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Pseudointersection graphs are defin ed and a para meter called the pseudo intersection number 
of a graph, denoted w*(G) and closely rela ted to the intersection number of G, denoted w(G) , is 
introduced. R elation s be tween these para meters and conditions for them to be equal are exami ned. 
The problem of computin g w* (G) is examined. 
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1. Introduction 

A graph C = (V,E ) where V and E are the vertex and edge sets shall be considered to be a simple 
graph (i.e., finite, undi rected and without loops or multiple edges), and all terms used shall be con· 
sistent with their definitions in [3J 1. 

If S is a set and F = {Sl ,S2, . .. , 5 11 } is a family of distinct nonempty subsets of S whose union is 5, 

then the intersection graph of F, denoted by n (F), is the graph with V (n(F) ) = F such that 5 i and Sj 

are adjacent if and only if (iff ) i =1= j and 5 i n Sj =1= 0. A graph C is an intersection graph on 5 if 
there exists such a family F for which C """ n (F). Every graph C is an intersection graph on some finite 
set [7J , and the intersection number w (C) is the minimum number of elements in a set 5 such that C 
is an intersection graph on 5. 

If lSI = n then, as defined by S. Hedetniemi [5J , a representation of C as an intersection graph 
on S is a one to one function, r :V(C) -'.> {O,l}n, such that for u,v € V(C) one has (u,v) € E(C) iff feU) 
and r (v) have a 1 in a common coordinate position, and if 1 ::::; i ::::; n then there is some v € V (C) such 
that r (v) has a 1 in the ith coordinate position. 

For the complete graph Kg on vertices Vj, V2, and V3 we have W( K 3 ) = 3. If S = {a,b,c} then one 
can choose, for example, S1 = {a}, S2 = {a,b}, and 53 = {a,c} or 51 = {a,b} , S2 = {b,c} and 
S3 = {a,c}. In the fo rmer case it is clear that elements band c are needed only to make the S;'s distinct 
and do nothing to indicate adjacency. Equivalently, for r:V(K 3 ) -'.> {O,lP with r(vd = (1,0,0 ), 
r (V2) = (1,1,0) and r( vs) = (1,0,1), only the first coordinate has more than one 1 in it. As another 
example, the graph K4 - x is given in fi gure 1 as an intersection graph, and , in thi s case, element c of S 
is not necessary to indicate the adjacency of any two vertices. The size required for 5 can be reduced by 
eliminating these" fill ers" used only to obtain distinct representations of each vertex. 
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FIGURE l. Graph K., - x as an intersection graph. 

If 5 is a set and F = {51,52 , • •• 5p } is a family of subsets of 5 (not necessarily nonempty or dis· 
tinct) whose union is 5, then the pseudo intersection graph of F, denoted by 0* (F), is the graph with 

V ( n* (F») = F such that 5 i and 5 j are adjacent iff i =1= j and 5 i n Sj =1= 0. Note that Si = 10 implies 

S, corresponds to an isolated vertex. A graph G is a pseudointersection graph on 5 if there exists such a 
family F for which G = n* (F). The pseudointersection number of C, denoted w* (C), is the minimum 
number of elements in a set 5 such that C is a pseudointersection graph on 5. In particular, w·" (Ktl = 0, 
and t ~ 2 implies w* (K t ) = 1. 

If [5[ = n then a pseudorepresentation of C as an intersection graph on 5 is a function, 
r:V(G) -7 {O,l}n, such that for u,v € V(C) one has (u,v) € E(C) iff r (u) and r(v) have a 1 in a 
common coordinate position. The requirements that r be one to one and that 1 ::::; i ::::; n implies some 
v E V (G) has a 1 in the ith coordinate position have been dropped. However, if the ith component of 
r ( v) is ° for every v € V ( C) , then clearly w·" (G) ::::; n - 1. 

