphs are not isomorphic. The preparation of the adj acency matrices for eigenvalue 
computation is effected in SUBROUTINE PREPAR and takes 0(n2 ) time. The computation of the 
eigenvalues as well as the eigenvectors (for future use) of each matrix is carried out in SUBROUTINE 
SPECTR and takes ° (n3 ) time. 

Since two graphs that are not distinguished by the preceding sequence of tests may well be isomor
phic, it is reasonable at this point to attempt to generate a permutation that relates the two graphs. The 
number of such possible permutations can be greatly limited with efficient use of the information stored 
in the eigenvectors of the two adjacency matrices. If A and B are two symmetric matrices with identical 
spectra then there exist orthogonal matrices U and V and a diagonal matrix D such that 

and VTBV=D. 
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Further assuming that A and Bare permutation ally equivalent we have B = pT AP where P is a 
permutation matrix. Then: 

UTAU = VTPTAPV 

D = VTPTUDUTPV 

and thus D commutes with E = UTPV. 

If E = (eij) and D = (dij ) with d.ij = 0 fo r i =1= j, then DE = (diieij) and ED = (djjeij). Thus if 
di• =1= dji> then djjeij = diiei j -7 eij = O. 

Thus E= 

where Ei is an orthogonal matrix of degree equal to the multiplicity of the ith distinct eigenvalue of A. 
The relation U E = PV se rves to greatly restrict the number of permutations, P. Consider first the 

restrictio ns imposed by the existence of eigenvalues of multiplicity one. In this case, the corresponding 
matrix E, is trivially (1) or (-1). Thus for each j such that djj is unique, we know that the set of 
permutations of 

[ 
UIj 

1 [ 
VIJ 

1 
U2j V2J 

into combined with 

Unj Vnj 

[ 
-Ul j 

1 [ 
VIj 

1 
-U2j V2J 

those of into include 

-UnJ Vnj 

all permutations of A into B. 

eigenvectors of A and B corresponding to the eigenvalue djj and are easily computed. 
Since the components of the eigenvectors of most modified adjacency matrices are unique, .he 

number of possible permutations of A into B is small. In these cases, all possible permutations are 
quickly generated and checked until one is found that relates A and B or until the supply is exhausted. 
In the latter case, the graphs are not isomorphic. 

As was mentioned earlier graphs that yield an adjacency matrix, A, and several permutations, P, 
such that P7'AP = A are very difficult to work with. The reason for this phenomenon now becomes 
apparent. If the number of permutations of A into itself is large, then there will be many pairs of k and 
l such that Ukj = Ulj for every j such that djj is unique. This, in turn, greatly increases the number of 
permutations 
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[ :~~ 1 [ ~:: 1 of into 

Unj Vnj 

and thus 

the amount of time which may be required to find a permutation of A into B and certainly the amount 
of time required to exhaust all possibilities is greatly increased. As an example, certain stochastic 
adjacency matrices have only one eigenvalue of multiplicity one. In many of these cases, the corresponding 
eigenvector components are all identical. In this, as well as in other less severe cases, the above described 
method of finding a permutation of A into B is not practical. 

For such graphs a more sophisticated, as well as time consuming, approach is required. Again 
referring to the relation UE = PV, it is useful to examine the case when an eigenvalue has multiplicity 
two. In other words, assume that djj = dkk for k =j, j + 1 but djj =1= dk k for all other k. Then we know 
that 

[ 
UIj UI;+I 

1 [ 
Vlj VIj+1 

1 
U2j Uzj+1 

(~ -:) = P 

V2j V2j+1 

Unj Unj+1 Vnj Vnj+1 

or that 

[ 
Ulj Ulj+1 

1 [ 
VIj VIj+1 

1 
U2; U2j+1 

(~ 
V2j V2J+I 

b )=P 
-a 

Unj Unj+1 Vnj Vnj+1 

In each case, there are n possible values for a. Selecting i such that either Uij =1= 0 or Uij+l =1= 0 and 
assuming that there is a permutation of A into B which takes the ith node of A into the kth node of B, 
we have 

which yields 

Solving for a and b yields: 

a 

b 

Uija + Uij+Ib = Vkj 

-u;jb + U;j+Ia = Vkj+1 

or 

Uija + u;j+Ib = Vkj 

u;jb - U;j+Ia = Vkj+1 

or 

Uij Vkj + Uij+1 Vkj+1 

U./ + Uij+12 

-U;j Vkj+1 + Uij+1 Vkj 

Ui? + U;j+12 
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a 

b= 

or 

Utj Vkj - Utj+1 Vkj+1 

uil + Ujj+12 

Ujj Vkj+1 + !l.;j+1 Vkj 

Uij2 + Uij+ 12 

Note that a2 + b2 = 1 so that lal ::; 1. Thus the permutations P are limited to those that satisfy 

for any of the 2n pairs of (a,b), two pairs corresponding to each value of k. For each (a,b) , the prob
lem then reduces to the previously examined case of eigenvalues of multiplicity one. The only difference 
is that the process must be repeated 2n times before all possible permutations have been checked. 

SUBROUTINE OPTEIG selects an optimal eigenvector, one that has as few multiple components 
as possible, and takes 0 (n3 ) time. If the selected eigenvector corresponds to an eigenvalue of multi
plicity one, SUBROUTINE SINGLE is called upon. This subroutine is O{n3 ) but the lead ing coefficient 
can be very large if there are large numbers of multiple eigenvector components. SUBROUTINE 
DOUBLE calls SUBROUTINE SINGLE at most 2n times and thus is O{n4 ) with the possibility of a very 
large leading coefficient. 

Due to the complex nature of the relation UE = PV for blocks of E of dimension greater than two, 
little progress was made in obtaining meaningful data from the eigenvectors corresponding to eigen
values of multiplicity greater than two. 

Should neither the eigenvectors corresponding to eigenvalues of multiplicity one nor those of multi
plicity two sufficiently restrict the number of permutations possible, still other algebraic approaches can 
be employed. 

One such approach is the examination of the spectra of the n subgraphs of order n - 1 of the 
original graph. An obvious necessary condition for isomorphism is that the two graphs generate the 
same sets of spectra. Further there is the possibility that in a given set of spectra, many of them will be 
unique, thus creating the possibility of generating and testing all possible permutations in a small 
amount of time. Distinguishing node duplicates again helps to reduce the maximum number of permu
tations possible. Experience with a limited number of large stochastic matrices has shown, however, that 
this procedure is far more effective as a nonisomorphism test than as one that attempts to generate and 
test all possible permutations. This procedure is contained in SUBROUTINE SUBVAL and takes 0{n4 ) 

time. 
Carrying the eigenvector analysis further all possible permutations can be derived through exam

ination of eigenvectors of subgraphs of the original graph. This method has proved to be one of the 
most successful in distinguishing very difficult large, stochastic graphs. For simplicity and speed, all 
submatrices of order n - 1 are searched for the optimum or a sufficiently satisfactory eigenvector 
corresponding to an eigenvalue of multiplicity one. This eigenvector is then compared with the cor
responding eigenvector generated from each of the subgraphs of the second graph that has a spectrum 
matching the spectrum of the subgraph which generated the optimal eigenvector. This procedure is 
executed in SUBROUTINE SUBVEC. The order is 0{n4 ) as SUBROUTINE SINGLE can be called a 
maximum of n tiines. This approach tends to be more time consuming than-the others mentioned since 
it could require the generation of n eigenvector matrices. 

In a similar fashion, one could examine the eigenvectors of subgraphs corresponding to eigenvalues 
of multiplicity two. Another possible approach would be to examine the n2 spectra generated by 
sequentially generating all possible subgraphs of order n - 2. These and other possible procedures are 
0{n5 ) or worse and very time consuming. It does not appear that the trade off of speed for effectiveness 
dictates inclusion of such unwieldly approaches in the algorithm. 

3. Computer Implementation 

The algorithm was organized into fourteen subroutines and coded in FORTRAN V for use with 
the UNIVAC 1108 computer. SUBROUTINE GISOM serves as the coordinating subroutine and is the 
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only subroutine that need be referenced by a main program. Each subroutine listing is fully commented, 
indicating values of variables on input, output and during the life of the subroutine. 

All eigenvalues and eigenvectors were calculated using the EISPACK software described in [9]. 
Reference to [9] should be made for a detailed explanation of the function, running time, error mes
sages and accuracy of the EISPACK subroutines. Throughout the program two numbers, A and Bare 
considered identical if IIA I - IBII < MACHP .::. (1 + IAI). The precision constant, MACHP, is deter
mined and set by the user in the call to GISOM. For use with the EISPACK software on the UNIVAC 
n08, a value of MACHP = 0.0003 was found to be satisfactory. 

Another user option in the call to GISOM command sets a limit on the number of permutations 
that may be tested for a given pair of graphs. Generally, this value, MAXT, can be set to a very large 
number, say 5000, since very little time is expended on each test. MAXT is of greatest use when it is 
desired to sequentially test several pairs of very large matrices without spending too much time on 
anyone pair. 

