JOURNAL OF RESEARCH of the National Bureau of Standards—A. Mathematical Sciences
Vol. 80B, No. 4, October—December 1976

An Efficient Linear Algebraic Algorithm
for the Determination of Isomorphism in Pairs
of Undirected Graphs

Charles R. Johnson* and Frank Thomson Leighton

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234
(September 29, 1976)

An algorithm, complete with a specific FORTRAN implementation, is presented for the problem
of determining whether or not two undirected graphs are isomorphic. The algorithm, centered upon
the eigenvalues and eigenvectors of a modified adjacency matrix and techniques for decreasing the
size of the automorphism group, is quite different from others (most of which are combinatorially
based) and tends to work relatively very quickly on difficult test cases as well as on typical
examples, Complexity estimates are given for many eventualities.

Key words: Graph isomorphism; labels; modified adjacency matrix; spectrum.

1. Introduction

Two undirected graphs are said to be isomorphic if there exists a one-to-one correspondence
between their nodes which preserves adjacency. A computationally difficult issue in the theory of graphs
is the determination of isomorphism. For example the graphs in figure la are pairwise isomorphic while
those in 1b are not.

Figure 1a

Figure 1b

AMS Subject Classification: 68A10 05C99, 65F99.
* Present address: Institute for Physical Science and Technology, University of Maryland, College Park, Md. 20742.

447

The ability to divide a set of graphs into maximal subsets whose elements are pairwise isomorphic
has several immediate applications. If nodes are identified with atoms of a particular compound and if
edges are identified with the existence of a chemical bond, then, for instance, such an ability is of use
to the chemist in distinguishing among many theoretically produced compounds. Other applications
include physics (e.g. “hearing” the shape of a drum [1])?, electronic circuit theory, linguistics etc.

Much effort has been devoted to the development of an algorithm which will determine whether or
not any two graphs are isomorphic in an amount of time that is bounded by a finite polynomial in the
number of nodes of the graphs considered. At the moment, the authors are unaware of the existence of
any such algorithm. Many approximate or heuristic procedures have been developed however. Many
such algorithms check conditions combinatorially necessary for isomorphism, some also attempt to
construct a permutation that would exhibit isomorphism. Corneil presents a review of many such tech-
niques. All known exact methods grow exponentially in required time. Unfortunately, as pointed out in
[4] such procedures could take very long to determine whether or not two graphs of order 15 are
isomorphic. Hence, such methods are clearly inadequate for large order graphs.

If a computer is to be used to determine whether or not two graphs are isomorphic, the graphs must
be represented in a form suitable for machine processing. The adjacency matrix of a graph is such a
standard form. First, the nodes of the graph are arbitrarily associated with the integers 1,2,3 ... n where
n is the order of the graph. The (i,j) component of the adjacency matrix is then defined to be 1 if there
is an edge connecting the ith node and the jth node and is O otherwise. The (i,f) entry commonly con-
tains the label given the node. In the case of an unlabeled graph, (i,7) entries are typically zero. While
different orderings of the nodes produce different adjacency matrices, two adjacency matrices are
isomorphic if and only if, independent of labeling, they correspond to the same graph. Figure 2
illustrates this.

01100 3 00011
10110 00111
2 3 111001 2 5 | o1001
01001 11000
& ; > \oor1o0/ ,* . " \11100
: A 2 A2
Figure 2a Figure 2b
00100
01000
Ay =PTAP Where P= | 00001
00010
10000
Figure 2c

The algorithm about to be described is divided roughly into three sections each satisfying a specific
purpose. The first section consists of several basic tests for nonisomorphism. These tests are all 0(n?®) or
better and are surprisingly effective in distinguishing nonisomorphic graphs. Since nearly all pairs of
graphs that pass through the initial tests undistinguished are likely to be isomorphic, the second part of
the algorithm involves the attempted construction of a permutation between the adjacency matrices of
the graphs. In the great majority of cases, this is easily and quickly accomplished. The second section
simultaneously serves as a more complicated test for nonisomorphism should it be found impossible to
generate a satisfactory permutation.

1 Figures in brackets indicate the literature references at the end of this paper.

443

The final section is specifically designed to deal with certain classes of matrices that do not easily
yield to the tests or efforts to construct a permutation found in the previous two components. In general
the tests in this section are more time consuming, generally 0(n*), and are quite detailed. Methods of
finding a satisfactory permutation are included as well as tests for nonisomorphism.

A complete FORTRAN listing of the algorithm, including explanatory comments, follows its
description in section 3 and the test results provided in section 4 demonstrate the efficiency of the
algorithm.

2. The Algorithm

Initially, the algorithm employs four basic tests, each of which checks for the failure of a condition
necessary for isomorphism. The first test determines whether or not the node labels of the two graphs
are identical. If they are not, then the corresponding graphs are not isomorphic. In the case of unlabeled
graphs, the test yields no information and is unnecessary. This test is performed by SUBROUTINE
LABEL and takes 0(n?*) amount of time when n is the order of the graphs.

A more useful test involves the comparison of the node valences of the two graphs. The valence of
a node is the number of edges connected to it. The valence of each node, once computed, is combined
with the node’s label to form a new label for that node. Two nodes of a graph will have the same new
label if and only if they have the same valence as well as identical initial labels. Thus two graphs with
different sets of new labels are themselves nonisomorphic. For example, the graphs in figure 3 share the
same set of node valences and of initial labels yet when these two qualities are considered mutually, the
graphs are found to be nonisomorphic.

o(C

Figure 3

The set of initial node labels is (A,A,B,C,C,C,C) for each graph. Similarly the set of node valences
is (1,1,1,2,2,3,4) in each case. When combined to produce sets of new labels, however, the following
two distinct sets are formed: (A3,A4.B2,C1,C1,C1,C2) and (A2,A3,B4,C1,C1,C1,C2). Since these two
sets are clearly not identical, the two graphs are not isomorphic. This test takes 0(n?) time and is per-
formed in SUBROUTINE VALENC.

The third basic test involves the search for and labeling of duplicate nodes. A given node is called
an ordinary duplicate of degree £ if there exist £ — 1 and no more than k — 1 other identically labeled
nodes in the graph which are connected by edges to the same nodes as is the given node. A given node
is called a connected duplicate of degree k if the & — 1 nodes just mentioned are all mutually connected.
To further illustrate consider the graph in figure 4. The numbers are only for use in referencing the
nodes while the letters correspond to actual labels.

Nodes 1 and 3 are connected duplicates of degree 2. Nodes 2 and 4 are ordinary duplicates of
degree 2. Nodes 6 and 7 are not duplicates since they have different labels. Finally nodes 10, 11, and 12
are ordinary duplicates of degree 3. All other nodes are trivially duplicates of degree 1.

Node duplicate degrees are easily found from the 0,1 adjacency matrix of a graph. Groups of
ordinary duplicate nodes correspond to groups of identical rows (with identical labels) of the adjacency
matrix with 0’s entered on the diagonal. If 1’s are entered on the diagonal, then the connected dupli-
cates can be similarly found. It is easily seen that two graphs are not isomorphic if the ordinary and
connected duplicate degrees of their nodes differ in any manner.

449

Figure 4

As before, the node labels of each graph are updated to reflect the newly obtained information and
then compared. This is done in SUBROUTINE DUPLIC and takes 0(n?) time.

While the identification of duplicate nodes serves as a worthwhile test for nonisomorphism, a
potentially much more useful purpose is also served. A graph with a large number of nodes with
duplicate degrees greater than one yields an adjacency matrix, 4, and a large number of nontrivial
automorphisms, that is permutations P such that PTAP — A. For reasons explained further on, graphs
whose adjacency matrices have this property are especially difficult to analyze and any procedure which
efficiently reduces the number of such permutations through appropriate labeling of the nodes of the
graph, will greatly reduce the complexity of following computations. Labeling of duplicate nodes was
found to be a particularly fast and simple way to achieve this end for many graphs. It should be noted
that this labeling alone does not necessarily reduce the automorphism group to the identity.

A wellknown necessary condition for isomorphism involves the comparison of spectra (set of
eigenvalues) of the 0,1 adjacency matrices of two graphs. Much effort has been devoted to nonisomor-
phic pairs for which the 0,1 adjacency matrices have the same specirum. Such pairs of graphs are called
cospectral [5]. Many cospectral pairs of graphs are distinguishable, however, through comparison of
the spectra generated from adjacency matrices with numbers different from 0,1 used to represent non-
edges and edges [6]. It appears that the use of 0 and 1 in the computation of the spectra of graphs
ignores much of their inherent structure. A greater amount of information about the graph can be
discovered from the examination of the spectra of adjacency matrices with 1’s representing no edges,
and a variable x representing an edge. Due to the nature of the characteristic polynomial, no generality
is lost by replacing x with either a transcendental number or certain large functions of the number of
nodes in the graph. Unfortunately neither option is feasible for use with the computer since a trans-
cendental number is truncated to a rational and a large value of x yields errors in computation small in
comparison to x but large in comparison to 1. A compromise solution was developed that allows x to be
a function that increases linearly with the order of the graph yet is essentially as effective in distin-
guishing nonisomorphic graphs as is the more general procedure.

In order to utilize the information stored in the updated labels of the nodes, the diagonal elements
of the adjacency matrices are assigned the value of the appropriate label. The eigenvalues of each
modified adjacency matrix are then computed and compared. Should the resulting spectra not be
identical, the graphs are not isomorphic. The preparation of the adjacency matrices for eigenvalue
computation is effected in SUBROUTINE PREPAR and takes 0(n?) time. The computation of the
eigenvalues as well as the eigenvectors (for future use) of each matrix is carried out in SUBROUTINE
SPECTR and takes O0(n?) time.

Since two graphs that are not distinguished by the preceding sequence of tests may well be isomor-
phic, it is reasonable at this point to attempt to generate a permutation that relates the two graphs. The
number of such possible permutations can be greatly limited with efficient use of the information stored
in the eigenvectors of the two adjacency matrices. If 4 and B are two symmetric matrices with identical
spectra then there exist orthogonal matrices U and V' and a diagonal matrix D such that

UZAU=ID) and VEBY A=)

450

Further assuming that 4 and B are permutationally equivalent we have B = PTAP where P is a
permutation matrix. Then:

VA=V AR
DE=SVEE R
UTPVD = DUTPV
and thus D commutes with £ = U”PV.

If = (ei;) and D —= (di}') with dij =0 for: $£ j, then Dy = (dii,eij) and 150 = (djjei,-). Thus if
dﬁ 7& djj, then d,-jeij = d,’,,;eij —> €jj — 0.