2. Computing w*(G) 

Since every representation is a pseudorepresentation one obtains the following. 
PROPOSITION 1: For any graph G, w* (G) ::::; w(G). 
For a graph C, {)( G) has been used to denote the minimum number of complete subgraphs of C which 

contain all the vertices of C. If one lets ()' (C) denote the minimum number of vertex disjoint complete 
subgraphs of C which contain all the vertices of G, then it is easy to see that {} (C) = ()' (C). Now let 
(}1 (G) be the minimum number of complete subgraphs of C which contain all the edges of C, and let 
{}/ (C) be the minimum number of edge disjoint complete subgraphs of G which contain all the edges of 
C. For example, (}(K4 - x) = (}dK4 - x) = 2 and (}/(K4 - x) = 3. Clearly (}dC) ::::; (}/(C) for 
every graph C. Note that w·* (Ktl = ° = (}1 (Kd. 

THEOREM 2: For any graph G, w"· (G) = (}1 (G). 
PROOF: Suppose w* (G) = k > 0, and let r:V(C) -7 {O,l }k be a pseudorepresentation of C. Let 5 i 

be the set of all vertices v in V (C) for which r (v) has a 1 in the ith coordinate (1 ::::; i ::::; k). Now the 
subgraph generated by 5 i , denoted (Sil, is complete since u,v € 5 i implies u and v have a 1 in a common 
coordinate position. 1£ (u,v) E E (C) then u and v have a 1 in some common coordinate, say the ith. 
Hence (u,v) € <5i ). Thus (51)' (52), ... , (5k ) are complete subgraphs containing every edge of C, and 
(}l(G) ::::; w·x·(G). 
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Suppose OdG) = k, and let 5 1,52, ••• ,5k be the point sets of complete subgraphs such that every 
edge of G is in some (5i ). Define r:V(G) ~ {O,l }" by rev) = (e],e2, ... ,ek) where el = 1 if v f Si 
and ei = 0 if v f 5i . It is easy to see that r is a pseudorepresentation of G. Thus w~· (G) :::;; OI (G). 

While OI = w*, OI' and ware independent parameters. For example, w·*(Kt ) = Ol (Kd = (h'(K1 ) 

= 1 < w(Ktl when t ~ 2. For the graph e of figure 2, Ol(G) = w* (G) = w(G) = 3 and OI'(G) = 4. 

{a} ___ ---:.--___ 

-------{c} 

FIGURE 2. A graph with w(G) < OI'(G). 

If v f vee) then the neighborhood of v, denoted N(v), is the set of vertices adjacent to v, and the 
closed neighborhood of v, denoted N [v] , is N (v) U {v} . 

THEOREM 3: If G has no isolated vertices and for any two distinct vertices, u and v, N [u] 7'= N [v] , 
then w * (G) = w (G) . 

PROOF: Let r: V (G) ~ {O,I} n be a pseudo representation of G where w * (G) = n. Suppose r (Vj) = 
r (V2). Since G has no isolated vertices, r (v,) 7'= (0,0, ... ,0). Hence r ( v]) and r ( V2) have a I in a 
common coordinate and so VI and V2 are adjacent. Now u is adjacent to v] iff r (u) and r ( v]) = r (V2) 
have a 1 in a common coordinate iff u is adjacentto V2. Thus N [VI] = N [V2]. 

This contradiction implies that r is a one to one function . As already noted, there cannot be an 
i with 1 :::;; i ~ n such that r (v) is 0 in the ith component for every v f V (G). That is, r is actually a 
representation. This implies w(G) ~ w* (G). Consequently w(G) = w* (e). 

COROLLARY 3. L I: If G is triangleless and each component has at least three vertices, then w (G) = 
w*(G). 

The following is an easy consequence of the fact that w*(e) = OI(G) ~ q where q is the number 
of edges of G (q = IE ( G) I) . 

PROPOSITION 4: Graph Gis triangleless iff w* (G) = q. 
The graph G in figure 3 gives a counterexample to the converse of Theorem 3 since w (G) = 

w * (G) = 3 and , while G has no isolated vertices, the vertices 51 = {a,b,c} and 52 = {a,b} satisfy 
N[5 1] = N [52]. Consideration of edges x, y, and z show that Ol (G) ~ 3. In general, if f (G ) is the 
maximum number of edges, no two of which are in a common clique, then clearly OI (G) ~ d G) . 
(A clique is a maximal complete subgraph.) 