Time rather than storage conservation was emphasized. The subroutines utilize five n X n arrays 
and several single dimension 0 (n) arrays, all of which are passed as part of the subroutine call state
ments. There are no common blocks and no input-output statements in the subroutine as all pertinent 
data is returned through the CALL GISOM command in the main program. The STATUS and ERR 
variables serve as the key to what happened when the two graphs were tested for isomorphism. The 
other variables contain a variety of data whose meaning depends on the value of ERR and STATUS. 
This data can often be quite useful in determining exactly why two graphs are not isomorphic. The 
interpretation of ERR and STATUS is given with the commentary of each subroutine. A list of the 
program follows. 
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SUBROUTINE GISOM CA,B,C,XA,X8,DA,DB,EA,EB,FA,F8,SC,SD,SE,CE,CF,G,H 
+ , P , STATUS ,ER~ , ~ACHP,MAXT,N,NM,NT) 

C 
C THIS SUBROUTINE IS THE CONTROL SUBROUTINE FOR THE ALGO RIT HM. 
C 
C ON INPUT: 
C A AND B CONTAIN THE 0,1 FO RM OF THE ADJACENCY MATRIC F~ OF T~~ T';0 
C GRAPHS TO BE COMFARED. TH E DIAGONAL ELEMENTS CONTAIN LABELS 
C WHICH MAY RANGE IN VALUE F ROM 0 TO 99 . 
C MACHP IS THE PREC ISION WIT HIN WHICri EQUA LITY IS TO BE TESTED. A 
C VA LUE OF .000 3 IS SUGGESTED WHEN THE PROG RAM IS RUN ON A 
C ~ACHINE COMPA RA BLE TO THE UNIVAC 1108 AND ~I TH SOFTWA RE 
C EQUIVALENT TO EISPACK I N ACCURACY. 
C MAXT I S APPROXI~ATELY THE MAXIMUM NUMEEP OF PERMUTATIONS THAT MAY 
C BE TESTED. EXCEPT IN CASES OF SEVERE TIME RES TR ICT IONS, A 
C VALUE OF 5000 IS SUGGESTED. 
C N IS THE ORDER OF THE GRAPHS TO BE COMPARED. 
C NM IS THE DI MENSION OF MOST OF THE ARRAYS . 
C NT = 2*NM AND IS THE DIMENSION OF CE AND CF. 
C 
C ON RET URN: 
C A AND 8 AKE ?OSSIELY DESTROYED. 
C P CONTAINS A PERMUTAT ION SUCH THAT ACI ,J)= BCPC I), PCJ» FOR ALL I,J 
C SHOULD SUCH A PE qM uTATION 2E FO UND TO EXIST. 
C STATUS RANGES IN VALUE FROM 1 TO 10 AN D RECORDS THE POINT IN GISOM 
C WHERE THE ALGORITHM TE RM INATED. FOR EXAMPLE, A VALUE OF STATUS 
C =3 MEANS THAT THE ALGOR I THM TERMINATED FOLLO WING THE NODE 
C VALSNCE CHECK WHICH IMPLIES THAT THE NODE VALENCE S ~F THE TWO 
C GRAPHS DIFFE RED AND THUS THAT TH E TWO GRAPHS ARE NOT 
C I SO~ORPHIC . 

C ERR CONTAIN S INFO RMATION PERTA INING TO THE REASON FOR THE 
C TERMINATION OF THE ALGO RITHM. AN EXPLANATION OF ITS MEANING 
C CAN BE FO UND WITH THE COM~ENTS IN THE SUBROUTINE TH AT WAS LAST 
C CALLED BY G I SO~ . FOR EXAMP LE, A STATUS VALUE OF 7 COM S I NED 
C WITH AN ERR OF 0 I ~P LIES THAT A PERMUTATION WAS FOUND THAT 
C RE LATES A AND B TH ROUGH USE JF AN EIGENVECTO R CO RRESPOND ING TO 
C AN EIGENVALUE OF Mu LTIPLICITY ONE . 
C MACHP, MAXT, N, NM , AND NT ARE UNCHA~GED . 

C 
C ALL OTHER VARIABLES ARE CLASSIFIED AS ~ORKING VARIABLES. SUCH 
C VARIAELES MAY CONTAIN RE LEVANT IN FORMAT ION DEPENDING ON THE VALUES OF 
C STATUS AND ERR . 
C 

C 

C 

INTEGER N,NM,NT,ERR,MAXT,GCNM),HCNM),PCNM ), STATUS,JA 
REA L ACNM,NM),ECNM,NM),CCNM,NM),XACNM ,NM),XBCNM,NM),DACNM ), D5CN~ ), 

+ EA(NM),EBCNM ),FA CNM),F BCNM) ,SCCNM),SDCNM),SECNM),CECNT), ~ACHP 

+ ,CFCNT) 

ERR=O 
STATUS=l 
IF CN . GT.NM) RETURN 

C COMPARE THE NODE LA BE LS OF THE TWO GRAPHS. 
c 

c 

STATUS =2 
CALL LABEL CA, E ,DA,DB, SC,E RR , N,NM) 
IF CE RR .GT.O) RE TU RN 

C CO~PARE THE NODE VALENCES AND UPDATE THE CO RRESPO NDING NODE LABELS. 



C 

C 

STATUS =3 
CALL VALENC (A, B ,DA ,DB , SC ,ERR , N , N~ ) 

IF ( ERR .G T.O) RETURN 

C FIND, LABE L, AND COMPA RE ORDINARY AND CONNECTED DUPLICATE NODES . 
C 

C 

10 STATUS =STATUS +I 
CALL DUPLIC (A, B ,DA, DB , SC , SD , ERR , STATUS , N, NM ) 
IF (E RR . GT .O) RETURN 

IF ( STATUS . EQ .4) GO TO 10 

C CONVERT THE 0,1 FORM OF THE AD J ACENCY MATR I X TO THE I, X FORM . 
C 

CALL PREPAR (A, 8 ,DA, DB , N, NM ) 
C 
C COMPUTE AND COMPA RE THE SPECTRA OF THE TWO ADJ ACEN CY MATR IC ES . 
C 

C 

STATUS=6 
CA LL SPECTR ( A, B,XA, XB , EA , EB , SC , G, ERR , MACHP , N, NM ) 
I F (E RR . NE .D) RETURN 

C LOCATE A SU ITA BLE OR OPT I MA L E I GENVECTOR . 
C 

C 

CALL OPTEIG ( XB ,D B,G,E RR , MACHP ,JA, N, NM ) 
GO TO ( 20 , 30 , 50 ), ERR 

C ATTEMPT TO FIND A PERMUTAT I ON THAT RE LATES A AND 8 TH ROUGH USE OF AN 
C E I GENVECTOR THAT CO RRESPONDS TO AN EI GENVA LUE OF MU LTI PLI CIT Y ONE . 
C 

C 

20 STATUS =7 
CA LL S I NG LE ( A , B , XA , X3 , FA , F2 , H , P , ERR , MACHP , MAXT ,J A , N , N~) 

GO TO 40 

C ATTEMPT TO FIND A PERMUTAT I ON THAT RELATES A AND B TH ROUGH USE OF AN 
C EIGENVECTO R THAT CORRESPONDS TO AN EI GENVA LUE OF MU LTI PLI CITY T~O . 

C 
30 STATUS=8 

CALL DOUBLE (A,S,C, XA , XB , CE , CF , FA,FB , H, P,ERR , MAXT , MACHP , JA,N,NM,NT 
+ ) 

40 IF (ERR .NE . 4) RE TURN 
C 
C COMPUTE AND COMPA RE THE SPECTRA OF THE NO RDER N-I SU 8 GRAPHS OF THE 
C ORIGINAL GRAPHS . 
C 

C 

50 STATUS=9 
CALL SUBVAL (A,8,C, XA , SC , SD , SE ,H,P,ERR , MACHP,MAXT,N,N M) 
IF (ERR . NE . 0 . AND . ERR.NE . 5+N) RETURN 

C ATTEMPT TO FIND A PERMUTATION THAT RE LATES A AND B TH ROUGH USE OF AN 
C EIGENVECTOR THAT CORRESPONDS TO AN EIGENVALUE JF MULTIPL I CITY ONE IN 
C A SUBGRAPH Of ORDER N-l. 
C 

+ 
C 

STATUS=IO 
CALL SJBVEC (A,8,C,XA,XB,DA , DB , EA , EB,FA,FB,SC , SD .SE,G,H,P,ERR , 

RETU RN 
END 

MACHP , MAXT , N,NM) 
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SUBROUTINE LABE L ( A, B , DA , DB , SC,ERR , N, NM ) 
C 
C THIS SUB ROUTIN E RECO RDS AND COMPA RES THE I NITIAL LA BEL S OF THE NODES 
C OF THE TWO GRAPH S TO BE COMPARED . 
C 
C ON INPUT: 
C A AND B CONTAIN THE TWO ADJACENCY MATR ICE S TO BE COMPAR ED. 
C N IS THE ORDE R OF THE GRAPHS . 
C NM I S THE DI MENS IO N OF TH E ARRAYS . 
C 
C ON RETURN : 
C A AND B ARE UNCHANGED . 
C DA AND DB CONTA I N THE DI AGONAL ELEMENTS -LABELS - OF A AND B. 
C ERR = 0 IF DA AND DB ARE I SOMORPHI C. OTHERW I SE ERR I S TH E I NDEX 
C OF THE ELEME NT OF DA WHICH CANNOT BE MATCHED I N DB. 
C NAND NM AR E UNCHANGED . 
C 
C WOR KING ARRAYS : SC 
C 

I NTEGErt N,N M, ERR ,I 
RE AL A(NM, NM ), B( NM , NM ), DA ( NM ), DB (NM), SC (NM) 

C 
C RECO RD TH E LA BE LS . 
C 

DO 10 1=1, N 
DA ( I ) = A ( I , I ) 
DB(1)= B(1,1) 

10 CONTINUE 
C 
C COMPARE THE LABE LS . 
C NOT E THAT S I NCE THE LABE LS ARE I NTE GE RS , THE MA CHINE PRECISI ON 
C CONSTANT I S ZE RO. 
C 

C 
CALL COMP (DA, DB , S C,E RR ,O, N, NM) 

RETU RN 
END 
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SUBROUTINE COMP ( RA,RE,RC,ERR,MACHP ,N,N M) 
C 
C THIS SUBROUTINE DETERMINES WHETHER OR NOT TWO VECTOR ARRAYS ARE 
C ISOMORPHIC . 
C 
C ON INPUT: 
C RA .4ND RB ARE THE HiO VECTOR AREAYS TO BE COMPARED. 
C MACHP IS THE PRECISION WITHI N WH ICH EQUALITY IS TO ES TESTED. 
C N IS THE ORDER OF THE GRAPHS. 
C NM I S THE DIMENSION Of THE ARRAYS. 
C 
C ON RETURN: 
C 
C 
C 
C 
C 
C 
C 

C 

C 

RA AND RB ARE UNCHANGED. 
ERR = 0 IF RA AND RB ARE ISOMORPHIC. OTHERWISE ERR IS THE INDEX 

OF THE ELEMENT OF RA WHICH CANNOT BE MATCHED IN RB . 
MACHP, N, AND NM ARE UNCHANGED. 