E,
E, 0
HhusYi— .

.
EIN

where E; is an orthogonal matrix of degree equal to the multiplicity of the ith distinct eigenvalue of A.

The relation UE — PV serves to greatly restrict the number of permutations, P. Consider first the
restrictions imposed by the existence of eigenvalues of multiplicity one. In this case, the corresponding
matrix F; is trivially (1) or (—1). Thus for each j such that d;; is unique, we know that the set of
permutations of

Uyj V1j
UQj Voj
into ’ combined with
Unj Unj
—Uyj V1j
—Uzj V2j
those of ’ into ’ include
—Unj Unj
all permutations of A4 into B.
Uyj V1j
Usj Vaj
) and ’ are simply the
Unpj 1),,]'

eigenvectors of 4 and B corresponding to the eigenvalue d;; and are easily computed.

Since the components of the eigenvectors of most modified adjacency matrices are unique, .ne
number of possible permutations of 4 into B is small. In these cases, all possible permutations are
quickly generated and checked until one is found that relates 4 and B or until the supply is exhausted.
In the latter case, the graphs are not isomorphic.

As was mentioned earlier graphs that yield an adjacency matrix, 4, and several permutations, P,
such that PPAP = A are very difficult to work with. The reason for this phenomenon now becomes
apparent. If the number of permutations of 4 into itself is large, then there will be many pairs of k£ and
I such that u;; = w;j for every j such that dj; is unique. This, in turn, greatly increases the number of
permutations

451

Ugj Vaj
of ’ into) and thus
u,,j Unj

the amount of time which may be required to find a permutation of 4 into B and certainly the amount
of time required to exhaust all possibilities is greatly increased. As an example, certain stochastic
adjacency matrices have only one eigenvalue of multiplicity one. In many of these cases, the corresponding
eigenvector components are all identical. In this, as well as in other less severe cases, the above described
method of finding a permutation of 4 into B is not practical.

For such graphs a more sophlstlcated as well as time consuming, approach is required. Again
referring to the relation UE = PV, it is useful to examine the case when an eigenvalue has multiplicity

two. In other words, assume that dJ] = dyy, for k =j, j + 1 but d;; 5= dyx, for all other k. Then we know
that

N\ r
(Uyj Uija V1; V141 1
Uzj Usgji Vi V21
N : a —b : .
. . =P . .
b a
\ Unj Unjy1 J \ Unj Unjs1 J
or that
r 3 r
Uyj Uijsa V1; Vij1 b
Ugj U1 V2j U211
. . a b 5 -
. . =P . .
b —a
\ Unj Unj:1 J \ Unj Unj+1 J

In each case, there are n possible values for a. Selecting i such that either u;; % 0 or uj;1 = 0 and

assuming that there is a permutation of A into B which takes the ith node of 4 into the kth node of B,
we have

uija + uijnb = vy
—uiib 4 Bij18 = Vi
or
wija + Wb = vy

Uijb — Uij18 = Vi1
(uii uij+1> (a) — < Vkj)
Uijs1 — Ui b Vkj+1
(uij uii+1) (b > - < vkj))
—Uijr1 Wi b Vkj+1

Uij Vi + Uijs1 Vkjn
2 2
wij” + Uijn

which yields

Solving for @ and b yields:

—Uij Vpju1 + Uijs1 Vgj
b = 2 B
wii® + Uija
452

or

Uij Vij — Uij+1 Vij+1
2 2
Uij -+ Uiji1
e Uij Vijr1 ~F Wijr1 Vxj .
- 2 2
wij” + wijra

Note that a® + b? = 1 so that |a| < 1. Thus the permutations P are limited to those that satisfy

Uyj Uijs1 Vij

Usj Uzj+1 Vaj
©) Sp) = /#)

Unpj Unpjr1 Unj

for any of the 2n pairs of (a,b), two pairs corresponding to each value of k. For each (a.,b), the prob-
lem then reduces to the previously examined case of eigenvalues of multiplicity one. The only difference
is that the process must be repeated 2n times before all possible permutations have been checked.

SUBROUTINE OPTEIG selects an optimal eigenvector, one that has as few multiple components
as possible, and takes 0(n?®) time. If the selected eigenvector corresponds to an eigenvalue of multi-
plicity one, SUBROUTINE SINGLE is called upon. This subroutine is 0(n?) but the leading coefficient
can be very large if there are large numbers of multiple eigenvector components. SUBROUTINE
DOUBLE calls SUBROUTINE SINGLE at most 2n times and thus is 0(n*) with the possibility of a very
large leading coefficient.

Due to the complex nature of the relation UE = PV for blocks of E of dimension greater than two,
little progress was made in obtaining meaningful data from the eigenvectors corresponding to eigen-
values of multiplicity greater than two.

Should neither the eigenvectors corresponding to eigenvalues of multiplicity one nor those of multi-
plicity two sufficiently restrict the number of permutations possible, still other algebraic approaches can
be employed.

One such approach is the examination of the spectra of the n subgraphs of order n — 1 of the
original graph. An obvious necessary condition for isomorphism is that the two graphs generate the
same sets of spectra. Further there is the possibility that in a given set of spectra, many of them will be
unique, thus creating the possibility of generating and testing all possible permutations in a small
amount of time. Distinguishing node duplicates again helps to reduce the maximum number of permu-
tations possible. Experience with a limited number of large stochastic matrices has shown, however, that
this procedure is far more effective as a nonisomorphism test than as one that attempts to generate and
test all possible permutations. This procedure is contained in SUBROUTINE SUBVAL and takes 0(n*)
time.

Carrying the eigenvector analysis further all possible permutations can be derived through exam-
ination of eigenvectors of subgraphs of the original graph. This method has proved to be one of the
most successful in distinguishing very difficult large, stochastic graphs. For simplicity and speed, all
submatrices of order n — 1 are searched for the optimum or a sufficiently satisfactory eigenvector
corresponding to an eigenvalue of multiplicity one. This eigenvector is then compared with the cor-
responding eigenvector generated from each of the subgraphs of the second graph that has a spectrum
matching the spectrum of the subgraph which generated the optimal eigenvector. This procedure is
executed in SUBROUTINE SUBVEC. The order is 0(n*) as SUBROUTINE SINGLE can be called a
maximum of n times. This approach tends to be more time consuming than the others mentioned since
it could require the generation of n eigenvector matrices.

In a similar fashion, one could examine the eigenvectors of subgraphs corresponding to eigenvalues
of multiplicity two. Another possible approach would be to examine the n® spectra generated by
sequentially generating all possible subgraphs of order n — 2. These and other possible procedures are
0(n®) or worse and very time consuming. It does not appear that the trade off of speed for effectiveness
dictates inclusion of such unwieldly approaches in the algorithm.

3. Computer Implementation

The algorithm was organized into fourteen subroutines and coded in FORTRAN V for use with
the UNIVAC 1108 computer. SUBROUTINE GISOM serves as the coordinating subroutine and is the

453

only subroutine that need be referenced by a main program. Each subroutine listing is fully commented,
indicating values of variables on input, output and during the life of the subroutine.

All eigenvalues and eigenvectors were calculated using the EISPACK software described in [9].
Reference to [9] should be made for a detailed explanation of the function, running time, error mes-
sages and accuracy of the EISPACK subroutines. Throughout the program two numbers, 4 and B are
considered identical if ||4] — |B|| < MACHP * (1 + |A4|). The precision constant, MACHP, is deter-
mined and set by the user in the call to GISOM. For use with the EISPACK software on the UNIVAC
1108, a value of MACHP = 0.0003 was found to be satisfactory.

Another user option in the call to GISOM command sets a limit on the number of permutations
that may be tested for a given pair of graphs. Generally, this value, MAXT, can be set to a very large
number, say 5000, since very little time is expended on each test. MAXT is of greatest use when it is
desired to sequentially test several pairs of very large matrices without spending too much time on
any one pair.

Time rather than storage conservation was emphasized. The subroutines utilize five n X n arrays
and several single dimension 0(n) arrays, all of which are passed as part of the subroutine call state-
ments. There are no common blocks and no input-output statements in the subroutine as all pertinent
data is returned through the CALL GISOM command in the main program. The STATUS and ERR
variables serve as the key to what happened when the two graphs were tested for isomorphism. The
other variables contain a variety of data whose meaning depends on the value of ERR and STATUS.
This data can often be quite useful in determining exactly why two graphs are not isomorphic. The
interpretation of ERR and STATUS is given with the commentary of each subroutine. A list of the
program follows.

454

eNeoNoNoNoNoNoNoNoNoRoNoRoNoNoNoNoNoNoNoNoNsNoRoRoNoRoNoNoRsNoRoNoNoNoNoNoNoNoNoNe}

(eNeNe!

SUBROUTINE GISOM (A,B,C,XA,XB,DA,DB,EA,EB,FA,FB,SC,SD,SE,CE,CF,G,H
W yPySTATUS,ERR,MACHP , MAXT y N, NM,NT)

THIS SUBROUTINE IS THE CONTROL SUBRDUTINE FOR THE ALGORITHM.

ON INPUT:

A AND B CONTAIN THE 0,! FORM OF THE ADJACENCY MATRICES OF THE TwO
GRAPHS TO BE COMFARED. THE DIAGONAL ELEMENTS CONTAIN LAEBELS
WHICH MAY RANGE IN VALUE FROM 0 TO 99.

MACHP 15 THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED. A
VALUE OF .0003 IS SUGGESTED WHEN THE PROGEAM IS RUN ON A
MACHINE COMPARAELE T3 THE UNIVAC 1108 AND WITH SOFTWARE
EQUIVALENT TO EISPACK IN ACCUERACY.

MAXT 1S APPROXIMATELY THE MAXIMUM NUMEER OF PERMUTATIONS THAT MAY
BE TESTED. EXCEPT IN CASES OF SEVERE TIME RESTRICTIONS, A
VALUE OF 5000 IS SUGGESTED.

N IS THE ORDER OF THE GRAPHS TO BE COMPARED.

NM IS THE DIMENSION OF MOST OF THE ARRAYS.

NT = Z2¥NM AND 1S THE DIMENSION OF CE AND CF.

ON RETURN:

A AND B ARE POS5SSIBLY DESTROYED.

P CONTAINS A PERMUTATION SUCH THAT A(I,J)=B(P(I),P(J)) FOR ALL I,J
SHOULD SUCH A PERMUTATION BE FOUND TO EXIST.