443 



{a} 

{ate} 

FIGURE 3. A graph with N[{a,b,c}] = N[{a,b}] and w(G) = w*(G)' 

To evaluate 81 (C) , consider the set of complete subgraphs selected to cover E (C) . Since every com
plete subgraph is contained in a clique, 81 (C) can be defined as the minimum number of cliques of C 
which contain all the edges of C. Let C1.C2 , ••• ,Ct be the cliques of C, and let Vi and Ei be the vertex 
and edge sets, respectively, of Ci • The clique graph of G, denoted C(C), is the intersection graph on 
V (C) with F1 = {V1,V2 , ••• ,vd; let the clique-edge graph, denoted C (C) , be the intersection graph on 
E(C) with F2 = {E1,E2 , ••• ,Ed. Thus C(C) can be considered to be the graph whose vertices are the 
cliques of C, with two cliques adjacent iff they have an edge in common. If C has no isolated vertices, 
then it can be seen that C(C) is obtained from C(C) by deleting each edge corresponding to two cliques 
intersecting in exactly one point. 

The work of Hamelink [4] and Roberts and Spencer [8] gives us necessary and sufficient condi
tions for a graph H to be the clique graph of some graph C. These same conditions can be shown to be 
necessary and sufficient for H to be the clique-edge graph of some graph F. In general, let CdC) be the 
graph whose vertices are the cliques of C, with two cliques adjacent iff they have at least k vertices in 
common. Given H then there is a graph F with H = Ck(F) iff there is a graph C with H = C(C) 
(See [8].) 

C (G) 

G 

FIGURE 4. A graph G and its clique graphs. 
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In finding Od C) one has a coll ection of subsets of E (C) , namely {E 1,E2 , ••. ,Ee} , and one needs to 
select a subcollection with the smallest number of elements that still covers E (C). Thus evaluating the 
pseudointersection number of C is a set covering problem. Much work has been done on set covering 
problems using integer programming, for example, by Garfinkel and Nemhauser [2, chapter 8]. The 
"reductions" possible for set covering problems lead to bounds for Ol (C). 

For example, consider the following. Let Pi be the vertex of C(C) corresponding to Ei for 
1 ~ i ~ t. Suppose that there is an edge ej in Ej such that e j £ Ei when j ¥= iO :$ i :$ t) iff 
1 ~ i ~ k. Let ao (G) denote the minimum number of vertices of graph G such that every edge of G is 
incident with at least one of these vertices. 

PROPOSITION 5: k ~ OJ (G) = w* (G) ~ k + ao (C(G) - {Ph ... ,pd). 

PROOF: Suppose Ei (l ~ i ~ t) and ej(l ~ j ~ k) are as described above. Clearly El , 

E2, ... ,EA: must be chosen to cover el,e2,' .. ,elo, and so k ~ Ol (G). Now for any edge e of G in two or 
more cliques there are two or more adjacent points of C(G), say Ul,U2, " •• If one of these is a 
pj(l ~ j ~ k), then e is in the clique Ej already selected. If not, then edge (UJ,U2) is in C(G) -
{PI,' .. ,pd· Consequently C1, ••• ,CA: and the cliques corresponding to an ao set of C(G) - {PI, ... ,Pk} 
cover all the edges of G. 

3. Observations 

In addition to the advantages of pseudorepresentations over representations obtained by a direct 
concentration on adjacency requirements, there are also situations in which pseudointersection graphs 
can be formed while intersection graphs cannot. Given any In by nO, I-matrix M, one may, for example, 
form a pseudointersection graph on In vertices Vl,V2,' •• ,VI/t by using a pseudorepresentation r: {VI, 

.. . ,v"'} ~ {O,l}n where r (Vi) is the ith row of M. Very often r will not be a representation. Likewise 
one can reverse the rows and columns (that is, treat M'r as above). As an example, one obtains the line 
graph of G if the transpose of the incidence matrix is used. 

Often one forms a graph H from a given graph G by a fixed procedure, such as formin g the line 
graph or clique graph. Much recent work has been done to investigate what happens when the operation 
is iterated, for example in [1] and [6]. Such iterations on the formation of pseudointersection graphs 
will be examined in [9]. 
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