WORKING ARRAYS: RC 

INTEGER NM , N,E RR ,I,J 
REAL RA(NM),RB(NM),RC(NM),MACHP,VAL 

VAL=1 
ERR=O 

C COpy RB INTO HC AND COMPUTE A RELAT IVELY LA RGE NUMBER. 
C 

00 10 1=1 ,N 
RC<I) =RB( 1) 

VAL=VAL+AESCRBCI» 
10 CONTINUE 

C 
C COMPARE THE TWO ARRAYS. 
C 

DO 30 1=1, N 
DO 20 J= 1 ,N 

IF (ABS(RA(I)-RC(J».GT.MACHP*(l+ABSCRC(J»» GO TO 20 
RC(J)=VAL 

C 

GO TO 30 
20 CONTINUE 

ERR=I 
RETURN 

30 CONT INUE 

RETURN 
END 
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SUBROU TINE VALENC (A, B ,DA, DB,SC,ERR,N,NM) 
C 
C THIS SUBROUTINE CO MPUTES AND COMPARES THE NODE VALENCES OF THE 
C TWO GRAPHS. 
C 
C ON INPUT: 
C A AND B CONTAIN THE TWO ADJACENCY MATRICES TO BE CO MPARED . 
C DA AND DB CONTAIN THE NODE LAB ELS OF A AND B. 
C N IS THE ORDER OF THE GRAPHS. 
C NM IS THE DIME NS I ON OF THE ARRAYS . 
C 
C ON .RETURN : 
C A AND B ARE UNCH ANGED . 
C DA AND DB CONTAIN THE UPDATED NODE LABELS. 
C ERR = 0 IF DA AND DB ARE ISOMQRPHIC . OTHERWISE ERR I S THE INDEX 
C OF THE ELEMENT OF DA WH ICH CANNOT BE MATCHED I N DB. 
C NAND NM ARE UNCHANGED . 
C 
C WORK I NG ARRAYS: SC 
C 

INTEGER NM,N,ERR,I,J 
REAL A(NM,NM),6(NM,NM),DACNM),D6(NM),SC(NM) 

C 
DO 20 I = 1 . N 

C 
C MAKE RO OM FOR NEIoi I NFORMAT ION. 
C 

C 

DA(I)=100*DA(I) 
DE(I)=100*D8(1) 

C COMPUTE AND RECORD NODE VALENCES - UPDATE LABELS. 
C 

C 

DO 10 J= 1, N 
IF (I.EQ.J) GO TO 10 

DA ( I ) = DA ( I ) +A ( I , J) 
DB ( I ) = DB ( I ) + B ( I , J) 

10 CONTINUE 
20 CONT INUE 

C COMPARE UPDATED LABELS. 
C 

CALL COMP (DA.DE .SC.E RR ,O,N, NM) 
C 

RET URN 
END 
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SUBROUTINE DUPLIC (A,B,DA,DB,SC,SD,E RR , Q,N,NM) 
C 
C THIS SUBROUTINE LOCATES AND DISTINGUISHES DUPLICATE NODES TH ROUGH 
C LABEL MODIFICATION. 
C 
C ON INPUT: 
C A AND B CONTAIN THE TWO ADJACENCY MATRICES TO BE CO MPAR ED. 
C DA AND DB CONTAIN CU RRENT NODE LA BEL DATA. 
C Q = 4 IF O"S ARE TO BE PLACED ON THE DIAGONAL OF A AN D B, AND 
C Q = 5 IF I"S ARE TO BE USED. 
C N IS THE ORDE R OF TH E GRAPHS. 
C NM IS THE DIMEN S IO N OF THE ARRAYS. 
C 
C ON RETURN: 
C A AND 8 HAVE DIAGONAL ENT RIES OF ALL O"S OR ALL I" S BUT ARE 
C OTHERWISE UNCHANGED. 
C DA AND DB CONTAIN UPDATED LABEL DATA. 
C ERR = 0 IF DA AND DB ARE ISOMO RPHIC. OTHERWISE ERR IS THE INDEX 
C OF THE ELEMENT OF DA WHICH CANNOT BE MATCHED IN DB. 
C Q, N, AND NM ARE UNCHANGED. 
C 
C WO RKING VARIABLES: SC,SD 
C 

C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

c 

C 

INTEGER NM,N,NN,I,J,K,L,E RR , Q 
REAL A(NM,NM),B(NM,NM),DA(NM),D 8 (NM),SC(NM),SD(NM) 

NN=N-l 

DO 10 1=1 ,N 

SET DIAGONAL ELEMENTS TO 

A(I,I)=Q-4 
B(I,I)= Q-4 

MAKE ROOM FOR NEW DATA. 

DA(I)=100*DA(I) 
D8(1)=100*D8(I) 

STO RE DA IN SC AND 

SC(I)=DA(I) 
SD(1)=DB([) 

10 CONTINUE 

DO 60 I=I,NN 
L=I+l 
DO 50 K=L,N 

DB IN 

0 OR 1 • 

SD. 

C SEARCH FOR IDENTICAL ROW S IN A. 
C 

20 

IF (SC(I).NE.SC(K» GO TO 3D 
DO 20 J=I,N 

IF (A(I,J).NE.A(K,J» GO TO 30 
CONTINUE 

DA(K)=DA(K)+l 
DA ( I ) = DA ( I ) + 2 
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C 
C SEAR CH FOR I DENT ICAL ROWS I N B. 
C 

C 

30 IF ( SD(I). NE . SD ( K» GO TO 5 0 
DO 4 0 J= i , N 

IF CBCI,J). NE . B( K,J» GO TO 5 0 
CONT I NUE 

DB ( K)= DBCK)+i 
DB CI) =DB(l)+ 2 

SO CO NTI NUE 
60 CONTINUE 

C CO MPARE UPDATE D LABELS . 
C 

C 
CALL COMP CDA ,DE , SC, ERR ,O, N, NM ) 

RETURN 
END 
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SUBROUTINE PREPAR CA,B,DA,D8,N,NM) 
C 
C THIS SUBROUTINE CONVERTS THE ADJACENCY MATRIX F ROM 0,1 FORMAT TO I,X 
C FORMAT. IN ADDITION THE LABELS ARE CONVERTED INTO MU LTI PLES OF N 
C AND ARE ENTERED AS DIAGONAL ELEMENTS OF A AND B. 
C 
C ON INPUT: 
C A AND B ARE THE ADJACENCY MATRICES IN 0,1 FORMAT. 
C DA AND DB CONTAIN CURRENT NODE LABEL DATA. 
C N IS THE ORDER OF THE GRAPHS. 
C NM IS THE DIMENSION OF THE ARRAYS. 
C 
C ON RETURN: 
C A AND B CONTAI~ THE TWO ADJACENCY MATRICES IN I,X FORM WITH 
C MODIFIED DIAGONAL ELEMENTS IN MULTIPLES OF N. 
C DA AND DB CONTAIN THE NODE LABEL DATA IN THE FORM OF MU LTIPLES 
C OF N. 
C NAND NM ARE UNCHANGED. 
C 

INTEGER NM,N,L 
REAL ACNM,NM),BCNM,NM),DACNM),DBCNM),FN,NA.NB,QA,~B,INF 

c 
C FN IS THE FUNCTION FO R X-I IN THE I, X FORM OF THE ADJACENCY MATRIX. 
C 

C 

FN=N/2 
Q.ct =-1 
Q5=-1 
NA=O 
NB=O 
INF=looaaoaooo 

C CONVERT A AND B TO I,X FORM. 
C 

C 

C 

DO 20 I = I. N 
DO I a J= 1, N 

ACI,J)=ACI,J)*FN+l 
8CI,J)=ECI,J)*FN+l 

10 CONTINUE 
20 CONTINUE 

DO 50 I = I ,N 

C LABEL DIAGONAL ELEMENTS OF A IN MULTIPLES OF N. 
C 

C 

L=1 
DO 30 J= 1, N 

IF (DACJ).LT.DACL» L=J 
30 CONT INUE 

IF (DACL).GT.QA) NA=NA+N 
ACL,L)=NA 
QA=DACL) 
DACL)=INF 

C LABEL DIAGONAL ELEMENTS OF B IN MULTIPLES OF N. 
C 

L=1 
DO 40 J= 1, N 

IF CD BCJ).LT.DBCL» L=J 
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r-

C 

40 CONT IN UE 
IF (D8CL).GT.QB) NB=NB+N 
BCL,L)=NB 
QB=DE(L) 
DB( L) =INF 

50 CONTINUE 

C RESTORE DA AND DB. 
C 

C 

DO 60 1=1, N 
DA(l)=A(I,I) 
DE( l)=E( 1,1) 

60 CONT INUE 

RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

SU BROUTINE SPECTR ( A, B, XA , XB ,EA ,E B,SC, G, ERR , MACHP , N, NM ) 

THIS SUBROUTINE CALCULATES AND COMPARES THE SPECT RA OF THE TWO 
MODIFIED ADJACENCY MATRICES. IN ADDITION, DATA PERTA I NI NG TO THE 
MULTIPLICITY OF THE EIGENVALUES IS RE CORDED . 