STATUS RANGES IN VALUE FROM 1| TO 10 AND RECORDS THE POINT IN GISOM
WHERE THE ALGORITHM TERMINATED. FOR EXAMPLE, A VALUE OF STATUS
=3 MEANS THAT THE ALGORITHM TERMINATED FOLLOWING THE NODE
VALENCE CHECKX WHICH IMPLIES THAT THE NODE VALENCES OJF THE TWwO
GRAPHS DIFFERED AND THUS THAT THE TWO GRAPHS ARE NOT
ISOMORPHIC.

ERR CONTAINS INFORMATION PERTAINING TO THE REASON FOR THE
TERMINATION OF THE ALGORITHM. AN EXPLANATION OF ITS MEANING
CAN BE FOUND WITH THE COMMENTS IN THE SUBROUTINE THAT WAS LAST
CALLED BY GISOM. FOR EXAMPLE, A STATUS VALUE OQF 7 COMEBINED
WITH AN ERR OF 0 IMPLIES THAT A PERMUTATION WAS FOUND THAT
RELATES A AND B THROUGH USE OF AN EIGENVECTOR CORRESPONDING TO
AN EIGENVALUE OF MULTIPLICITY ONE.

MACHP, MAXT, N, NM, AND NT ARE UNCHANGED.

ALL OTHER VARIABLES ARE CLASSIFIED AS WORKING VARIABLES. SUCH
VARIAELES MAY CONTAIN RELEZVANT INFORMATION DEPENDING ON THE VALUES OF
STATUS AND ERR.

INTEGER N,NM,NT,ERR,MAXT,G(NM) ,H(NM),P(NM),STATUS,JA
REAL A(NM,NM),B(NM,NM),C(NM,NM),XA(NM,NM),XB(NM,NM) ,DA(NM), DB(NM) ,

+ EA(NM) ,EB(NM) ,FA(NM) ,FB(NM),SC(NM),SD(NM) , SEC(NM) , CE(NT) , MACHP
+ y CF (NT)

ERR=

STATUS=1

IF (N.GT.NM) RETUEN
COMPARE THE NODE LABELS OF THE TWO GRAPHS.
STATUS=2
CALL LABEL (A,E,DA,DB,SC,ERR,N,NM)
IF (ERR.GT.0) RETURN

COMPARE THE NODE VALENCES AND UPDATE THE CORRESPONDING NODE LAEELS.

455

(eNeoNe!]

(@) (&} (s2]

) (1 (@) (@) IR EGIEG) (oMo N (1 (@1 (&)

() (@} (@) ()

STATUS=3
CALL VALENC (A,B,DA,DB,SC,ERE,N,NM)
IF (ERR.GT.0) RETURN

FIND, LABEL, AND COMPARE ORDINARY AND CONNECTED DUPLICATE NODES.

10

STATUS=STATUS+1
CALL DUPLIC (A,B,DA,DB,SC,SD,ERR,STATUS,N,NM)
IF (ERR.GT.0> RETURN

IF (STATUS.EQ.4> GO TO 10

CONVERT THE 0,1 FORM OF THE ADJACENCY MATRIX TO THE 1,X FORM.

CALL PREPAR (A,B,DA,DE,N,NM)

COMPUTE AND COMPARE THE SPECTRA OF THE TWO ADJACENCY MATRICES.

STATUS=6
CALL SPECTR (A,B,XA,XB,EA,EE,SC,G,ERR,MACHP,N,NM)
IF (ERR.NE.0) RETURN

LOCATE A SUITABLE OR OPTIMAL EIGENVECTOR.

ATT
EIG

=21]

ATT
EIG

30

-+
49

CALL OPTEIG (XE,DB,G,ERR,MACHP,JA,N,NM)
GO TO (20,30,50>, EERR

EMPT TO FIND A PERMUTATION THAT RELATES A AND B THROUGH USE OF AN
ENVECTOR THAT CORRESPONDS TO AN EIGENVALUE OF MULTIPLICITY ONE.

STATUS=7
CALL SINGLE (A,E,XA,XB,FA,FE,H,P,ERR,MACHP,MAXT ,JA,N,NM)
GO TO 430

EMPT TO FIND A PERMUTATION THAT RELATES A AND B THROUGH USE OF AN
ENVECTOR THAT CORRESPONDS TO AN EIGENVALUE OF MULTIPLICITY TWO.

STATUS=8

CALL DOUBLE (A,B,C,XA,XB,CE,CF,FA,FB,H,P,ERK,MAXT,MACHP,JA,N,NM,NT
)

IF (ERR.NE.4) RETURN

COMPUTE AND COMPARE THE SPECTRA OF THE N ORDERX N-1 SUBGRAPHS OF THE

ORI

50

ATT
EIG
A S

+

GINAL GRAPHS.

STATUS=9
CALL SUBVAL (A,B,C,XA,SC,SD,SE,H,P,ERR,MACHP,MAXT,N,NM)
IF (ERR.NE.0.AND.ERR.NE«.5+N) RETURN

EMPT TO FIND A PERMUTATION THAT RELATES A AND B THROUGH USE OF AN
ENVECTOR THAT CORRESPONDS TO AN EIGENVALUE JF MULTIPLICITY ONE IN
UBGRAPH OF ORDER N=-1l.

STATUS=10
CALL SuBVEC (A,B,C,Xa,XB,DA,DB,EA,EB,FA,FB,SC,SD,SE,G,H,P,ERR,
MACHP ,MAXT ,N,NM)

RETURN
END

456

o eoleoNoNoNoNoNoNeoRoNoNoNeoNe NG NGNS N @

CRECR)

(@} ()l {1t (g (9!

Q

SUBROUTINE LABEL (A,B,DA,DE,SC,ERR,N,NM)

THIS SUBROUTINE RECORDS AND COMPARES THE INITIAL LABELS OF THE NODES
OF THE TWO GRAPHS TO BE COMPARED.

ON INPUT:
A AND B CONTAIN THE TWO ADJACENCY MATRICES TO BE COMPARED.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:
A AND B ARE UNCHANGED.
DA AND DB CONTAIN THE DIAGONAL ELEMENTS -LABELS- OF A AND B.
ERR = 0 IF DA AND DE ARE ISOMORPHIC. OTHERWISE ERR IS THE INDEX
OF THE ELEMENT OF DA WHICH CANNOT EE MATCHED IN DBE.
N AND NM ARE UNCHANGED.

WORKING ARRAYS: SC

INTEGER N,NM,ERR,I
REAL A(NM,NM),B(NM,NM),DACNM),DB(NM),SC(NM)

RECORD THE LABELS.
DO 10 I=I’N
DACI)=ACI,I)
DECI)=B(I1,I)
10 CONTINUE
COMPARE THE LABELS.
NOTE THAT SINCE THE LABELS ARE INTEGERS, THE MACHINE PRECISION
CONSTANT 1S ZERO.
CALL COMP (DA,DB,SC,ERR,0,N,NM)

RETURN
END

457

aaoaoaoaooooaaoaoaaoaoaa o

aaa

(@) (@7 (7]

THIS SUBROUTINE DETERMINES

SUERQUTINE COMP (RA,RBE,RC,ERR,MACHP,N,NM)

ISOMORPHIC.

ON

ON

INPUT:

WHETHER OR NOT TWO VECTOR ARRAYS ARE

RA AND RB ARE THE TWO VECTOR ARRAYS TO BE COMPARED.
MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.

N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

RETURN:
REA AND RB ARE UNCHANGED.
ERR = 0 IF RA AND RE ARE ISOMORPHIC.

OTHERWISE ERR IS THE INDEX

OF THE ELEMENT OF RA WHICH CANNOT BE MATCHED IN EB.

MACHP, N, AND NM ARE UNCHANGED.

WORKING ARRAYS: RC

INTEGER NM,N,ERR,I,J
REAL RA(NM),RB(NM),RC(NM),MACHP,VAL

VAL=1
ERR=0

COPY RB INTO RC AND COMPUTE A RELATIVELY LARGE NUMBER.

10

DO 10 I=1,N
RC(IJX=RB(I)
VAL=VAL+ABS(RB(I))

CONTINUE

COMPARE THE TW3J ARRAYS.

30

DO 30 I=1,N
DO 20 J=1,N

IF (ABS(RACIJ-RC(JI)>.GT.MACHP*(1+ABS(RC(JI)>) GO TO 20

RC(JI=VAL
GO TO 30
CONTINUE
ERR=1
RETURN
CONTINUE

RETURN
END

458

(@ieleialial (@Hel (el e)(@al g (@ @ ale) sl afe)

Q

() (@) (@)

(e} (@) (@]

oNoNe]

SUBROUTINE VALENC (A,B,DA,DB,SC,ERR,N,NM)

THIS SUBROUTINE COMPUTES AND COMPARES THE NODE VALENCES OF THE
TWO GRAPHS.

ON INPUT:
A AND B CONTAIN THE TWO ADJACENCY MATRICES TO BE COMPARED.
DA AND DB CONTAIN THE NODE LABELS OF A AND B.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:
A AND E ARE UNCHANGED.
DA AND DB CONTAIN THE UPDATED NODE LABELS.
ERR = 0 IF DA AND DB ARE ISOMORPHIC. OTHERWISE ERR IS THE
OF THE ELEMENT OF DA WHICH CANNOT BE MATCHED IN DB.
N AND NM ARE UNCHANGED.

WORKING ARRAYS: SC

INTEGER NM,N,ERR,I,dJd
REAL A(NM,NM),B(NM,NM),DACNM) ,DBE(NM), SCI(NM)

DO 20 I=1,N
MAKE ROOM FOR NEW INFORMATION.

DACI)=100%DACI)
DECI)=100*DECI)

COMPUTE AND RECORD NODE VALENCES - UPDATE LABELS.

DO 10 J=1,N
IF CI.EQ.d) GO TO 10
DACI)=DACI)+AC(I,d)
DBC(I)>=DECI)+B(I,d)

10 CONT INUE
20 CONTINUE

COMPARE UPDATED LABELS.
CALL COMP (DA,DE,SC,ERR,0,N,NM)

RETURN
END

459

INDEX

@] (@} (@) (@) (@) @) (&} @] (@ () (@ (&) (& (@) (@) (@] (¢ (@) (] (@ (@) (@]

(@) @) ©)

() (@] ()

aaaQ

SUBROUTINE DUPLIC (A,E,DA,DB,SC,SD,ERR,%,N,NM)

THIS SUBROUTINE LOCATES AND DISTINGUISHES DUPLICATE NODES THROUGH
LABEL MODIFICATION.

