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Interrelated inequalities involving doubly stochastic matrices are presented. For example, if B
is an n by n doubly stochastic matrix, x any nonnegative vector and y = Bx, then xixz+ + -+ +an <
y1yz+ + - ¥n. Also, if 4 is an n by n nonnegative matrix and D and E are positive diagonal matrices
such that B = DAE is doubly stochastic, then det DE > p(A)™", where p(A4) is the Perron-
Frobenius eigenvalue of A. The relationship between these two inequalities is exhibited.
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An n by n entry-wise nonnegative matrix B = (b;;) is called row (column) stochastic if 3 b;; =1
=1

foralli=1,---,n <2 bij=1forallj=1,---,n ). If B is simultaneously row and column stochastic
i=1

then B is said to be doubly stochastic. We shall denote the Perron-Frobenius (maximal) eigenvalue of
an arbitrary n by n entry-wise nonnegative matrix A by p(A4). Of course, if 4 is stochastic, p(4) = 1.

It is known precisely which n by n nonnegative matrices may be diagonally scaled by positive
diagonal matrices D, E so that

(1) B — DAE

is doubly stochastic. If there is such a pair D, E, we shall say that 4 has property (*). In this event it is
our interest to obtain inequalities on D and E. In the process, certain related inequalities for doubly
stochastic matrices are noticed.

It was first realized by Sinkhorn [4]! that if 4 is entry-wise positive and square, then 4 has
property (*). The proof amounts to showing that the process of alternately scaling 4 to produce a row
stochastic matrix, and then a column stochastic matrix, and then continuing the process, actually con-
verges to a doubly stochastic matrix. The hypothesis of positivity, however, can be weakened somewhat.
If there exists no single permutation matrix P such that

PTAP — <j; (/’1%>

where 4;1 and Ass are square, then A is called irreducible. If there is a pair of permutation matrices
P, Q such that C = PAQ, then we shall say that 4 and C are equivalent. If, further, A is equivalent to
no matrix of the form

AMS Subject Classification: 15A45, 15A48, 15A51, 65F35.

* Work supported in part by NSF grant GP20555.
** Present address: Institute for Physical Science and Technology, University of Maryland, College Park, Md. 20742,
1 Figures in brackets indicate the literature references at the end of this paper.

433



(2) Ay 0

A Az
where A;; and A, are square, then A is termed completely irreducible. Tt is an easy calculation to show
that 4 has property (*) if and only if each matrix equivalent to 4 does, and it is equally clear that for 4
to have property (*) it must have the zero-nonzero sign pattern of a doubly stochastic matrix. For
example, if 4 has property (*) and if 4 is of form (2) this means we must then have 4,; = 0. It has
further been shown [1] that when A is completely irreducible the alternate scaling process of Sinkhorn

still converges and thus A4 has property (*). Since property (*) is preserved under direct summation, we
may summarize as follows.

REMARK 1: 4 square nonnegative matrix A has property (*) if and only if A is completely irreducible
or A is equivalent to a direct sum of completely irreducible matrices.

Thus, property (*) depends only on the zero pattern of A. It is also a straightforward calculation (fol-
lowing [4]) that

REMARK 2: If A has property (*), then the product DE of (1) is unique.
Our first observation is both necessary for later proofs and of interest by itself.

Tueorem 1: If B = (by;) is an n by n doubly stochastic matrix and x > 0 is any nonnegative vector,
then, for y = Bx, we have

(3) ox< Iy,
=1 =1

If B is completely irreducible, equality holds in (3) if and only if the right-hand side is O or all com-

ponents of x are the same. Furthermore, among all irreducible nonnegative square matrices B satisfying

p(B) < 1, only those diagonally similar to doubly stochastic matrices satisfy (3) for all x > 0.
ProoF: From the arithmetic-geometric mean inequality [2]

(4)
O < 3 yixi

i=1 i=1

where x = (x1,- - -,x,) 7 is any nonnegative vector, and y = (y1,* * *,y») is a vector of nonnegative num-

n

bers satisfying = y; = 1. Equality holds in (4) if and only if the x;’s corresponding to nonzero y;’s are
=l

all equal. Now: suppose B = (by;) is row stochastic and y = Bx, x > 0. It follows from (4) that

n bij n

(5) II Xj S 3 bi,-xj = % TEve 7 = 1,' M (8
i=1 =1

Taking a product over i of both sides, we arrive at

(6) Xj = bij S 1T Yi-
1 =1 i

j =1

=

If B is doubly stochastic, 3 b; = 1 for each j =1, - *,n, and it follows that (3) holds.
=l