ON INPUT: 
A AND B CONTAIN THE ADJ ACENCY MATR IC ES OF THE TWO GRA PHS . 
MACHP IS THE PREC ISI ON WITHI N WHICH EQUALITY IS TO BE TESTED . 
N IS THE ORDE R OF THE GRAPHS. 
NM IS THE DIMEN S ION OF THE ARRAYS. 

ON RETURN: 
A AND B ARE UNCHANGED. 
XA AND XB CONTAIN THE EIGE NV ECTORS OF A AND B I N THE SAME ORDE R 

AS THE CO RRESPONDING EIGENVALUES . 
EA AND EB CONTAIN THE EIGENVALUES OF A AND B I N NONDEC REAS I NG 

ORDS? 
G OF I IS 1 IF THE I TH AND 1+1 TH EI GENVALUES OF A ARE I DEN TICAL 

AND I S a OTHERWISE. 
ERR I S NEGATIVE IF AN ERROR CONDITION WAS RAI SED I N THE E I SPACK 

SOFTWARE . ERR IS a IF THE SPECTRA ARE IDENT ICAL. OTHERW I SE , 
ERR I S THE INDEX OF THE E I GENVALUE OF A THAT COULD NOT BE 
MATCHED WITH AN EIGENVALUE OF B. 

MACHP, N, AND NM ARE UNCHANGED. 

in ORXING VARIABLES: SC 

INTEGE R NM,N,ERR,I,NN,G(N M) 
REAL A(NM,NM),E(NM,NM), XA (NM,N M) , XB ( NM , NM),EA(NM), EB ( NM ),SC(NM), 

+ MACHP 

NN=N-l 

C FIND THE EIGENVALUES AND EIGENVECTO RS OF A. 
C 

C 

CALL TRED2 (NM,N,A,EA, SC ,XA) 
CALL TQL2 (NM, N,EA, SC , XA , ERR ) 
IF (ERR . NE. 0) GO TO 10 

C FIND THE EIG ENVALUES AND EIGENVECTO RS OF B. 
C 

C 

CALL TRE D2 ( NM , N, B,E B, SC , XB ) 
CALL TQL2 (NM, N,E B, SC , XB ,ERR ) 

10 ERR=-ERR 
IF {ERR.EQ.O) CALL COM P (EA,E B, SC , ERR , MACHP,N,NM) 

C RECORD EIGENVALUE MULTIPLICITY DATA. 
C 

C 

IF (ERR.NE.D) RETURN 
DO 2 0 1=1, NN 

G(I)=O 
IF (ABS(EA(I)-EA(I+l».LT. MA CH P *( I+ABS (EA( I»» G(I)=1 

20 CONTINUE 
G(N)=O 

RETURN 
END 



SUB ROU TI NE OPT E I G ( XB , DS , G , E RR , MACH? ,JA , N , N~ ) 

C 
C THI S SUBROUT I NE SE LEC TS AN Q?T I MA L E I GEN VECTOR FOR USE I N GENERAT I NG 
C A SE RIE S OF PE RMUTAT I ONS . 
C 
C ON INPUT: 
C XB I S THE E I GENVE CT OR MA TR I X OF B. 
C DB CO NTAI NS THE DI AGONA L ELEMEN TS OF B. 
C G CONTAI NS EI GENVA LUE MU LT I P LI CI TY I NFORMAT I ON. 
C MAC HP I S THE PREC I S I ON WI TH I N WHICH EQUALI TY I S T O 5E TE STED. 
C N I S TH E ORDER OF THE GRAPHS . 
C NM I S THE DI MENS I ON OF THE A~RAY S . 

C 
C ON RE TUR N: 
C XB I S ESS ENT I ALLY UNCHA NGE D. THE POSS I BILI TY EXI ST S TH AT ANY TWO 
C E I GENVECTO RS CO RR ESPON DI NG TO THE SAME E I GENVALUE CJU LD BE 
C I NTER CHANGED . 
C DB AND G AR E UNCH ANGE D. 
C ERR = 1 I F TH E E I GENVE CT OR SE LE CT ED CORRESPONDS TO AN E I GENVA LUE 
C OF MU LTI P L I CI TY I. ER R= 2 I F THE CO RRESPOND I ~G E I GENVA LUE HAS 
C MU LTI P LI CI TY 2 . ERR =3 I F NO SU I TAb LE E I GENVECTO R COU LD bE 
C FO UN D. 
C MACHP I S UN CHANGED . 
C JA I S TH E CJ LUMN I NDEX OF THE O?T I MA L E I GENVECTOR , I F ONE EX I ST S . 
C N AN D NM ARE UNCHANGED . 
C 

C 

C 

I NTE GER NM , N, I , J , PN , LT , PX , ERR , JA , L I , LM,L , NN , G(NM ) 
REA L XB ( NM , NM ), DB ( NM ), MACHP 

NN =N-I 
ERR =3 
PN =IOOO 

C ALL E I GENVECTORS WI TH THREE OR MORE I DENTI CA L COMDDNENTS OR THA T 
C CO RR ESPOND TO E I GENVA LUES OF MU LTI P LI CI TY TH REE OR MORE ARE 
C ELI MI NATED F ROM CONS I DERAT I ON . E I GENVECTO RS THAT CO RRESP OND TO 
C E I GE NV ALUES OF MU LT I P LI CI TY ONE ARE CONS I DERED PREFERENT I ALL Y TO 
C TH OSE WH I CH HAVE MU LT I P L IC I TY TWO . E I GENVECTORS WHI CH HAVE FE~ PA I RS 
C OF I DEN T I CAL COM?ONENTS ARE FAVO RED OVER THOSE WIT H MANY SUCH PA I RS . 
C 

C 

DO 80 J = 1 , N 
LT =O 
PX= I 

C CHECK FO R MULT I P LI C ITY OF ASSO CI AT ED E I GENVA LUE . 
C 

1 0 

I F" (J. E Q. 1) GO TO 2 0 
IF CG(J-l). EQ.O) GO TO 20 

IF (J. EQ . 2 ) GO TO 1 0 
IF" ( G( J - 2) . EQ.I.) GO TO 8 0 
IF ( G(J). EQ.I) GO TO 8 0 

LT =4 
P X=4 
GO TO 30 

20 IF ( G ( J). E ~ . O ) GO TO 3 0 
I F (G (J+I) . EGl .I) GO TO 8 0 

LT=4 
PX =2 
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C 
C CH ECK FO R I DENT ICAL COMPONENTS. 
C 

C 

30 DO 50 1= 1 , NN 
LI=I+l 
LM=O 
DO 40 L=LI,N 

IF CA BS CXB CI,J)-XBCL ,J)+ DB CI)- DB CL)). GT . MACHP) GO TO 40 
LT =LT+l 
IF CLM. EQ .l) GO TO 80 

LM=l 
40 CONTINUE 
SO CO NT I NUE 

IF CLT.G E . PN ) GO TO 80 
JA=J 
ERR =PX 
IF CERR .LT.4) GO TO 7 0 

ERR =2 
JA=J A-l 

C INTE RCHANGE TWO EIGE NVE CT ORS THAT CORRESPOND TO THE SAME E I GENVA LUE 
C SO THAT IN THE RESU LTI NG PA I R THE F I RS T WILL BE MORE SU IT ABLE THAN 
C THE LAST. 
C 

C 

60 
7 0 

DO 60 1= 1 , N 
TEMP=XBC I,JP. ) 
XB CI,JA) =X8 CI,JA+l) 
XB CI,JA+l)=T EMP 

CONTINUE 
PN=LT 

C IF E IGENVECTO R I S SU IT AB LE - NOT NECESSAR ILY OPTI MA L- RETURN . 
C 

C 

IF CLT.LT.4) RETURN 
80 CONTINUE 

RE TU RN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

SUBROUTINE S I NG LE ( A , B , XA , XB ,F A ,F B , H , P , ERR , MA Cnp, MAXT,JA , N , N~ ) 

THIS SUBROUT I NE GENE RATES AND TE ST S UP TO MAXT PE RMUTAT I ONS F ROM DATA 
FOUND IN AN EIGENV ECTO R CO RR ESPOND I NG TO AN E I GENV AL UE OF 
MU LTIPLICITY ONE . 

ON INPUT: 
A AND B CO NTA I N TH E ADJACENCY MATR IC ES OF THE TWO GRAPHS . 
XA AND XB ARE THE E I GENVECTOR MATRICES OF A AND E THQUGH ON LY THE 

JA TH CO LUMNS OF XA AND XB ARE USED I N THIS SUB RGU TI NE . 
MACHP I S THE PRECI S I ON WITHI N WH ICH EQUALITY I S TO BE TESTED . 
MAXT I S THE MAX I MUM NUMBER OF PERMUTAT IO NS THAT CAN BE TESTED . 
JA I S THE CO LUMN OF XA AND XB WHI CH CONTAINS THE E I GENVECTO RS TO 

BE EX.4M I NED. 
N I S THE ORDER OF T~E GRAPHS . 
NM I S THE DI MENS I ON OF THE AR~AYS. 

ON RETURN : 
A, B, XA , AND XB ARE UNCHANGED . 
P CO NTAIN S THE LA ST PE RM UTAT I ON THAT WAS CHECKED AGAIN ST A AND B. 

IF ERR =O , TH I S PERMU TATI ON RE LATES A AND B. 
ERR = -I IF NO SU I TABLE PE RMU TATI ONS COU LD BE GENERATED AND THE 

GRAPH S ARE NOT I 50MOSPH IC. ERR =! I F THREE I DENTIC AL C~MPO NENTS 

WE RE FO UND I N THE E I GENV ECT~c . ERR=3 IF ALL POSS I BLE 
DE RMUTATION S FAILED WHEN TESTED AGA I NST A AND B AND THE GRAPHS 
ARE NOT I SOMO RPH IC. EPR =4 I F TH E MAX I MUM NUM EES OF 
PERMUTAT I ONS WER E TR I ED WIT HJUT SUCCESS . ERR = O IF A 
PERMUTAT I ON WAS FO UND TO RELATE A AND B. 