ON

ON

INPUT:

A AND B CONTAIN THE TWO ADJACENCY MATRICES TO EE COMPARED.

DA AND DB CONTAIN CURRENT NODZ LABEL DATA.

Q@ = 4 IF 0°S ARE TO BE PLACED ON THE DIAGONAL JF A AND B, AND

Q =5 IF 1°S ARE TO BE USED.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

RETURN:

A AND B HAVE DIAGONAL ENTRIES OF ALL 0°S OR ALL
OTHERWISE UNCHANGED.

DA AND DB CONTAIN UPDATED LABEL DATA.

ERR = 0 IF DA AND DB ARE ISOMORPHIC. OTHERWISE
OF THE ELEMENT OF DA WHICH CANNOT BE MATCHED

9, N, AND NM ARE UNCHANGED.

WORKING VARIAELES: SC,SD

INTEGER NM,N,NN,I,J,K,L,ERR,Q

1°S BUT ARE

ERR IS THE INDEX
IN DEBE.

REAL A(NM,NM),B(NM,NM),DA(NM),DB(NM),SC(NM),SD(NM)

NN=N=-1

DO 10 I=1,N

SET DIAGONAL ELEMENTS TO 0 OR 1.

ACI,I)=Q-4
B(I,I)=Q-4

MAKE ROOM FOR NEW DATA.

DA(CI)=100%*DACI)
DBC(I)>=100%DB(I)

STORE DA IN SC AND DB IN SD.

10

SCCI)=DACI)
SDCI)=DB(I)
CONTINUE

DO 60 I=1,NN
L=I+1
DO 50 K=L,N

SEARCH FOR IDENTICAL ROWS IN A.

20

IF (SC(I).NE.SC(K)) GO TO 30
DO 20 J=I’N
IF (ACI,J).NE.A(K,d)) GO TO 30
CONTINUE
DACK)=DA(K)+1
DACI)=DA(CI)+2

460

aQaQ

Qo

SEARCH FOR IDENTICAL ROWS IN B.

30

40

30
60

IF (SDCI).NE.SDC(K)> GO TO 50

DO 40 J=1,N

IF (BC(I,J).NE.BC(K,J)) GO TO 50

CONTINUE
DB(K)=DB(K)+1
DB(I)=DB(I)+2

CONTINUE
CONTINUE

COMPARE UPDATED LABELS.

CALL COMP (DA,DB,SC,ERR,0,N,NM)

RETURN
END

461

aQao aoao () (2] (e eNeoNoNeoNoNoNoNoNoNeoNoRoNsNoNoNoNoN @]

(@i (@] (g

SUBROUTINE PREPAR (A,E,DA,DB,N,NM)

THIS SUBROUTINE CONVERTS THE ADJACENCY MATRIX FROM 0,1 FORMAT TO

FORMAT. 1IN ADDITION THE LABELS ARE

CONVERTEL INTO MULTIPLES OF N

AND ARE ENTERED AS DIAGONAL ELEMENTS OF A AND B.

ON INPUT:
A AND B

ARE THE ADJACENCY MATRICES IN 0,1 FORMAT.

DA AND DB CONTAIN CURRENT NODE LABEL DATA.

N IS THE ORDER OF THE GRAPHS.

NM 1S THE DIMENSION OF THE ARRAYS.

ON RETURN:

A AND B CONTAIN THE TWO ADJACENCY MATRICES IN 1,X%

FORM WITH

MODIFIED DIAGONAL ELEMENTS IN MULTIPLES OF N.

DA AND DB CONTAIN THE NODE LAEBEL
OF N.
N AND NM ARE UNCHANGED.

INTEGER NM,N,L

DATA IN THE FORM OF MULTIPLES

REAL A(NM,NM),B(NM,NM),DA(NM) ,DE(NM),FN,NA,NE,RA,AB, INF

FN IS THE FUNCTION FOR X-1 IN THE
FN=N/2
QA=-1
QB=-1
NA=0
NB=0
INF=1000000000
CONVERT A AND B TO 1,X FORM.
DO 20 I=1,N
DO 10 J=1,N
A(I ,J)=ACI,J)*FN+1
B(I,Jd)=B(I,J)*FN+1
CONTINUE
CONTINUE

10
20

DO 50 I=1,N

LABEL DIAGONAL ELEMENTS OF A IN MULTIPLES

L=1
DO 30 J=1,N
IF (DAC(J).LT.DACL)) L=J
CONTINUE
IF (DACL).GT.QA) NA=NA+N
AC(L,L)=NA
QA=DACL)
DACL)=INF

30

LABEL DIAGONAL ELEMENTS OF B

L=1
DO 40 J=1,N
IF (DB(J).LT.DB(L)) L=J

462

IN MULTIPLES OF

OF N.

N.

1,X

1,X FORM OF THE ADJACENCY MATRIX.

40 CONTINUE
IF (D5(L).GT.Q@B) NB=NB+N

B(L,L)=NB
QB=DB(L?2
DB(L)=INF
50 CONTINUE
C
C RESTORE DA AND DRE.
c

DO 60 I=1,N
DA(CI)=AC(CI,I)
DB(I)=B(I,I)

60 CONTINUE

RETURN
END

463

[sNeloNeoNsNsNoNoNsNoNoNoNoRoNoRoNoNoRoNoNoRoNoRoNoNoN o]

aaaQ [oNeoNe]

aQaaa

SUBROUTINE SPECTR (A,B,XA,XB,EA,EB,SC,G,ERR,MACHP,N,NM)

THIS SUBROUTINE CALCULATES AND COMPARES THE SPECTRA OF THE TWO
MODIFIED ADJACENCY MATRICES. IN ADDITION, DATA PERTAINING TO THE
MULTIPLICITY OF THE EIGENVALUES 1S RECORDED.

ON INPUT:
A AND E CONTAIN THE ADJACENCY MATRICES JF THE TW3 GRAPHS.
MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO EBE TESTED.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:
A AND B ARE UNCHANGED.
XA AND XB CONTAIN THE EIGENVECTORS OF A AND B IN THE SAME ORDER
AS THE CORRESPONDING EIGENVALUES.
EA AND EB CONTAIN THE EIGENVALUES OF A AND B IN NONDECREASING
ORDER.

G OF I IS 1 IF THE I TH AND I1+1 TH EIGENVALUES OF A ARE IDENTICAL

AND IS 0 OTHERWISE.

ERR IS NEGATIVE IF AN ERROR CONDITION WAS RAISED IN THE EISPACK
SOFTWARE. ERR IS 0 IF THE SPECTRA ARE IDENTICAL. OTHERVISE,
ERR IS THE INDEX OF THE EIGENVALUE OF A THAT COULD NOT BE
MATCHED WITH AN EIGENVALUE JF B.

MACHP, N, AND NM ARE UNCHANGED.

WORKING VARIAELES: sC

INTEGER NM,N,ERR,I1,NN,G(NM)
REAL A(NM,NM),EB(NMyNM) , XA(NM,NM) ,XE(NM,NM> , EACNM) , EB(NM) , SC(NM),
+ MACHP

NN=N-1
FIND THE EIGENVALUES AND EIGENVECTORS OF A.

CALL TREDZ (NM,N,A,EA,SC,XA)
CALL TQLZ (NM,N,EA,SC,XA,ERR)
IF (ERR.NE.0) GO TO 10

FIND THE EIGENVALUES AND EIGENVECTORS OF B.

CALL TREDz (NM,N,B,EB,SC,XB)
CALL TQLz (NM,N,EB,SC,XB,ERR)
10 ERR=-ERR
IF (ERR.EQ.0) CALL COMP (EA,EBE,SC,ERR,MACHP,N,NM)

RECORD EIGENVALUE MULTIPLICITY DATA.

IF (ERR.NE.0) RETURN
DO 20 I=1,NN
GCI>=0
IF (ABSC(EA(I)-EA(I+1)).LT.MACHP*(1+ABS(EA(CIY))) G(I)=1
20 CONTINUE
GC(N)=0

RETURN
END

464

eNeoNoNoloNoNoNeoNoNeRsNoNoNoNoNoNoNoNoNoNoNoNo NN !

(oNoNoNsNoNoNoNe] ()

(@] (@] (o

SUBROUTINE OPTEIG (XB,DB,G,ERR,MACHD ,JA,N,NM)

THIS SUBROUTINE SELECTS AN JOPTIMAL EIGENVECTOR FOR USE IN GENERATING
A SERIES OF PERMUTATIONS.

ON INPUT:
XB IS THE EIGENVECTOR MATRIX OF B.
DB CONTAINS THE DIAGONAL ELEMENTS OF E.
G CONTAINS EIGENVALUE MULTIPLICITY INFORMATION.
MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:

XB IS ESSENTIALLY UNCHANGED. THE POSSIBILITY EXISTS THAT ANY TWO
EIGENVECTORS CORRESPONDING TO THE SAME EIGENVALUE COULD BE
INTERCHANGED.

DB AND G ARE UNCHANGED.

ERR = | IF THE EIGENVECTOR SELECTED CORRESPONDS TO AN EIGENVALUE
OF MULTIPLICITY l. ERR=z IF THE CORRESPONDINGC EIGENVALUE HAS
MULTIPLICITY 2. ERR=3 IF NO SUITAELE EIGENVECTOR COULD BE
FOUND.

MACHP IS UNCHANGED.

JA IS THE COLUMN INDEX OF THE OPTIMAL EIGENVECTOR, IF ONE EXISTS.

N AND NM ARE UNCHANGED.

INTEGER NM,N,I,J,PN,LT,PX,ERR,JA,LI,LM,L,NN,G(NM)
REAL XB(NM,NM),DE(NM) ,MACHP

NN=N-1
ERR=3
PN=1000

ALL EIGENVECTORS WITH THREE OR MORE IDENTICAL COMPONENTS OR THAT
CORRESPOND TO EIGENVALUES OF MULTIPLICITY THREE OR MORE ARE
ELIMINATED FROM CONSIDERATION. EIGENVECTORS THAT CORRESPOND TO
EIGENVALUES OF MULTIPLICITY ONE ARE CONSIDERED PREFERENTIALLY TO
THOSE WHICH HAVE MULTIPLICITY TWO. EICGENVECTORS WHICH HAVE FEW PAIRS
OF IDENTICAL COMPONENTS ARE FAVORED OVER THOSE WITH MANY SUCH PAIRS.

