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Pseudointersection graphs are defined and a parameter called the pseudointersection number
of a graph, denoted w*(G) and closely related to the intersection number of G, denoted w(G), is
introduced. Relations between these parameters and conditions for them to be equal are examined.
The problem of computing w* (G) is examined.
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1. Introduction

A graph G = (V.E) where V and E are the vertex and edge sets shall be considered to be a simple
graph (i.e., finite, undirected and without loops or multiple edges), and all terms used shall be con-
sistent with their definitions in [3]7.

If Sis aset and F = {S;,Ss,...,S,} is a family of distinct nonempty subsets of S whose union is S,

then the intersection graph of F, denoted by Q(F), is the graph with V (Q(F)) — F such that S; and S;

are adjacent if and only if (iff) i 54 j and S; [ S; ¢ 0. A graph G is an intersection graph on S if
there exists such a family F for which G =~ Q(F). Every graph G is an intersection graph on some finite
set [7], and the intersection number »(G) is the minimum number of elements in a set S such that G
is an intersection graph on S.

If |S| = n then, as defined by S. Hedetniemi [5], a representation of G as an intersection graph
on S is a one to one function, 7:¥ (G) — {0,1}", such that for u,v € V' (G) one has (u,) ¢ E(G) iff r(u)
and r(v) have a 1 in a common coordinate position, and if 1 < i < n then there is some v ¢ V' (G) such
that r(v) has a 1 in the ith coordinate position.

For the complete graph K3 on vertices vy, vs, and v3 we have v (K3) = 3. If S = {a,b,c} then one
can choose, for example, S; = {a}, So = {a,b}, and S3 = {a,c} or S; = {ab}, So = {b,c} and
S3 = {a,c}. In the former case it is clear that elements b and c are needed only to make the S;’s distinct
and do nothing to indicate adjacency. Equivalently, for r:V(K3) — {0,1}* with r(v;) = (1,0,0),
r(ve) = (1,1,0) and r(v3) = (1.0,1). only the first coordinate has more than one 1 in it. As another
example, the graph K, — «x is given in figure 1 as an intersection graph, and, in this case, element ¢ of S
is not necessary to indicate the adjacency of any two vertices. The size required for S can be reduced by
eliminating these “fillers” used only to obtain distinct representations of each vertex.
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Ficure 1. Graph Ki — x as an intersection graph.

If S is a set and F = {S1,Ss,...S,} is a family of subsets of S (not necessarily nonempty or dis-
tinct) whose union is S, then the pseudointersection graph of F, denoted by Q*(F), is the graph with

v (Q* (F)) — F such that S; and S; are adjacent iff i 5« j and S; [] S; 54 0. Note that S; — @ implies

S corresponds to an isolated vertex. A graph G is a pseudointersection graph on S if there exists such a
family F for which G ~ Q* (F). The pseudointersection number of G, denoted o* (G), is the minimum
number of elements in a set S such that G is a pseudointersection graph on S. In particular, o*(K;) =0,
and ¢ > 2 implies o* (K;) = 1.

If |S| = n then a pseudorepresentation of G as an intersection graph on S is a function,
r:V(G) — {0,1}*, such that for u,v € ¥ (G) one has (u,») ¢ E(G) iff r(u) and r(v) have a 1 in a
common coordinate position. The requirements that r be one to one and that 1 < ¢ < n implies some

v ¢ V(G) has a 1 in the ith coordinate position have been dropped. However, if the ith component of
r(v) is O for every v € ¥ (G), then clearly o™ (G) < n — 1.

2. Computing 0*(G)

Since every representation is a pseudorepresentation one obtains the following.

ProposiTioN 1: For any graph G, o* (G) < o(G).

For a graph G, #(G) has been used to denote the minimum number of complete subgraphs of G which
contain all the vertices of G. If one lets §'(G) denote the minimum number of vertex disjoint complete
subgraphs of G which contain all the vertices of G, then it is easy to see that §(G) = 6’(G). Now let
6,(G) be the minimum number of complete subgraphs of G which contain all the edges of G, and let
61" (G) be the minimum number of edge disjoint complete subgraphs of G which contain all the edges of
G. For example, §(Ky — x) = 61(Ky — x) = 2 and 6,/ (Ky — x) = 3. Clearly 6,(G) < 6//(G) for
every graph G. Note that o™ (K;) =0 = 6,(K;).

THEOREM 2: For any graph G, o* (G) = 6,(G).

ProoF: Suppose o*(G) =k > 0, and let r:/'(G) — {0,1}* be a pseudorepresentation of G. Let S;
be the set of all vertices v in V' (G) for which r(v) has a 1 in the ith coordinate (1 < i < k). Now the
subgraph generated by S;, denoted (S;), is complete since u,v € S; implies u and v have a 1 in a common
coordinate position. If (u,v) ¢ E(G) then u and v have a 1 in some common coordinate, say the ith.
Hence (u,v) e (S;). Thus (S1), (S2), ..., (Sx) are complete subgraphs containing every edge of G, and
0:(G) < *(G).
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Suppose 0:(G) = k, and let S;,S., . .. ,Si be the point sets of complete subgraphs such that every
edge of G is in some (S;). Define r:V(G) — {0,1}* by r(v) = (en.es,...,ex) where e; =1if v e Si
and e; = 0 if v € S;. It is easy to see that r is a pseudorepresentation of G. Thus o* (G) < 6,(G).

While 6; = o*, 6) and o are independent parameters. For example, o* (K;) = 6, (K;) = 6,'(K)
— 1 < o(K;) when ¢ > 2. For the graph G of figure 2, 6,(G) = 0*(G) = 0(G) = 3 and 6,/ (G) = 4.

fe}
fouc}
Ficure 2. A graph with «(G) < 6. (G).