MACHP , MAXT , J A, N, AND NM ARE UNCHANGED . 

WORKING VARI ABLE S : FA,F B , H 

I NTEGER NM,N , ERR ,JA,I, M, HCNM ), P(NM) ,LT , MAXT 
REAL A(NM , NM ), B( NM , NM ), XA (NM,NM), XB( NM , NM) , FA(N M), F B(NM), MAC HP 

M=O 

C USE THE NODE LABELS TO AIDE I N TH E SEPA RAT I ON OF I DENT I CAL 
C COMPO NE NTS. 
C 

C 

DO ! 0 I = I , N 
FA(I)= AC I,I)+XA (I,JA) 
FB( I )= BC I, I )+ XB ( I ,JA) 

10 CONTINUE 

C GENE RATE A POTENT IAL PE RMU TATION AS WE LL AS THE DA TA NECESSARY TO 
C FIND AL L OTHER POSS I BLE PE R~UTATIONS. 
C 

C 

20 CALL PE RM (FA , FE , H , P , ERR , MACH P,LT,N,NM) 
IF ( ERR . E Q. I) RETURN 

IF (EqR . EQ.-I) GO TO 30 

C TEST UP TO MAX T PE RMU TATIONS AGA I NST A AND B. 
C 

C 

CAL L TE ST (A, B , H , P , ERR , MAXT,LT,N,NM) 
IF ( ERR .NE.3) RETU RN 

30 IF (M.E Q.!) RET UR N 
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C SHOULD ALL PE RMUTATIONS FAIL, REPEAT THE P? OCESS WITH ONE EIGENVECTO R 
C NEGATED TO I NCLUDE ALL POSS I BLE CASES. 
C 

DO 40 1=1, N 
F8 ( I )= B ( I, I )- X8( I ,JA) 

40 CONTINUE 
M= l 
GO TO 20 

c 
END 
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SUBROUT I NE PERM ( FA , FB , H , P , ERR , MACHP ,LT , N, NM) 
C 
C THIS SUBROUTINE GENERATES A S I NG LE PERMUTAT I ON BETWEEN THE COMPONENTS 
C OF TWO VECTO RS AND RECORDS THE DA TA NECESSAR Y TO GENERATE ALL OTHE R 
C POSSI BLE PE RMU TAT I ONS BETWEEN THE COM PONENTS OF TH E TWO VECTO RS . THE 
C VECTO RS MUST NOT CONTA I N MO RE T~AN TWO ID ENTICAL COMPONEN TS . 
C 
C ON INPUT: 
C FA AND F B ARE THE T WO VECTO RS FROM WHICH ALL PE RMU TATI ONS WILL 
C BE GENE RA TED . 
C MACH P I S THE PRECI S IO N WITHIN WHICH E~UALITY I S TO BE TE STED . 
C N I S TH E ORDER OF THE GRAPHS. 
C NM I S TH E DIMENSION OF THE AR RAYS. 
C 
C ON RETU RN: 
C FA I S UN CHANGED. 
C F B I S DESTROYED . 
C H CONT AI NS THE I ND IC ES OF THE PA I RS OF I DENTICAL COMPONEN TS OF FA . 
C P CONTAIN S A PERMUTATI ON OF THE COMPONENTS OF FA I NTO THOSE OF F B. 
C ERR = -I IF THE TWO VECTORS ARE FOUND TO BE NON -I SOMORPH IC. 
C ERR =I IF TH REE OR MORE COMPONENTS OF FA ARE I DENT ICAL. 
C ERR =O OTH ERW I SE . 
C MACHP I S UN CHANGED. 
C LT I S THE NUMBE R OF I DENT ICAL PA I RS OF CO MPONEN T S FOUND I N FA . 
C NAN D NM ARE UNCHANGED . 
C 

C 

C 

C 

INT EGER NM , N,I,J,L,LT, H( NM) , P ( NM ),ERR 
REAL FA( NM ),F B(NM ), MA CH F ,I NF 

ERR= I 
LT=O 
INF=-IO 

DO 70 1=1, N 
L=-I 

C FIND ALL COMPONENTS OF FB THAT MA TCH THE CU RRENT COMPONENT OF FA . 
C 

C 

C 

10 

DO 30 J= 1 ,N 
IF (A BS (FA(I)-F B(J)). GT.MACHP) GO TO 30 

IF (L) 10,20,80 
FB(J)=INF 
P ( I ) =J 

20 L=L+l 
30 CONT I NUE 

IF (L) 40,70,50 
40 ERR =-I 

RETURN 

C RECORD TH E I NDEX OF THE F I RST HALF OF A I DENT ICAL PA I R I N FA . 
C 

50 LT=LT+I 
H(2*LT-I)=I 

C 
C FIND AND RE CORD THE I NDEX OF THE SECOND HA LF OF TH E I DENTICAL PAI R 
C IN FA . 
C 
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C 

C 

DO 60 J= I, N 
IF CA BS CF ACI)-FACJ».GT. MA CHP.O R.I.EQ.J) GO TO 60 

HC2*LT)=J 
GO TO 70 

60 CONTINUE 
70 CONT INUE 

ERR=O 
80 RETU RN 

END 
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SUB ROUTI NE TE ST CA, 8 , H, P , ERR , MAXT, LT, N, NM ) 
C 
C THI S SUBROUTI NE TEST S UP TO MAX T PE RMU TAT I ONS AGA I NS T TH E ORI GIN AL 
C GRAPHS . 
C 
C ON I NPUT: 
C A AND B CONT AI N TH E AD JAC EN CY MATRIC ES OF THE TWO GRAP HS . 
C H CO NTA I NS TH E PA I RS OF I NDICES OF P WH I CH MU ST BE I NTERCHANGED 
C BEFORE ALL POSS I BLE PERMU TATI ONS CAN BE EN TE STED . 
C P CONTAI NS TH E FI RS T PERMU TAT I ON TO BE CH ECXED . 
C MAXT I S T HE MAX I MUM N~MBER OF PERMU TAT I ONS WHICH MAY BE TES TED . 
C LT I S THE NUMBER OF PA I RS OF I NDI CES OF P THAT MAY HAVE TO BE 
C I NTE RCHANGED . 
C N I S THE ORDE R OF THE GRAPHS . 
C NM I S THE DI MENS I ON OF THE ARRAYS. 
C 
C ON RETU RN : 
C A , B , AND H ARE UN CH ANGED . 
C P CONTAI NS THE LAST PERMU TAT I ON THAT WAS CH ECKED AGA I NST A AND B. 
C IF ERR =O , THEN TH I S PE RMU TAT I ON RE LATES A AND B. 
C ERR = 0 I F A PERMUTAT I ON WAS SUCCESSFU L I N RELATI NG A AND B. 
C ERR =3 I F ALL PERMU TAT I ONS FAILED WHEN TESTED AGA I NST A AND B. 
C ERR =4 I F MAX T PERMUTAT I ONS ~ERE TRI ED WI THOUT SU CCESS . 
C LT, N, AND NM ARE UN CHANGED . 
C 

C 

I NTEGER NM , N,LT , ERR , LB , I , J , BI N, MAX T ,T,L, K, HCNM ), P CN M), M 
REAL ACNM , NM ), BCNM , NM ) 

C LB I S TH E MAX I MUM NUMBE R LESS I OF PERMUTAT I ONS WHI CH MA Y HAVE TO BE 
C TESTE D. 
C 

LB=2** LT-l 
C 
C BI N CONTROLS WH I CH PA I RS JF I ND I CES ARE TO BE I NTER CHANGED EA CH T I ~2 . 

C 

C 

C 

BI N=O 
T=O 
ERR =O 

1 0 T=T+ 1 

C TE ST THE PE RMU TATIO N I N P AGA I NST A AND B. 
C 

C 

DO 30 1=1, N 
L= P CI) 
DO 20 J= 1 , N 

f< =P(J ) 
IF ( BCL, K) . NE . ACI ,J » GO TO 40 

20 CO NT I NUE 
30 CONTI NUE 

RETURN 

C CHECK IF ALL POSS I BLE PE RMU TAT I ONS HAVE BEEN TRI ED . 
C 

C 

40 I F ( BI N.LT .LB) GO TO 50 
ERR = 3 
RETU RN 
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C CHECK IF MAXT PERMUTAT I ON S HAVE BEEN TR I ED . 
C 

C 

50 IF (T.LT. MAXT ) GO TO 60 
ERR =4 
RE TU RN 

C GENERATE THE NEXT PE RMUTAT I ON TO BE TESTED . 
C 

60 BI N=BIN+1 
C 
C SEQUENT I AL LY I NTERCHANGE 1+1 PA I SS OF VALU ES OF P WHERE 2**1 IS THE 
C LA RGEST POWER OF 2 THAT DIV IDE S BI N. ON THE AVERAGE , TWO PAI RS WILL 
C BE I NTERCHANGED EACH TIME, I NDEPENDENT OF THE VALUE OF LT. 
C 

C 

M= 1 
DO 70 1=1, L T 

L=H( 2* I-1) 
K=H( 2* l) 
J=P(L) 
P(U=P(K) 
P (K)=J 
M=2*t'l 
IF (MOD( BI N, M).GT.O) GO TO 1 0 

70 CONTINUE 

END 
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SUBROU TI NE DOUBLE CA , B , C , XA , XB , CE , CF , FA ,F B, H , P , ERR , MAXT , MA CH P , JF , 
+ N , NM , NT) 