DO 80 J=1,N
LT=0
PX=1

CHECK FOR MULTIPLICITY OF ASSOCIATED EIGENVALUE.

IF (J.EQ.1> GO TO 20
IF (G(J-1).EQ.0) GO TQ 20
IF (J.E2.2) GO TO 10
IF (G(J-2).EQ.1.) GO TO &0
10 IF (G(J).EQ.1> GO TO &0
LT=4
PX=4
GO TO 30
20 IF (GCJ).EG.0) GO TO 30
IF (G(J+1).EQ.1) GO TO 80
LT=4
PX=2

465

(! (@l (9] (9] (§7]

(57 (@) (@

CHECK FOR IDENTICAL COMPONENTS.

30 DO 50 I=1,NN
LI=I+l
LM=0
DO 40 L=LI,N
IF (ABS(XB(I,J)-XB(L,J)+DB(I)>-DB(L)).GT.MACHP) GJ TO 40

LT=LT+1
IF (LM.EQ.1)> GO TO &8¢0
LM=1
40 CONTINJE
30 CONTINUE
IF (LT.GE.PN) GO TO 80
JA=d
ERR=PX
IF (ERR.LT.4) GO TO 70
ERR=2
JA=JA-1
INTERCHANGE TWO EIGENVECTJRS THAT CORRESPOND T3 THE SAME EIGENVALUE
SO THAT IN THE RESULTING PAIR THE FIRST WILL BE MORE SUITAELE THAN
THE LAST.

DO 60 I=1,N
TEMP=XB(I1,JA)
XBC(I,JA)=XEB(I,JA+1)
XBC(I,JA+1)=TEMP

60 CONTINUE
70 PN=LT

IF EIGENVECTOR IS SUITABLE -NOT NECESSARILY OPTIMAL- RETURN.

IF (LT.LT.4) RETURN
80 CONTINUE

RETURN
END

466

eNoREeoNoNoNoNoNsNoNsNoNoNoNoNoNoNoNoNoNeNRoNoNoNoNoNoNoNoNoN O N @]

Q

Qoo (@1 (21 {57} ()

eNeoNe]

SUBROUTINE SINGLE (A,B,XA,XB,FA,FB,H,P,ERRK,MACHP,MAXT,JA,N,NM)

THIS SUBROUTINE GENERATES AND TESTS UP TO MAXT PERMUTATIONS FROM DATA
FOUND IN AN EIGENVECTOR CORRESPONDING TO AN EIGENVALUE OF
MULTIPLICITY ONE.

ON INPUT:

A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO GRAPHS.

XA AND XB ARE THE EIGENVECTOR MATRICES OF A AND B THOUGH ONLY THE
JA TH COLUMNS OF XA AND XBE ARE USED IN THIS SUBROUTINE.

MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.

MAXT IS THE MAXIMUM NUMBER OF PERMUTATIONS THAT CAN BE TESTED.

JA IS THE COLUMN OF XA AND XB WHICH CONTAINS THE EIGENVECTORS TO
BEE EXAMINED.

N IS THE ORDER OF THE GRAPHS.

NM IS THE DIMENSIJON OF THE ARRAYS.

ON RETURN:

A, B, XA, AND XB ARE UNCHANGED.

P CONTAINS THE LAST PERMUTATION THAT WAS CHECKED AGAINST A AND B.
IF ERR=0, THIS PERMUTATION RELATES A AND E.

ERR = -1 IF NO SUITABLE PERMUTATIONS COULD BE GENERATED AND THE
GRAPHS ARE NOT ISOMORPHIC. ERR=1 IF THREE IDENTICAL COMPONENTS
WERE FOUND IN THE EIGENVECTO®. ERR=3 IF ALL POSSIBLE
PERMUTATIONS FAILED WHEN TESTED AGAINST A AND B AND THE GRAPHS
ARE NOT ISOMORPHIC. EFR=4 IF THE MAXIMUM NUMBER OF
PERMUTATIONS WERE TRIED WITHJOUT SUCCESS. ERR=0 IF A
PERMUTATION WAS FOUND TO RELATE A AND BE.

MACHP, MAXT, JA, N, AND NM ARE UNCHANGED.

WORKING VARIAELES: FA,FE,H

INTEGER NM,N,ERR,JA,I,M,H(NM),P(NM),LT,MAXT
REAL A(NM,NM) ,B(NM,NM),XA(NM,NM) ,XE(NM,NM) ,FACNM) ,FE(NM) ,MACHP

M=0

USE THE NODE LABELS TO AIDE IN THE SEPARATION OF IDENTICAL
COMPONENTS.

DO 10 I=1’N
FACI)=A(I,I1)+XA(I,JA)
FB(I)=B(I,I1)+XB(I,JA)

10 CONTINUE

GENERATE A POTENTIAL PERMUTATION AS WELL AS THE DATA NECESSARY TO
FIND ALL OTHER POSSIBLE PERMUTATIONS.

20 CALL PERM (FA,FE,H,P,ERR,MACHP,LT,N,NM)
IF (ERR.EG.1)> RETURN
IF (ERR.EQ.-1) GO TO 30
TEST UP TO MAXT PERMUTATIONS AGAINST A AND B.
CALL TEST (A,B,H,P,ERR,MAXT,LT,N,NM)

IF (ERR.NE.3) RETURN
30 IF (M.EQ.1) RETURN

467

C SHOULD ALL PERMUTATIONS FAIL, REPEAT THE PROCESS WITH ONE EIGENVECTOR
C NEGATED TO INCLUDE ALL PJSSIBLE CASES.

C

DO 40 I=1,N

FB(I)=B(I,I)=-XB(I,JA)
40 CONTINUE

M=1

GO TO 20
C

END

sNeNoNoNoNoNoNeoNoNoNoNoNoReoNoNoNoNoNoNoRoNoNoNON @]

C

(oNoNe]

(@ o eNe)

SUBRQUTINE PERM (FA,FB,H,P,ERR,MACHP,LT,N,NM)

THIS SUBROUTINE GENERATES A SINGLE PERMUTATION EETWEEN THE COMPONENTS
OF TWO VECTORS AND RECORDS THE DATA NECESSARY TO CGENERATE ALL OTHER
POSSIBLE PERMUTATIONS BETWEEN THE COMPONENTS OF THE TWO0 VECTORS. THE
VECTORS MUST NOT CONTAIN MORE THAN TWO IDENTICAL COMPONENTS.

ON INPUT:
FA AND FB ARE THE TWO VECTORS FROM WHICH ALL PERMUTATIONS WILL
BE GENERATED.
MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.
N IS THE ORDER OF THE GRAPHS.
NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:
FA IS UNCHANGED.
FB IS DESTROYED.
H CONTAINS THE INDICES OF THE PAIRS OF IDENTICAL COMPONENTS OJF FA.
P CONTAINS A PERMUTATION OF THE COMPONENTS OF FA INTO THOSE OF FB.
ERR = -1 IF THE TWO VECTORS ARE FOUND TO BE NON-ISOMORPHIC.
ERR=1 IF THREE OR MORE COMPONENTS OF FA ARE IDENTICAL.
ERR=0 OTHERWISE.
MACHP IS UNCHANGED.
LT IS THE NUMBER OF IDENTICAL PAIRS OF COMPONENTS FOUND IN FA.
N AND NM ARE UNCHANGED.

INTEGER NM,N,I1,J,L,LT,H(NM),P(NM),ERR
REAL FA(NM),FB(NM),MACHP, INF

ERR=1
LT=0
INF=-10
DO 70 I=1,N
L==1
FIND ALL COMPONENTS OF FEB THAT MATCH THE CURRENT COMPONENT OF FA.
DO 30 J=1,N
IF (ABS(FA(I)-FB(J))«.GT.MACHP) GO TO 30
IF (L) 10,20,80
10 FB(J)=INF
PC(I)=d
20 L=L+1
30 CONTINUE
IF (L) 40,70,50
40 ERR=-
RETURN
RECORD THE INDEX OF THE FIRST HALF OF A IDENTICAL PAIR IN FA.
50 LT=LT+l1
H(Z#*LT=-1)=1
FIND AND RECORD THE INDEX OF THE SECOND HALF OF THE IDENTICAL PAIR
IN FA.

469

60
70

80

DO 60 J=1)N
IF (ABS(FACI)-FA(J)).GT.MACHP.OR.I.EQ.J)
H(2*LT)=dJ
GO TO 70
CONTINUE
CONT INUE

ERR=0
RETURN

END

470

GO TO 60

[sNsReNoNoNoNoNoNoNoRoNoNoNoNoRoNoNoRoRoNoNoNeNe)

aoaa

aQaa

(@] (&) ()

(@] (@) (@}

SUBROUTINE TEST (A,B,H,P,ERR,MAXT,LT,N,NM)

THIS SUBROUTINE TESTS UP TO MAXT PERMUTATIONS AGAINST THE ORIGINAL
GRAPHS.

ON INPUT:

ON

A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO GRAPHS.

H CONTAINS THE PAIRS OF INDICES OF P WHICH MUST BE INTERCHANGED
BEFORE ALL POSSIBLE PERMUTATIONS CAN BEEN TESTED.

P CONTAINS THE FIRST PERMUTATION TO BE CHECKED.

MAXT IS THE MAXIMUM NUMBER OF PERMUTATIONS WHICH MAY BE TESTED.

LT IS THE NUMBER OF PAIRS OF INDICES OF P THAT MAY HAVE TO BE
INTERCHANGED.

N IS THE ORDER OF THE GRAPHS.

NM IS THE DIMENSION OF THE ARRAYS.

RETURN:

A, By AND H ARE UNCHANGED.

P CONTAINS THE LAST PERMUTATION THAT WAS CHECKED AGAINST A AND E.
IF ERR=0, THEN THIS PERMUTATION RELATES A AND B.

ERR = 0 IF A PERMUTATION WAS SUCCESSFUL IN RELATING A AND B.
ERR=3 IF ALL PERMUTATIONS FAILED WHEN TESTED AGAINST A AND B.
ERR=4 IF MAXT PERMUTATIONS WERE TRIED WITHOUT SUCCESS.

LT, N, AND NM ARE UNCHANGED.