If v € V(G) then the neighborhood of v, denoted N (v), is the set of vertices adjacent to v, and the
closed neighborhood of v, denoted N[v],is N(v) |J {v}.

TueEOREM 3: If G has no isolated vertices and for any two distinct vertices, u and v, N[u] 5= N[v],
then o* (G) = o(G).

ProoF: Let r: ¥ (G) — {0.1}" be a pseudorepresentation of G where o* (G) = n. Suppose r(v;) =
r(vs). Since G has no isolated vertices, r(vy) =% (0,0,...,0). Hence r(v;) and r(v,;) have a 1 in a
common coordinate and so v; and v, are adjacent. Now u is adjacent to vy iff r(u) and r(vy) = r(v2)
have a 1 in a common coordinate iff u is adjacent to vs. Thus N [v;] = N [v2].

This contradiction implies that r is a one to one function. As already noted, there cannot be an
i with 1 < i < n such that r(v) is O in the ith component for every v ¢ V(G). That is, r is actually a
representation. This implies (G) < o*(G). Consequently o(G) = o*(G).

CoroLLARY 3.1.1: If G is triangleless and each component has at least three vertices, then v (G) =
0*(G).

The following is an easy consequence of the fact that 0*(G) = 6;(G) < ¢ where ¢ is the number
of edges of G(q = |E(G)]).

ProrosiTION 4:: Graph G is triangleless iff o* (G) = q.

The graph G in figure 3 gives a counterexample to the converse of Theorem 3 since o(G) =
0*(G) = 3 and, while G has no isolated vertices, the vertices S; = {a,b,c} and Ss = {a,b} satisfy
N[S;] = N[S.]. Consideration of edges «, ¥, and z show that #,(G) > 3. In general, if ¢(G) is the
maximum number of edges, no two of which are in a common clique, then clearly 6,(G) > €(G).
(A clique is a maximal complete subgraph. )
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Ficure 3. A graph with N[{ab,c}] = N[{ab}] and w(G) = w*(G).

To evaluate 6;(G), consider the set of complete subgraphs selected to cover E(G). Since every com-
plete subgraph is contained in a clique, 6;(G) can be defined as the minimum number of cliques of G
which contain all the edges of G. Let C1,Cs, . .. ,C; be the cliques of G, and let V; and E; be the vertex
and edge sets, respectively, of C;. The clique graph of G, denoted C(G), is the intersection graph on
V(G) with Fi = {V1,Va, ... V:}; let the clique-edge graph, denoted C (G), be the intersection graph on
E(G) with Fy = {E,Es, ... .E;}. Thus C(G) can be considered to be the graph whose vertices are the
cliques of G, with two cliques adjacent iff they have an edge in common. If G has no isolated vertices,
then it can be seen that C(G) is obtained from C(G) by deleting each edge corresponding to two cliques
intersecting in exactly one point.

The work of Hamelink [4] and Roberts and Spencer [8] gives us necessary and sufficient condi-
tions for a graph H to be the clique graph of some graph G. These same conditions can be shown to be
necessary and sufficient for H to be the clique-edge graph of some graph F. In general, let Cx(G) be the
graph whose vertices are the cliques of G, with two cliques adjacent iff they have at least % vertices in
common. Given H then there is a graph F with H = Cy(F) iff there is a graph G with H = C(G)
(See [8].)

C(G)

C(6)

FicuRre 4. 4 graph G and its clique graphs.
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In finding 6; (G) one has a collection of subsets of E(G), namely {E,,Es, ... ,E;}, and one needs to
select a subcollection with the smallest number of elements that still covers £(G). Thus evaluating the
pseudointersection number of G is a set covering problem. Much work has been done on set covering
problems using integer programming, for example, by Garfinkel and Nemhauser [2, chapter 8]. The
“reductions” possible for set covering problems lead to bounds for 6;(G).

For example consider the following. Let p; be the vertex of C(G) corresponding to E; for
1 < i < ¢ Suppose that there is an edﬂe e; in E; such that e; ¢ E; when j =< i(l < ¢ < ¢) iff
1 < i < k. Let ay(G) denote the minimum number of vertices of graph G such that every edge of G is
incident with at least one of these vertices.

PROPOSITION 5: k < 0, (G) = u* (G) < k+ a) (C(6) — {pos....pi}).

Proo¥: Suppose Ei(1 < i < t) and e;(1 < j < k) are as described above. Clearly Ei,
E,, . ...k, must be chosen to cover ey,es, ... ,e;, and so k < 61(G). Now for any edge e of G in two or
more cliques there are two or more adjacent points of C(G), say uq,us,.... If one of these is a
pi(1 < j < k), then e is in the clique £; already selected. If not, then edge (uy,us) is in C(G) —
{p1,-...pr}. Consequently Cy, ... ,C; and the cliques corresponding to an ag set of C(G) — {py,....px}
cover all the edges of G.

3. Observations

In addition to the advantages of pseudorepresentations over representations obtained by a direct
concentration on adjacency requirements, there are also situations in which pseudointersection graphs
can be formed while intersection graphs cannot. Given any m by n 0, 1-matrix M, one may, for example,
form a pseudointersection graph on m vertices v,vs,...,v,, by using a pseudorepresentation r:{v,

. 5um} = {0,1}" where r(v;) is the ith row of M. Very often r will not be a representation. Likewise
one can reverse the rows and columns (that is, treat M7 as above). As an example, one obtains the line
graph of G if the transpose of the incidence matrix is used.

Often one forms a graph H from a given graph G by a fixed procedure, such as forming the line
graph or clique graph. Much recent work has been done to investigate what happens when the operation
is iterated, for example in [1] and [6]. Such iterations on the formation of pseudointersection graphs
will be examined in [9].
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