C 
C THIS SUBROUT I NE GENE RATES AND TESTS PERMUTAT I ONS F ROM DATA FOUND I N 
C E IG ENVECTORS CORRESPONDING TO E I GENVA LUES OF MU LT I PLICITY TWO . 
C 
C ON INPUT: 
C A AND B CONTAIN THE ADJACENCY MATR ICE S OF THE TWO GRAPHS . 
C XA AND XB ARE THE EIGENVECTOR MA TR ICES OF A AND B. 
C MAXT I S THE MAX I MUM NUMBER OF PERMU TATI JNS THAT COULD BE TRI ED IF 
C THE OPTI MA L EIGENVECTO R CORRESPONDED TO AN E I GENVA LUE OF 
C MULTIP LICTY ONE . 
C MACH P I S THE PRECIS ION WITHI N WHICH EQUA LITY I S TO BE TES TE D. 
C JF AND JF+I ARE THE T WO COLUMNS OF XA I N WH ICH THE PE RT I NENT 
C EIGENVECTORS ARE STO RED . 
C N I S THE ORDER OF THE GRAPHS . 
C NM I S THE DI ME NS I ON OF MOS T OF THE ARRAYS . 
C NT = 2*NM AND I S THE DI MENS I ON OF CE AND CF . 
C 
C ON RE TU RN : 
C A, B , XA , AND XB ARE UNCHANGED . 
C P CONTAINS THE LA ST PE RMUTATION THAT WA S CHECKED AGA I NST A AND B. 
C I F ERq =O , THI S PE RMU TATI JN q ELATES A AND B. 
C ERR = 4 IF NO PEFMUTAT!ON WAS FOUND TO RE LATE A AND B BU T NO T ALL 
C POSSIBLE PERMU TATI ONS WE RE TESTED DUE TO THE LI MI T I MPOSED 
C EY MAXT AND MAXTN . ERR =O I F A PERM~TATION SUCCESSFULLY RE LATED 
C A AND B. ER R=-I,I, OR 3 IF ALL POSS I BLE PERMUTAT I ONS FAILED 
C WHEN TE STED AGA I NST A AND B AND THE GRAPHS ARE NOT I SOMORPHIC . 
C MAXT , MACHP , J A , N , NM , AND NT ARE UNCHANGED . 
C 
C WORKING VAR I AB LES : C ,C E , CF , FA , FB,H 
C 

I NTEGE R NM , N, ERR , K,I,J, M,JF , NT ,L, MAXT , MAXTN , HCNM) , P CNM ) 
REA L A C NM , NM ), B C NM , NM) , C C NM , NM ), XA C NM , NM) , XECNM , N~) , FACNM) , F E C NM ), 

+ CECNT),CFCNT) , MACHP , MACHPN ,T M 
C 
C RELA X THE REQU I REM ENT FOR EQUA LIT Y AS MU LTI P LE OPERAT I ONS ARE TO BE 
C PE RFO RMED ON THE E I GENVECTO R COMPONENTS . 
C 

MACHPN =N*MACHP /S 
C 
C SET THE MAX I MUM NUMBER OF TESTS THAT MAY BE PERFORMED ON EACH 
C P ROPOSED LI NEA~ COMBINATION OF THE TWO E IG ENVECTORS . 
C 

C 

C 

IVJAXTN =4*MAXT / N 

DO 1 0 J=I, N 
L=J 
IF CA BS CXA CJ,JF». GT . MACHPN . OR . ABSCXA CJ,JF+I». GT . MACHPN ) 

+ GO TO 20 
10 CONTI NUE 

C COMP UTE ALL POSS I BLE VALUES OF TH& TWO COEFFICIENTS AND RE CO RD THEM 
C IN CE AND CF . 
C 

20 TM= XA CL,JF)**2+XACL , JF+I)**2 
DO 50 J = I, N 

K=2*J 
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C 

CE e K-l)=e XA eL, JF ) *XBe J,JF )+XA eL, JF +l )*X BeJ , JF +l »/TM 
CFe K- l )=( XA (L, J F+l) *XBeJ ,J F )-XA e L , JF)* X3 CJ , JF + l» / TM 
CE CK)=C XA CL,JF)*X8 CJ, JF )-XAe L, JF +l) *XBCJ , JF +l » / TM 
CF e K) = eXA CL,JF +l )*X8eJ , JF )+ XA eL, JF)*XE eJ , JF +l»/ TM 

C AVO I D UNNECESSA RY WORK THROUGH DE LETION OF DUPLICATED COEFFIC I ENTS . 
C 

C 

C 

IF e J • EQ . 1) GO TO 40 
M = K - ~ 

DO 30 I=I, M 
I F eABS e CE CI)- CEeK-l » .LT . MACHP ) CE CK-l )=2 
IF eABS e CEe I)- CE CK».LT . MACHP ) CE e K)=2 

3 0 CONT I NUE 
40 I f CA8S CC E CK)- CECK-l».LT . MACHP) CEeK )= 2 

50 CJNT I NUE 

C TEST ALL POSS I BLE COEFF I CI ENTS . 
C 

L= O 
DO 80 J= 1 , NT 

C 
C ELI MI NATE F ROM CONS I DERAT I ON COE FFI CI ENTS WI TH ABSO LUTE VA LUE > 1. 
C 

C 

IF eA BS CC E CJ». GT.l+MACHPN ) GO TO 8 0 
If CABS e CEe J».GT.l) CE CJ)=1 

C P ERFORM THE LI NEAR COMB I NA TI ON TO CREATE A PSEUDO E I GENVECTOR . 
C 

C 

DO 7 0 1=1, N 
CCI,JF)=C E eJ) *XA eI, J F)+ CFCJ)*XA e I , JF +l) 

7 0 CONT I NTJE 

C T REAT THE PSEUDO E I GENVECTOR AS ONE THAT CO RR ESPONDS TO AN E I GENVA LUE 
C OF MU LT I P LI CI TY ONE AND CHECK ALL POSS I BLE PE RMU TAT I ONS. 
C 

C 

CALL S I NG LE eA, E , C , XB ,FA , FB , H , P , ERR , MACHPN , MAX TN,JF , N, NM) 
IF e ERR. EQ . G) RETURN 
I F CERR . EQ. 4 ) L= 4 

8 0 CONTI NUE 
IF eL. EQ .4) ERR =4 

RE TURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

SUBROUTI NE SUBVA L ( A, B , C , XA, SC , SD , SE , H, P , ERR , MA CH? , MAXT , N, NM ) 

TH I S SUBROUT I NE GENERATES AND COMPARES THE SPECTRA OF THE ORDER N-I 
SUEGRAPHS OF THE H I D ORI G I NA L GRA?HS . AN i=>.TTEMPT I S MADE TO GENERATE 
A PERMUTATI ON BETWEEN TH~ TWO GRA PHS SASED ON TH I S DATA. 

ON I NPUT: 
A AND B CONTAI N THE ADJACENCY MATR I CES OF THE T ~O GRAPHS . 
MACHP I S THE PREC I S I ON ~ I TH I N WHI CH EQUA L I TY I S TO BE TE STED . 
MAXT I S THE MAX I MUM NUMBER OF PE RKU TAT I ONS THAT COU LD EE TRI ED I F 

THE OPT I MA L E I GENVECTOR CO RR ESPONDED TO AN E I GENVA LUE OF 
MU LT I P L I CT Y ON E . 

N I S Trt E ORDER OF THE GRAPHS . 
NM I S THE DI MENS I ON OF THE ARRA YS . 

ON RE TUR N: 
A AND B ARE UN CH ANG ED. 
C CON TA I NS SPEC TRA DUP LI CATI ON I NFORM AT I ON . THE I TH ROW OF C 

CONTAI NS THE I NDEC I ES OF ALL NODES I N A WHI CH WHEN UN I QU ELY 
MARKED PRODU CE SPECTRA I DENT I CA L TO THAT PRODUCED WHEN THE I TH 
NODE OF A WAS UN I QU ELY MARKED . 

XA CONTAI NS THE N SPECTRA GENERATED FROM THE SUBG RAP HS OF A. EACH 
ROW CONTAI NS ONE SPECT RA . 

SC OF I I S TH E NUM BER OF NODES I N A, I NCLUD I NG I, THAT PRODUCED 
SPECT RA I DE NT IC AL TO THA T OF I. 

P CONTAI NS A PERMU TAT I ON OF THE SET OF SP ECT RA OF SUSGnAPHS OF A 
I NTO THOS E OF B. I F ERR =N + I, THI S I S A PERMUTAT I ON OF A 
I NTO B . 

ERR I S NEGAT I VE I F AN ERROR OC CURS I N THE E I SPACK SOFTWARE . I F 
TH E SET S OF SPE CTRA ARE NOT I SOMO RPH I C, ERR CON TA I NS THE I NDEX 
OF THE NODE I N B l .. :HI CH I·.THEN UN I QUE LY N!:"jRKED , PRODU CED A SPECTRA 
THAT COU LD NOT BE MATCHE D WI TH A SP ECTRA F ROM TH E SUBGRAPHS OF 
A. ERR=O I F THE SET S OF SPECTRA WERE I SO MJR PH I C BUT TH REE OR 
MORE NO DE S OF A , WH I CH WH EN UN I QUE LY MA RKED , PRODU CED I DENT I CAL 
SP ECTRA. ER R=N+ I IF A PERMUTAT I ON RE LAT I NG A AND B WA S FOUN D. 
ERR =N+4 I F ALL POSS I SLE PERMUTAT I ONS FA ILED TO RE LATE A AND B. 
ERR =N+5 I F MAXT PE RMUT AT I ONS WERE GENERATED AND TESTED WI THOUT 
SU CCE SS . 

MACHP, MA XT , N, AND NM ARE UN CHANGED . 