INTEGER NM,N,LT,ERR,LE,I,J,BIN,MAXT,T,L,K,H(NM),P(NM),M
REAL ACNM,NM),B(NM,NM)

LB IS THE MAXIMUM NUMBER LESS 1| OF PERMUTATIONS WHICH MAY HAVE TO BE
TESTED.
LB=2**LT~1
BIN CONTROLS WHICH PAIRS OF INDICES ARE TO BE INTERCHANGED EACH TIME.
BIN=0
T=0
ERR=0
10 T=T+l
TEST THE PERMUTATION IN P AGAINST A AND 5.
DO 30 I=1,N
L=PCI)
DO 20 J=1:N
K=P(J)
IF (BC(LyK)«NE.ACI,J)) GO TO 40
20 CONTINUE
30 CONTINUE
RETURN
CHECK IF ALL POSSIBLE PERMUTATIONS HAVE BEEN TRIED.
40 IF (BINJ.LT.LBY GO TO 50
ERR=3
RETURN

471

(@) {57)

esNeoNe]

CHECK IF MAXT PERMUTATIONS HAVE BEEN TRIED.

50 IF (T.LT.MAXT) GO TO 60
ERR=4
RETURN

GENERATE THE NEXT PERMUTATION TO BE TESTED.
60 BIN=BIN+I

SEQUENTIALLY INTERCHANGE I+l PAIRS OF VALUES OF P WHERE 2g%#1 IS
LARGEST POWER OF 2 THAT DIVIDES BIN. ON THE AVERAGE, TWO PAIRS
BE INTERCHANGED EACH TIME, INDEPENDENT OF THE VALUE OF LT.

M=1
DO 70 I=1,LT
L=H(Z2¥I-1)
K=H(2%1)
J=P(L)
P(L)=P(K)
P(K)=d
M=2#%M
IF (MOD(BIN,M).GT.0)> GO TO 10
70 CONTINUE

END

472

THE
WILL

SUBROUTINE DOUBLE (A,B,C,XA,XB,CE,CF,FA,FB,H,P,ERR,MAXT,MACHP, JF,
+ NyNM,NT)D

THIS SUBROUTINE GENERATES AND TESTS PERMUTATIONS FROM DATA FOUND IN
EIGENVECTORS CORRESPONDING TO EIGENVALUES OF MULTIPLICITY TWO.

ON INPUT:

A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO GRAPHS.

XA AND XB ARE THE EIGENVECTOR MATRICES OF A AND E.

MAXT IS THE MAXIMUM NUMBER OF PERMUTATIONS THAT COULD BE TRIED IF
THE OPTIMAL EIGENVECTOR CORRESPONDED TO AN EIGENVALUE OF
MULTIPLICTY ONE.

MACHP 1S THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.

JF AND JF+! ARE THE TWO COLUMNS OF XA IN WHICH THE PERTINENT
EIGENVECTORS ARE STORED.

N IS THE ORDER OF THE GRAPHS.

NM IS THE DIMENSION OF MOST OF THE ARRAYS.

NT = 2*NM AND IS THE DIMENSION OF CE AND CF.

(@]
22

RETURN:

A, B, XA, AND XB ARE UNCHANGED.

P CONTAINS THE LAST PERMUTATION THAT WAS CHECKED AGAINST A AND E.
IF ERR=0, THIS PERMUTATION RELATES A AND E.

ERR = 4 IF NO PERMUTATION WAS FOUND TO RELATE A AND B BUT NOT ALL
POSSIELE PERMUTATIONS WERE TESTED DUE TO THE LIMIT IMPOSED
BY MAXT AND MAXTN. ERR=0 IF A PERMUTATION SUCCESSFULLY RELATED
A AND B. ERR=-1,1, OrR 3 IF ALL POSSIBLE PERMUTATIONS FAILED
WHEN TESTED AGAINST A AND B AND THE GRAPHS ARE NOT ISOMORPHIC.

MAXT, MACHP, JA, N, NM, AND NT ARE UNCHANGED.

WORKING VARIABLES: C4sCE,CF,FA,FE,H

(@ (@) (@] (@) (@) (@ (@ (&) (@) (@ (@} (el (&) (@ (a] (el (@) @) @ @] (@ (@ (@ @ @ (@ @ 9 (@ (¢

INTEGER NMyN,ERRK,K,I1,J,M,JF,NT,L,MAXT,MAXTN,H(NM),P{(NM)
REAL A(NM,NM),B(NM,NM),CC(NM,NM),XA(NM,NM) ,XB(NM,NM),FACNM) ,FE(NM),

+ CE(NT),CF(NT) ,MACHP,MACHPN, TM
C
C RELAX THE REGQUIREMENT FOR EQUALITY AS MULTIPLE OPERATIONS ARE TO BE
C PERFORMED ON THE EICENVECTOR COMPONENTS.
C
MACHPN=N*MACHP/ >
C
C SET THE MAXIMUM NUMEER OF TESTS THAT MAY EBE PERFORMED ON EACH
C PROPOSED LINEAR COMBINATION OF THE TWO EIGCENVECTORS.
C
MAXTN=4*MAXT/N
C
DO 10 J=1,N
L=dJ
IF (AES(XA(J,JF))«.GT.MACHPN.OR.ABS(XA(J,JF+1)),.GT.MACHPN)
+ GO TO 20
10 CONTINUE
C

C COMPUTE ALL POSSIBLE VALUES OF THER TWO COEFFICIENTS AND RECORD THEM
C 1IN CE AND CF.
C
20 TM=XA(L,JF)*#2+4XA(L,JF+1)%*%*2
DO 50 J=1,N
K=2%J

[eNeoNe!

aQaao (@) (2} (&

Qo

(@] (@) &@! (@]

CE(K=1)=(XA(L,JF)*XB(JyJFI+XA(L,JF+1)*XB(J,JF+1))/TM
CF(K=-1)=(XA(L,JF+1)*XB(J,JF)=-XA(L,JF)*XZ(J,JF+1))/THM
CEC(K)=(XA(L,JF)*XB(J,JF)=XA(L,JF+1)*XB(J,JF+1))/TM
CFCKI=(XA(L,JF+1)¥XB(J,JF)+XA(L,JF)*XE(J,JF+1))/TNM

AVOID UNNECESSARY WORK THROUGH DELETION OF DUPLICATED COEFFICIENTS.

30
40

50

IF (J.EQ.1) GO TO 460
M=K-2
DO 30 I=1,M
IF (ABS(CE(I)-CE(K=-1)).LT.MACHP) CE(K-1)=2
IF (ABS(CE(I)-CE(K)).LT.MACHP) CE(K)=2
CONTINUE
IF (ABS(CE(K)-CE(K-1))>.LT.MACHP) CE(K)=2

CONTINUE

TEST ALL POSSIBLE COEFFICIENTS.

L=0
Do

80 J=1,NT

ELIMINATE FROM CONSIDERATION COEFFICIENTS WITH ABSOLUTE VALUE > 1.

IF (ABSC(CE(J)).GT.1+MACHPN) GO TO 80
IF (ABS(CE(J)).GT.1) CEC(JI=1

PERFORM THE LINEAR COMEINATION TO CREATE A PSEUDO EIGENVECTOR.

70

DO 70 I=1,N
CCI,JF)=CECJI*XACI ,JFI+CF(J)*KACI ,JF+1)
CONTINUE

TREAT THE PSEUDO EIGENVECTOR AS ONE THAT CORRESPONDS TO AN EIGENVALUE
OF MULTIPLICITY ONE AND CHECK ALL POSSIBLE PERMUTATIONS.

CALL SINGLE (A,E,C,XB,FA,FB,H,P,ERR,MACHPN,MAXTN,JF,N,NM)
IF (ERR.EG.0) RETURN
IF (ERR.EQ.4) L=4

CONTINUE

IF

(L+sEQ.4) ERR=4

RETURN

END

(€21 (g7) (52} () (=) (92F (Gp} () (@} (9} (@) (@ {7} () () (o} (@) (2} (@) () (=) (@) (w2} () (@) (52 () (&7} (@) (@] (&) (& () () (&) (@) @i (@) (&} (&%) (&)

aQaaQ aQaa

() (T (@)

SUBROUTINE SUBVAL (A,B,C,XA,5C,SD,SE,H,P,ERR,MACHP,MAXT,N,NM)

THIS SUBROUTINE GENERATES AND COMPARES THE SPECTRA OF THE OERDER N-1
SUBGRAPHS OF THE TWO ORIGINAL GRAPHS. AN ATTEMPT IS MADE TO GENERATE
A PERMUTATION BETWEEN THE TWO GRAPHS BASED ON THIS DATA.

ON INPUT:

A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO GRAPHS.

MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.

MAXT 1S THE MAXIMUM NUMBER OF PERMUTATIONS THAT COULD EE TRIED IF
THE OPTIMAL EIGENVECTOR CORRESPONDED TO AN EIGENVALUE OF
MULTIPLICTY ONE.

N IS TAE ORDER OF THE GRAPHS.

NM IS THE DIMENSION OF THE ARRAYS.

ON RETURN:

A AND B ARE UNCHANGED.

C CONTAINS SPECTRA DUPLICATION INFORMATION. THE I TH ROW OF C
CONTAINS THE INDECIES OF ALL NODES IN A WHICH WHEN UNIQUELY
MARKED PRODUCE SPECTRA IDENTICAL TO THAT PRODUCED WHEN THE I TH
NODE OF A WAS UNIQUELY MARKED.

XA CONTAINS THE N SPECTRA GENERATED FROM THE SUBGRAPHS OF A. EACH
ROW CONTAINS ONE SPECTRA.

SC OF I IS THE NUMBER OF NODES IN A, INCLUDING I, THAT PRODUCED
SPECTRA IDENTICAL TO THAT OF 1I.

P CONTAINS A PERMUTATION OF THE SET OF SPECTRA OF SUEGPFAPHS OJF A
INTO THOSE OF B. IF ERR=N+l, THIS IS A PERMUTATION OF A
INTO B.

ERR IS NEGATIVE IF AN ERROR OCCURS IN THE EISPACK SOFTWARE. IF
THE SETS OF SPECTRA ARE NOT ISOMORPHIC, ERR CONTAINS THE INDEX
OF THE NODE IN B WHICH WHEN UNIQUELY MARKED, PRODUCED A SPECTRA
THAT COULD NOT BE MATCHED WITH A SPECTRA FROM THE SUBGRAPHS OF
A. ERR=0 IF THE SETS OF SPECTRA WERE ISOMORPHIC BUT THREE OR
MORE NODES OF A, WHICH WHEN UNIQUELY MARKED, PRODUCED IDENTICAL
SPECTEA. ERR=N+1 IF A PERMUTATION RELATING A AND B WAS FOUND.
ERR=N+4 IF ALL POSSIBLE PERMUTATIONS FAILED TO RELATE A AND E.
ERR=N+5 IF MAXT PERMUTATIONS WERE GENERATED AND TESTED WITHOUT
SUCCESS.

MACHP, MAXT, N, AND NM ARE UNCHANGED.

WORKING VARIABLES: SD,SE,H
INTEGER NM,N,I,J,K,L,ERR,M,MAXT,LT,H(NM) ,PC(NM)
REAL ACNM,NM),B(NM,NM),C(NM,NM) ,XAC(NM,NM), SC(NM), SD(NM), SE(NM) ,FN,
+ MACHP
FN IS THE FUNCTION FOR X-1 IN THE 1,X FORM OF THE ADJACENCY MATRIX.
FN=N/2
GENERATE THE SPECTRA OF ALL ORDER N-1 SUBGRAPHS OF A.

DO 50 I=1,N
PCIN=0

COPY A INTO C.

DO 20 K=1,N

475

DO 10 J=1;N
C(K,JI)=A(K,d)
10 CONTINUE
20 CONTINUE

UNIQUELY MARK THE I TH NODE OF C=A AND ALL NODES CONNECTED TO IT.

(eNeNe!

DO 30 J=1,N
C(J,dr)=CCJ,J)+CC(1,d)
C(I,J)=3%FN
C(J,I1)=3%FN

30 CONTINUE

CCI,I1)>=C(Il,I)+FN

COMPUTE THE SPECTRA - C IS DESTROYED IN THIS COMPUTATION.

aoon

CALL TREDl (NM,N,C,SC,SD,SE)
CALL TQL! (N,SC,SD,EHRR)
ERR=-ERR
IF (ERR.NE.0) RETURN
DO 40 J=1,N
XA(I,J)=8C(J)
40 CONTINUE
50 CONTINUE

C
C SEQUENTIALLY COMPUTE THE SPECTRA OF THE N-1 ORDER SUEGRAPHS JF B,
C CHECKING THAT EACH CAN BE MATCHED WITH A SIMILAR SPECTRA FROM THE
C SUBGRAPHS OF A.
C
DO 110 I=1,N
DO 70 X=1,N
DO 60 J=1,N
C(K,J)=B(KydJ)
60 CONTINUE
70 CONTINUE

DO 80 J=1,N
C(J,J)=C(J,J>+C(I,J)
CC1,J)=3%FN
C(J,1)=3*%FN

80 CONTINUE

C(Il,1)=C(I,I1)+FN

CALL TREDl (NM,N,C,SC,5D,SE)

CALL TQL! (N,SC,SD,ERR)

ERR=-ERR

IF (ERR.NE.0) RETURN

DO 100 J=1,N
IF (P(J).GT.0> GO TO 100

DO 90 K=1,N
IF (ABS(XAC(J,K)=-SC(K)).GT.MACHP*(1+ABS(SC(K))))

+ GO TO 100
90 CONTINUE
P(J)=1
GO TO 118
100 CONTINUE
ERR=1
RETURN
110 CONTINUE

C

476

C

LT=0
L=0

C COMPUTE AND RECORD THE DATA PERTAINING TO SPECTRA DUPLICATION IN A.

C

aaooaaQ

120

DO 140 I=1,N
M=0
DO 130 J=1,N
DO 120 K=1,N
IF (ABS(XACI,K)=-XA(JyK)).GT.MACHP*(1+ABS(XA(I,K))))
GO TO 130
CONTINUE
M=M+1
C(I,M)=P(J)
IF (MJE@.3) L=1
IF (L.EQ.1.O0R.I.GE.J) GO TO 130

RECORD DUPLICATED PAIRS OF SPECTRA WITH THE HOPE THAT THERE ARE NO
TRIPLICATES AND SUBROUTINE TEST CAN EBE USED TO FIND A PERMUTATION OF
A INTO B OR PROVE THAT ONE DOES NOT EXIST.

130

140

LT=LT+1
H(2*LT=-1)=1
HC(Z2*LT)=d
CONTINUE
SC(I)=M
CONTINUE

IF (L.EQe.1)> RETURN
CALL TEST (A,B,H,P,ERR,MAXT,LT,N,NM)
ERR=ERR+N+1

RETURN
END

477

(@) (@) (@] (@] (2191 (@] (@] (@) (@ @ (& (@ () (@) @ @] @ (@) (@) @) e (@ () (@ g e gl (@ @ @) @ (@ @

aaoa

(@] (@ (] ()

[eNeoNe]

SUBROUTINE SUBVEC (A,BE,C,XA,XB,DA,DB,EA,EE,FA,FB,5C,SD,SE,G,H,P,
+ ERRyMACHP ¢y MAXT ,N,NM)

THIS SUBROUTINE ATTEMPTS TO GENERATE A PERMUTATION BETWEEN A AND B
THROUGH EXAMINATION OF EIGENVECTORS CORRESPONDING TO EIGENVALUES OF
MULTIPLICITY ONE OF ORDER N-1 SUEGRAPHS OF A AND B.

ON INPUT:

A AND B CONTAIN THE ADJACENCY MATRICES OF THE TWO CGRAPHS.

C AND SC CONTAIN SPECTRA DUPLICATION INFORMATION.

P CONTAINS A PERMUTATION OF THE SET OF ORDER N-l1 SPECTRA OF A INTO
THOSE OF B.

MACHP IS THE PRECISION WITHIN WHICH EQUALITY IS TO BE TESTED.

MAXT IS THE MAXIMUM NUMBER OF PERMUTATIONS THAT COULD BE TRIED IF
THE OPTIMAL EIGENVECTOR CORRESPONDED TO AN EIGENVALUE OF
MULTIPLICTY ONE.

N IS THE ORDER OF THE GRAPHS.

NM IS THE DIMENSION OF THE ARRAYS.

o
z

RETURN:

A AND B ARE UNCHANGED.

C AND SC ARE DESTROYED.

P CONTAINS A PERMUTATION OF THE COMPONENTS OF AN EIGENVECTOR OF
A SUBGRAPH OF A INTO AN EIGENVECTOR OF A SUBCRAPH OF B. IF
ERR=0 THEN THE PERMUTATION RELATES A AND B.

ERR = 0 IF A PERMUTATION OF A INTO E WAS FOUND. ERR=1 IF ALL
POSSIBLE PERMUTATIONS FAILED TO RELATE A AND B. ERR=2 IF ALL
PERMUTATIONS CHECKED FAILED BUT NOT ALL POSSIBLE PERMUTATIONS
WERE TESTED DUE TO THE RESTRICTIONS IMPOSED BY MAXT. ERR=3 IF
ALL EIGENVECTORS CORRESPONDING TO EIGENVALUES OF MULTIPLICITY
ONE HAD THREE OR MORE IDENTICAL COMPONENTS. ERR IS NEGATIVE IF
AN ERROR CONDITION WAS RAISED IN THE EISPACK SOFTWARE.

MACHP, MAXT, N, AND NM ARE UNCHANGED.

WORKING VARIABLES: XA,XB,DA,DB,EA,EB,FA,FB,SD,SE,G,H
INTEGER NM,N,MAXT,ERR,I1,J,K,L,M,LT,LM,PN,JA,G(NM) ,H(NM),P(NM),NN
REAL A(NM,NM),B(NM,NM),C(NM,NM) , XKACNM,NM) ,XB(NM,NM) , DACNM) , DEC(NM) ,
+ EA(NM) ,EB(NM) ,FA(NM) , FB(NM) , SC(NM) , SDC(NM) , SECNM) y MACHP, MACHPD
+ yEIGVAL,LB,UB,RD,FN
FN IS THE FUNCTION FOR X-1 IN THE 1,X FORM OF THE ADJACENCY MATRIX.
FN=N/2
NN=N-1
PN=1000

SEARCH FOR AN OPTIMAL EIGENVECTOR AMONG THOSE THAT CORRESPOND TO AN
EIGENVALUE OF MULTIPLICITY ONE.

DO 90 I=1,N
UNIQUELY MARK THE I TH NODE OF A AND THE NODES CONNECTED TO IT.
DO 10 J=1,N
DACJI=ACI,J)

AC(d,JI)=ACd,d)+DACJ)
ACI,J)=3%FN

478

(o} () (@) (@ el ele)

CREGIICY

[eNe!

() (g3 (2} (7

(et (21 {(92)

(g7 {p]

ACJ,1)=3%FN
10 CONTINUE
ACI,I)=ACI,I)+FN

COMPUTE THE EIGENVALUES AND EIGENVECTORS OF THIS SUEGREAPH. A IS NOT
DESTROYED.

CALL TREDZ (NM,N,A,DB,FEB,XA)
CALL TQLZ (NM,N,DE,FB,XA,ERR)
ERR=-ERR

IF (ERR.NE.0) RETURN

RESTORE A TO ITS ORIGINAL VALUE.

DO 20 J=1,N
A(J,,JI)=A(d,J)=-DACJ)
ACI ,J)=DACJ)
ACJ,1)=DACJ)
20 CONTINUE

SEARCH FOR THE OPTIMAL EIGENVECTOR OF THOSE JUST COMPUTED.

DO 80 J=1,N
LT=SC(I)
MACHPD=MACHP*(1+ABS(DBE(J)))

CHECK THAT THE ASSOCIATED EIGENVALUE HAS MULTIPLICITY ONE.

IF (J.EQ.1> GO TO 30
IF (ABS(DB(J)=-DE(J-1)).LT.MACHPD) GO TO &0
IF (J.EQ.N) GO TO 40
30 IF (ABS(DB(J)-DB(J+1)).LT.MACHPD) GO TO 80

FIND AND RECORD THE NUMBER OF DUPLICATED PAIRS OF COMPONENTS. IF A
TRIPLICATE 1S FOUND, DISCONTINUE CONSIDERATION OF THAT EIGENVECTOR.

40 DO 60 L=1,NN
M=L+1
LM=0
DO 50 K=M,N
IF (ABS(XA(L,dJ)=-XA(K,J)).GT.MACHP) GO TO 50
IF (LM.EQ.1) GO TGO 80
LM=1
LT=LT+1
50 CONT INUE
60 CONTINUE
IF (LT.GE.PN) GO TO 80

UPDATE CURRENT OPTIMAL EIGENVECTOR INFORMATION.