WORKI NG VA RI ABLES : SD , SE , H 

I NTEGE R NN , N,I,J, K,L, ERR , M, MAX T ,LT , H( NM), P CNM ) 
REA L ACNM , NM), B( NM , NM ),CC NM , NM) , XA CNM , NM ), SCCNM ) , SD CNM ), SE CNM ) , FN , 

+ MAC HP 

C FN I S TH E FU NC T I ON FO R X-l I N THE I, X FO RM OF THE ADJ AC EN CY MA TRI X. 
C 

FN= N/ 2 
C 
C GENE RATE THE SPE CT RA OF ALL ORDER N- I SUBGRA?HS OF A. 
C 

C 

DO 5 0 I = I , N 
P CI) = O 

C CO p y A I NTO C. 
C 

DO 2 0 K= l, N 
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C 

DO 10 J= I ,N 
CeK,J)= AeX , J) 

10 CONTI N~E 

20 CONT I NUE 

C UN I QUE LY MA RK THE I TH NODE OF C=A AND ALL NODES CONNECTED TO I T . 
C 

DO 30 J=I,N 
ceJ,J)=ceJ,J)+ceI,J) 
CeI,J)=3*FN 
CeJ ,U= 3*FN 

30 CONTINUE 
CeI,I)=C(I,I)+FN 

C 
C COMPUTE THE SPECTRA C I S DESTROYED IN THIS COMPUTATION. 
C 

C 

CALL TRED I (NM,N,C,SC,SD,SE) 
CALL TQLI ( N, SC , SD , ERR ) 
ERR=-ERR 
IF (E RR . NE .O) RE TURN 
DO 40 J= I, N 

XA eI,J)= SC (J) 
40 CONTINUE 
50 CO NTINUE 

C SE QU ENTIALLY COMPUTE THE SPECTRA OF THE N- I ORDER SUBGRAPHS OF B, 
C CHECKING THAT EACH CAN BE MATCHED WIT H A SIMI LAR SPECTRA FROM THE 
C SUBGRAPHS OF A. 
C 

C 

DO I 10 I = I , N 
DO 70 X=I, N 

DO 60 J=I, N 
C(X,J)=BeK,J) 

60 CONTINUE 
70 CONTINUE 

DO 80 J= 1, N 
C(J,J)=C(J,J)+C(I,J) 
C(I,J)=3*FN 
C(J,U=31.'FN 

80 CONT INUE 
C(I,I)=ceI,I)+FN 
CALL TREDI (NM,N,C,SC,SD,SE) 
CALL TQ Ll eN,SC, SD ,E RR ) 
ERR =-ERR 
IF (E RR.NE.O) RETURN 
DO 100 J= I , N 

IF (P(J).GT.O) GO TO 100 
DO 90 J{= I, N 

IF (ABSeXA(J,K)-SC(K».GT.MACHP*el +ABseSCeK» » 
+ GO TO 1 0 0 

90 CONTINUE 

100 CONTINUE 
ERR=I 
RETURN 

liD CONTINUE 

P(J)=I 
GO TO 110 
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C 

LT=O 
L=O 

C CO MPUTE AND REC ORD THE DATA PERTAI NI NG TO SPECTRA DUP LI CAT I ON I N A. 
C 

C 

DO 140 I = I , N 
M=O 
DO I 3 0 J = I , N 

DO 12 0 K= I , N 
I F ( ABS ( XA(I, K)-XA (J, K)). GT. MACHP* (I+ASS ( XA (I, K)) )) 

+ GO TO 130 
120 CO NT I NUE 

M=M+I 
C(I, M)= P (J) 
IF ( M.E Q. 3 ) L=I 
IF (L.EQ.I.OR.I. GE.J) GO TO 130 

C RE CORD DUP LICATED PA I RS OF SPECTRA IvITH THE HOPE THAT THERE ARE NO 
C TRI P LIC ATES AND SUBROUT I NE TEST CAN BE USED TO F I ND A PERMUTAT I ON Or 
C A INTO B OR PROVE THAT ONE DOES NO T EX I ST . 
C 

C 

C 

130 CONTI NUE 
SC(l)= M 

14 0 CONTI NUE 

LT=LT +I 
H( 2* LT-I)=I 
H( 2*LT) =J 

IF (L. EQ. 1) RETURN 
CALL TEST ( A, B,H, P , ERR , MAXT, LT, N, NM ) 
ERR=ERR+N+I 

RE TURN 
END 
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SUBROUT I NE SUBVEC CA, B,C,XA,XB,DA,DB,EA,EB, FA , FB , SC , SD , SE , G, H, P , 
+ ERR, MA CHP,MAXT,N,NM) 

C 
C THIS SUBROUT I NE ATTEMPTS TO GENERATE A PERMUTAT I ON BETWEEN A AND B 
C TH nOUGH EXAM I NAT IO N OF E I GENVECTO RS CORRESPOND I NG TO E I GENVA LUES OF 
C MU LTI PLICITY ONE OF ORDER N-l SUBGRAPHS OF A AN D B. 
C 
C ON INPUT: 
C A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO GRAPHS . 
C C AND SC CONTA I N SPECT RA DUP LI CATION I NFO RMAT I ON . 
C P CONTAINS A PERMUTAT I ON OF THE SET OF ORGE R N-l SPECTPA OF A I NTO 
C THOSE OF B. 
C MA CH P IS THE PREC I S I ON WI THIN WHICH EQUA L I TY I S TO 3 E TESTED . 
C MAXT IS THE MAX I MUM NUMBER OF PE RMUTAT I ONS THAT COU LD BE TRI ED I F 
C THE OPT I MA L E IG ENVECTO R CO RRE SPONDED TO AN EIGENVALUE OF 
C MULTIP LICTY ONE. 
C N I S THE ORDER OF THE GRAPHS . 
C NM I S THE DI MENS IO N OF THE ARRAYS . 
C 
C ON RE TURN: 
C A AND B ARE UN CHANGED. 
C C AND SC ARE DESTROYED . 
C P CONTAINS A PERMUTATIO N OF THE COMPONENTS OF AN EIGENVECTO R OF 
C A SUBGRAPH OF A I NTO AN E I GENVEC TO R OF A SUBG RAPH OF B. I F 
C ERR =O THEN THE PE RMUTAT I ON RE LATES A AND B. 
C ERR = 0 IF A PERMUTATION OF A I NTO B WAS FOUND . ERR= l IF ALL 
C POSSIBLE PE RMU TATI ONS FAILED TO RE LATE A AND B. ERR =2 IF ALL 
C PERMUTAT IONS CHECKED FAI LED BUT NOT ALL POSS I BLE PE RMU TAT I ONS 
C WERE TESTED DUE TO THE RES TRICTIO NS I MPOSED BY ~AXT. ERR =3 I F 
C ALL E I GENVECTORS CO RRESPOND I NG TO E I GENVALUES OF MU LT I PLICITY 
C ONE HAD THREE OR MORE IDENTICAL CO MPONENTS . ERR I S NEGAT IVE I F 
C AN ERROR CO ND ITI ON WAS RA I SED I N THE E I SPACK SOFTWARE . 
C MACHP , MAXT , N, AND NM ARE UNCHANGED . 
C 
C WORK I NG VA RIABLES: XA , XB , DA , DB , EA , EB , FA , FB,SD , SE , G,H 
C 

C 

I NTEGER NM , N, MAXT,E RR ,I,J, K,L, M,LT ,LM, PN ,JA , GCNM) ,HC NM ), P CNM ),NN 
REAL ACNM , NM ), BCNM , NM ), CCNM , NM ), XA CNM , NM),XBCNM , NM ), DACNM) , DBCNM ) , 

+ EACNM ), EBCNM) , FACNM) , FBCNM ), SCCNM), SD CNM ) , SE CNM ), MACHP , MA CHPD 
+ , EIGVAL ,LB, UB , RD, FN 

C FN I S THE FUNCTION FO R X-I I N THE l, X FORM OF THE ADJACENCY MAT RIX. 
C 

c 

FN=N/2 
NN=N-l 
PN= l OOO 

C SEARCH FOR AN OPT I MA L EIGENVECTO R AMONG THO SE THAT CO RRESPOND TO AN 
C E I GENVALUE OF MU LTI PLICITY ONE . 
C 

DO 90 1= 1 , N 
C 
C UNI QUELY MA RK THE I TH NODE OF A AND THE NODES CONNECTED TO IT. 
C 

DO lO J= 1 , N 
DACJ ) =A CI,J) 
AC J,J)=ACJ,J)+DA(J) 
AC I,J)=3*FN 
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C 

A(J,U=3*FN 
10 CONT I NUE 

A(I,I)=ACI ,I)+FN 

C COMPUTE THE E I GENVA LUES AND E I GENVECTORS OF THI S SUBGRAPH . A I S NO T 
C DEST RO YED. 
C 

C 

CALL TRED 2 ( NM , N, A, DB, F B, XA ) 
CALL T QL2 ( NM , N, DS , FB , XA , ERR ) 
ERR=-ERR 
IF (ERR . NE .O) RETU RN 

C RESTORE A TO ITS OR I GI NAL VALUE. 
C 

C 

DO 20 J=l, N 
A( J ,J)=A(J,J)- DA (J) 
A(I,J)=DA(J) 
ACJ,I)= DA (J) 

20 CONT I NUE 

C SEARCH FO R THE OPT I MA L E IGE NVEC TO R OF THOS E J UST COMPUTED . 
C 

C 

DO 80 J= 1 , N 
LT= SC( l) 
MACH P D=MACH P*( 1+A8S ( DS (J))) 