PN=LT
JA=1
EIGVAL=DB(J)>
DO 70 K=1,N
SD(K)=XA(K,dJ)
70 CONTINUE

IF THE EIGENVECTOR IS SUITABLE -NOT NECESSARILY OPTIMAL- TERMINATE

C THE SEARCH.
C
IF (LT.LT.10) GO TO 100
80 CONTINUE
90 CONTINUE

C
C IF NO SUITAELE EIGENVECTOR COULD BE FOUND, TERMINATE THIS PORTION
C OF THE ALGORITHM WITH APPROPRIATE MESSAGE.
C
IF (PN.LT.1000> GO TO 100
ERR=3
RETURN

100 MACHPD=MACHP*(l+ABS(EIGVAL))
LB=EIGVAL-MACHPD
UB=EIGVAL+MACHPD
c
C STORE THE SELECTED EIGENVECTOR IN THE FIRST COLUMN OF XA.
C
DO 110 I=1,N
XACIL, 1)=SDC(I)
110 CONTINUE
C
C SELECTIVELY STORE THE PERTINENT INFORMATION HELD IN C AND SC IN ORDER
C TO FREE STORAGE FOR FUTURE USE.
C
M=SC(JA)
DO 120 I=1,M
GCId=C(JA,I)
120 CONTINUE

C
C FIND AND EXAMINE THE CORRESPONDING EIGENVECTOR IN THE SUBGRAPHS OF B
C WHICH HAVE SPECTRA MATCHING THE SPECTRA GENERATED FROM THE SUBGRAPH
C OF A THAT PRODUCED THE OPTIMAL EIGENVECTOR.
C
DO 170 L=1,M
C
C COPY B INTO C.
C
DO 140 I=1,N
DO 130 J=1,N
CCI,J)=BCI,dJ)

130 CONTINUE

140 CONT INUE

C
C FIND AND UNIQUELY MARK THE APPROPRIATE NODE IN B.
C

I=GC(LD
DO 150 J=1,N
C(J,d)=C(J,d)+C(I,d)
C(I,J)=3%FN
C(J,I1)=3%FN
150 CONTINUE
CCI,I1)=C(CI,I)+FN
C
C FIND THE DESIRED EIGENVECTOR - C IS DESTROYED.
C
CALL TRED! (NM,N,C,DA,DB,SC)
CALL BISECT (N,0,DA,DB,SC,LB,UB,!,PN,RD,LM,ERR,S5SD, SE)

C
C STORE
C
160
C
C SINCE
C
C
C

ERR=-Z*ERR-PN+1

IF (ERR.NE.0) RETURN

CALL TINVIT (NM,N,DA,Db,SC,PN,RD,LM,FE,ERR,SD,
ERR=-ERR

IF (ERR.NE.0) RETURN

CALL TRBAK! (NM,N,C,DB,PN,FB)

n
1

E,EA,EE,FA)

THE EIGENVECTOR IN THE FIRST COLUMN OF XE.
DO 160 J=1,N

XBC(J, 1)=FB(J)
CONT INUE

BOTH EIGENVECTORS ARE STORED IN COLUMN ONE OF MATRIX ARRAYS,

SUBROUTINE SINGLE CAN EE USED TO GENERATE AND TEST UP TO MAXT
PERMUTATIONS.

CALL SINGLE (A,B,XA,XEBE,DA,DB,H,P,ERR,MACHP,MAXT, 1,N,NM)
IF (ERR.EQ.0) RETUR
IF (ERR.EQ.4) NN=N

170 CONTINUE

EER=1

IF

(NN.EGQ.N) ERR=2

RETURN

END

481

4. Computational Experience

The UNIVAC 1108 computer at the National Bureau of Standards was used to test the computer
program on well over 200 pairs of graphs specifically selected for use because of their difficulty. The
results have been encouraging. A Brookhaven National Laboratories group has compiled [2] a list of
149 pairs of nonisomorphic graphs of order varying from 7 to 10 that have 0,1 adjacency matrices with
identical spectra. These cospectral graphs arise in connection with the energy field of a Heisenberg
model ferromagnet. The computer program previously listed distinguished each of the 149 pairs in a
total time of 3.9 cpu seconds or, equivalently, each pair of graphs was determined to be nonisomorphic
in approximately 0.026 cpu seconds. Of the graphs, 109 failed the valence test, 28 the node duplication
test, and the remaining 12 pairs failed to have 1.x modified adjacency matrices with identical spectra.

With some modification the algorithm can be programmed to sort a large set of graphs into subsets
characterized by node valences, node duplication, 1,x modified adjacency matrix spectra, and in more
difficult cases, submatrix spectra. Once this is accomplished, the groups in each subset can be pairwise
checked for isomorphism using the program listed in this paper. This procedure was employed on a
collection of 35 graphs ranging in order from 5 to 9. Many of the graphs selected were known to be
isomorphic and all had large automorphism groups, thus making it as difficult as possible for the
algorithm to find permutations or to determine that none exist. By means of a simplified form of the
sorting procedure, the 35 graphs were divided into 19 subsets in approximately 5 cpu seconds. In this
particular case, the spectra test was a sufficient condition for graph isomorphism. To be sure, however,
permutations were generated between each pair of graphs in each subset. A total of 16 permutations
were generated, 13 by means of SUBROUTINE SINGLE and 3 requiring SUBROUTINE DOUBLE,
in a total time of 1.6 cpu seconds.

None of the graphs yet tested, however, required the use of SUBROUTINE SUBVAL or SUB-
ROUTINE SUBVEC. In response to a July, 1975 query about the existence of more challenging graphs,
D. Corneil provided 16 pairwise nonisomorphic, order 25 graphs, any two of which required approxi-
mately 60 seconds on an IBM 370 (no model number was mentioned) to be distinguished by then
current methods. The graphs were 3-strongly regular and stochastic with node valence 12. None of the
graphs has duplicate nodes and each had identical 1,x adjacency matrix spectra. The submatrix spectra
test, however, successfully sorted the group into 8 subsets, each containing two graphs. It is interesting
to note that the two graphs contained in each subset were duals of each other. This initial sorting was
accomplished in just 86 cpu seconds. When the algorithm was run on the 8 pairs of graphs, 5 were
separated by means of the submatrix eigenvector test. The test was inconclusive on the remaining 3
pairs of graphs. The total run time was 150 cpu seconds. Of this total, 86 cpu seconds was spent dis-
tinguishing the 5 pairs and 64 cpu seconds on the unsuccessful effort to resolve the final 3 pairs. In
addition, the algorithm was applied to 5 of the graphs and constructed permutations. The program pro-
duced a permutation relating each of the 5 pairs of graphs by means of SUBROUTINE SUBVEC in
81 cpu seconds.

Approximately 90 percent of the time required by the program is used in the calculation of eigen-
values and eigenvectors. Thus selection of optimal eigenvalue and eigenvector computing software is
critical when time restrictions are sizeable. Since the EISPACK software referenced in the listing of the
algorithm proved to be satisfactory for our needs, no significant effort was made to find more efficient
software.

Tests on large numbers of random graphs were not conducted as it was felt that such tests would
yield little meaningful data. Experience gained from working with the eigenvectors and eigenvalues of
many graphs showed that only a relatively minute number of pairs of graphs exist for which the
question of isomorphism is at all challenging for the algorithm and no such graphs are likely to occur
in even a very large sample of randomly generated graphs. For the average pair of isomorphic graphs
of order n, it is estimated that a permutation will be generated in well under 10*n® cpu seconds UNI-
VAC 1108 time. Even faster times are achievable for random nonisomorphic pairs of graphs or through
modifications in programming which first sort graphs by node valences, node duplicate structure 1,x
modified adjacency matrix spectra, and in special cases (such as Corneil’s collection of order 25 graphs)
submatrix spectra, and then use the algorithm described in this paper to further reduce the subsets into
classes for which the graphs are pairwise isomorphic.

Thus, with efficient application of the algorithm it is possible to divide a very large number of
graphs into isomorphism equivalence classes in a reasonable amount of time. It is further possible to
test pairs of very large graphs for isomorphism and if one exists, to generate permutations between two
very large graphs.

482

5. References

[1.] Baker, G., Drum shapes and isospectral graphs, J. Math. Physics 7, 2238-2242 (1966) .

[2.] Baker, G., et al., A Data Compendium of Linear Graphs with Application to the Heisenberg Model, Brookhaven
National Laboratory Report, 1967. i

[3.] Corneil, D., and Gotlieb, C., An Efficient algorithm for graph isomorphism, JACM 17, 51-64 (1970).

[4.] Corneil, D., The Analysis of Graph Theoretical Algorithms, Proc. Fifth S-E Conference on Combinatorics, Graph
Theory and Computing, pp. 3-38 (1974).

[5.] Harary, F., King, C., Mowshowitz, A., and Read, R., Cospectral graphs and digraphs, Bull. London Math. Soc. 3,
321-328 (1971).

[6.] Johnson, C., and Newmar, M., A Note on Cospectral Graphs, submitted.

[7.] Mathon, R., and Corneil, D., Private Communications 1975-76.

[8.] Schmidt, D., and Druffel, L., A fast backtracking algorithm to test directed graphs for isomorphism using distance
matrices, JACM 23, 433-445 (1976) .

[9.] Smith, B., et al, Matrix Eigensystem Routines — EISPACK Guide, Lecture Notes in Computer Science 6,
(Springer-Verlag, New York, 1974).

(Paper 80B4-457)

433

	jresv80Bn4p_447
	jresv80Bn4p_448
	jresv80Bn4p_449
	jresv80Bn4p_450
	jresv80Bn4p_451
	jresv80Bn4p_452
	jresv80Bn4p_453
	jresv80Bn4p_454
	jresv80Bn4p_455
	jresv80Bn4p_456
	jresv80Bn4p_457
	jresv80Bn4p_458
	jresv80Bn4p_459
	jresv80Bn4p_460
	jresv80Bn4p_461
	jresv80Bn4p_462
	jresv80Bn4p_463
	jresv80Bn4p_464
	jresv80Bn4p_465
	jresv80Bn4p_466
	jresv80Bn4p_467
	jresv80Bn4p_468
	jresv80Bn4p_469
	jresv80Bn4p_470
	jresv80Bn4p_471
	jresv80Bn4p_472
	jresv80Bn4p_473
	jresv80Bn4p_474
	jresv80Bn4p_475
	jresv80Bn4p_476
	jresv80Bn4p_477
	jresv80Bn4p_478
	jresv80Bn4p_479
	jresv80Bn4p_480
	jresv80Bn4p_481
	jresv80Bn4p_482
	jresv80Bn4p_483
	jresv80Bn4p_484