C CH ECK THAT THE ASS OCI ATED E I GENVA LUE HAS MULT I PL I CITY ONE . 
C 

30 
C 

I F (J. EQ.l ) GO TO 30 
IF (A BS ( DB (J) - DE(J -l) ) .LT .MACHPD) GO TO 8 0 

IF (J.EQ. N) GO TO 40 
IF CA BS CDB CJ)- DBCJ+l)).LT.MACH PD) GO TO 80 

C FI ND AND RECORD THE NUM BER OF DUP LI CATED PA l RS OF COMPONENT S . I F A 
C TRI PL ICATE IS FOUND, DI SCONT INUE CONSIDE RAT I ON OF THAT E IG ENVECTOR . 
C 

C 

40 

50 
60 

DO 6 a L= 1, NN 
M= L+l 
LM=O 
DO 50 K=M , N 

IF CABSCXA(L ,J)-XA CK,J)).GT . MACHP ) GO TO 50 
IF CLM.E Q.l) GO TO 80 

CONT I NUE 
CONT I NUE 

LM= l 
LT=LT+l 

IF ( LT . GE . PN) GO TO 80 

C UPDATE CU RRENT OPT I MAL EIGENVE CTOR I NFO RMAT IO N. 
C 

70 
C 

PN=LT 
J A= I 
EIGVAL=D BCJ) 
DO 7 0 K= 1, N 

SDCK )= XA CK,J) 
CONT I NUE 

C IF THE EIGEN VECTOR I S SU IT ABLE - NOT NECESSAR ILY OPT I MA L- TE RM I NATE 
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C THE SEAR Ci-{. 
C 

IF eLT.LT.I0) GO TO 100 
80 CONTINUE 
90 CONTINUE 

C 
C IF NO SU I TABLE EIG ENVECTOR COU LD BE FOUND, TE RM I NATE THIS PO RT I ON 
C OF THE ALGOR I THM WI TH APP ROPRIATE MESSAGE . 
C 

C 

IF e PN . LT. 1 000 ) GO TO 1 0 0 
ERR=3 
RETURN 

1 00 MA CH PD=MACHP* el+ABS (EIGVAL)) 
LB=EIGVAL- MACHPD 
UB=E IGVAL+MACHPD 

C STORE THE SE LECTED E I GENVECTOR I N THE F I RS T COLUMN OF XA . 
C 

DO 1 1 0 I == 1 , N 
XA e I, 1) = S 0 e I ) 

11 0 CONTINUE 
C 
C SE LECT IVELY STO RE THE PERTINENT I NFO RMATION HELD I N C AND SC I N ORDER 
C TO FREE STORAGE FO R FUTU RE USE . 
C 

M=SC e JA) 
DO 120 1=1, M 

Ge 1)=ceJA, 1) 
120 CONTINUE 

C 
C FIND AND EXAMINE THE CORRESPOND I NG E I GENVE CTOR I N THE SUBGRAPHS OF B 
C Im I CH HAVE SPECTRA MATCH I NG THE SP ECT RA GENE RATED FROM THE SUBG RAPH 
C OF A THAT PRODUCED THE OPTIMAL EIGENVECTO R. 
C 

DO 170 L= I , M 
C 
C CO p y B I NTO C. 
C 

130 
140 

C 

DO 140 1=1, N 
DO 13 0 J=I, N 

ce I,J)= B(I , J) 
CO NT I NUE 

CONTINUE 

C 
C 

FIND AND UN I QUE LY MARK THE APPROP RI ATE NODE I N B. 

C 

I=GeL) 
DO 150 J=l,N 

ceJ,J)=ceJ,J)+ceI,J) 
CeI,J)=3*FN 
CeJ,[)= 3*FN 

150 CONTINUE 
C(I,I)=ceI,I)+FN 

C FIND THE DESIRED EIGENVECTO R 
C 

CIS DESTROYED. 

GALL TRED I (NM , N, C, DA , DB, SC ) 
CALL BI SECT eN,O, DA , DB , SC , LB, UB ,I, PN , RD,LM, ERR , SD , SE ) 
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C 

ERR=- 2l'ERR-PN+ 1 
IF (ERR . NE.O) RETU RN 
CA LL TINVIT (NM,N, DA , D5 ,SC, PN , RD ,LM,F B, ERR , SO , SE , EA , EE,FA ) 
ERR =- EHR 
IF ( ERR . NE.O) RETURN 
CALL TRSAK 1 ( NM , N, C,DB, PN , FS) 

C STORE THE EIGENVECTO R IN THE FIRST CO LUMN OF XS . 
C 

160 
C 

DO 160 J=l,N 
XB(J , l)=FB (J) 

CONT I NUE 

C 
C 

SINCE BO TH EIGENVECTO RS ARE STORED IN CO LUMN ONE OF MATRIX ARRAYS , 
SUBROUTINE S I NG LE CAN BE USED TO GENERATE AND TE ST UP TO ~AXT 

C PERMU TATIONS . 
C 

CALL S INGLE (A, B, XA , XS , DA , DB , H , P , ERR , MA CHP , MAXT, 1, N, NM) 
IF ( ERR .EQ.O) RETURN 

C 

IF ( ERR . EQ . 4 ) NN =N 
170 CONTIN~lE 

~ER=l 

IF (N N. EQ.N ) ERR=2 

RETURN 
END 
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4. Computational Experience 

The UNIVAC n08 computer at the National Bureau of Standards was used to test the computer 
program on well over 200 pairs of graphs specifically selected for use because of their difficulty. The 
results have been encouraging. A Brookhaven National Laboratories group has compiled [2] a list of 
149 pairs of nonisomorphic graphs of order varying from 7 to 10 that have 0,1 adjacency matrices with 
identical spectra. These cospectral graphs arise in connection with the energy field of a Heisenberg 
model ferromagnet. The computer program previously listed distinguished each of the 149 pairs in a 
total time of 3.9 cpu seconds or, equivalently, each pair of graphs was determined to be nonisomorphic 
in approximately 0.026 cpu seconds. Of the graphs, 109 failed the valence test, 28 the node duplication 
test, and the remaining 12 pairs failed to have l,x modified adjacency matrices with identical spectra. 

With some modification the algorithm can be programmed to sort a large set of graphs into subsets 
characterized by node valences, node duplication, l ,x modified adjacency matrix spectra, and in more 
difficult cases, submatrix spectra. Once this is accomplished, the groups in each subset can be pairwise 
checked for isomorphism using the program listed in this paper. This procedure was employed on a 
collection of 35 graphs ranging in order from 5 to 9. Many of the graphs selected were known to be 
isomorphic and all had large automorphism groups, thus making it as difficult as possible for the 
algorithm to find permutations or to determine that none exist. By means of a simplified form of the 
sorting procedure, the 35 graphs were divided into 19 subsets in approximately 5 cpu seconds. In this 
particular case, the spectra test was a sufficient condition for graph isomorphism. To be sure, however, 
permutations were generated between each pair of graphs in each subset. A total of 16 permutations 
were generated, 13 by means of SUBROUTINE SINGLE and 3 requiring SUBROUTINE DOUBLE, 
in a total time of 1.6 cpu seconds. 

None of the graphs yet tested, however, required the use of SUBROUTINE SUBVAL or SUB
ROUTINE SUBVEC. In response to a July, 1975 query about the existence of more challenging graphs, 
D. Corneil provided 16 pairwise nonisomorphic, order 25 graphs, any two of which required approxi
mately 60 seconds on an IBM 370 (no model number was mentioned) to be distinguished by then 
current methods. The graphs were 3-strongly regular and stochastic with node valence 12. None of the 
graphs has duplicate nodes and each had identical l,x adjacency matrix spectra. The submatrix spectra 
test, however, successfully sorted the group into 8 subsets, each containing two graphs. It is interesting 
to note that the two graphs contained in each subset were duals of each other. This initial sorting was 
accomplished in just 86 cpu seconds. When the algorithm was run on the 8 pairs of graphs, 5 were 
separated by means of the submatrix eigenvector test. The test was inconclusive on the remaining 3 
pairs of graphs. The total run time was 150 cpu seconds. Of this total, 86 cpu seconds was spent dis
tinguishing the 5 pairs and 64 cpu seconds on the unsuccessful effort to resolve the final 3 pairs. In 
addition, the algorithm was applied to 5 of the graphs and constructed permutations. The program pro
duced a permutation relating each of the 5 pairs of graphs by means of SUBROUTINE SUBVEC in 
81 cpu seconds. 

Approximately 90 percent of the time required by the program is used in the calculation of eigen
values and eigenvectors. Thus selection of optimal eigenvalue and eigenvector computing software is 
critical when time restrictions are sizeable. Since the EISP ACK software referenced in the listing of the 
algorithm proved to be satisfactory for our needs, no significant effort was made to find more efficient 
software. 

Tests on large numbers of random graphs were not conducted as it was felt that such tests would 
yield little meaningful data. Experience gained from working with the eigenvectors and eigenvalues of 
many graphs showed that only a relatively minute number of pairs of graphs exist for which the 
question of isomorphism is at all challenging for the algorithm and no such graphs are likely to occur 
in even a very large sample of randomly generated graphs. For the average pair of isomorphic graphs 
of order n, it is estimated that a permutation will be generated in well under 1O-4n3 cpu seconds UNI
V AC n08 time. Even faster times are achievable for random nonisomorphic pairs of graphs or through 
modifications in programming which first sort graphs by node valences, node duplicate structure l,x 
modified adjacency matrix spectra, and in special cases (such as Corneil's collection of order 25 graphs) 
submatrix spectra, and then use the algorithm described in this paper to further reduce the subsets into 
classes for which the graphs are pairwise isomorphic. 

Thus, with efficient application of the algorithm it is possible to divide a very large number of 
graphs into isomorphism equivalence classes in a reasonable amount of time. It is further possible to 
test pairs of very large graphs for isomorphism and if one exists, to generate permutations between two 
very large graphs. 
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