To analyze the case of equality. it is clear that equality holds in (3) if either x is a vector of equal
components or the right-hand side of (3) is 0. On the other hand, if equality holds in (3) and the right-
hand side of (3) is not 0, then equality must hold in (5) for each i = 1, - -,n. This means that for each
i, the x;’s corresponding to nonzero b;’s are all equal. This, in turn, implies, by virtue of equality hold-
ing in (5) for all 7, that y = Q7x for some permutation matrix (. Since BQQ?x = y, we have that BQ
has Q%x = y as a Perron-Frobenius eigenvector (corresponding to p(BQ) = 1). If B is completely
irreducible, then BQ is irreducible, and, since BQ is doubly stochastic, its Perron-Frobenius eigenspace
is one-dimensional (because of the irreducibility) and is spanned by (1,1,---,1)”. Therefore all com-
ponents of Q7x, and thus of x, are the same. It should be noted that even in case B is completely irreduc-
ible it is possible that the right-hand side of (3) be 0 for a nonnegative nonzero vector x. For example, let
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8 s 18 0
B:< 1/6 1/6 2/3 > andx:< 0 >
172  1/2 0 1

Thus, the second statement of the theorem is proven. It should also be noted that the case of equality in
(3) may similarly be analyzed if B is equivalent to a direct sum of completely irreducibles. It is enough
to assume B is equal to a direct sum of completely irreducibles. Then, in addition to equality occurring
in (3) when the right-hand side is 0, equality occurs precisely when the components of x are equal
within each piece corresponding to a direct summand of B.

For the third statement, it is enough to assume that B satisfies p(B) = 1. It then follows from the
irreducibility of B that there is a positive diagonal matrix D such that DBD! is row stochastic (D is
obtained from the Perron-Frobenius eigenvector of B, which is positive). Since Bx = y if and only if
(DBDY)Dx = Dy, (3) holds for DBD if it holds for B, so that we may as well assume B is row
stochastic. Then, if B is not doubly stochastic, some column sum is <1, so let § = 2 b < 1. Let
x;=1,i5%4 j,and x; = 1 + €. Then (3) hecomes

1+ e <1+ by) =14 0+ 0(e),

which is impossible if € > 0 is small enough. This completes the proof of the theorem.
It should be noted that essential portions of theorem 1 may also be demonstrated by a maximization
argument.

ExampLE: The assumption of irreducibility in the third statement of theorem 1 cannot, in general, be

relaxed. If B = < { 2 > then B satisfies (3) for all x > 0 and p(B) = 1, but B is not similar to a

doubly stochastic matrix.
An alternate form of (3) is

CoroLLARY 1: If B = (by;) is an n by n doubly stochastic matrix, then for any n real numbers t;,* - - ty,
satisfying t; > —1,1 =1, *.n, we have

ﬁ(1+t) <H(1+2tb,,)

i=1 i=1
Our primary observation concerns row stochastic matrices with property (*).

THEOREM 2: If A is a row stochastic matrix with property (*) and D and E are the positive diagonal
matrices guaranteed by (1) then

(7) det DE > 1.
Furthermore, equality holds if and only if A is actually doubly stochastic.

ProoF: As B = (b;;) runs through all n by n doubly stochastic matrices and F — diag {f1," - *.,fa}
runs through all positive diagonal matrices then 4 = D—'BF runs through all row stochastic matrices

with property (*) where D — diag {2 b1 i © E bnjf]} Thus, since B = DAE, where £ = F—1, it

suffices to show that det D > det F. 1f we denote ( f1, -f2) T by f, this is equivalent to saying that the
product of the entries of Bf is greater than or equal to that of f for any positive vector f. This, of course»
follows from theorem 1. To ana]yze the case of equality in (7), it suffices to assume B is completely
irreducible. In this event, it follows from theorem 1 and the fact that Bf has no 0 components that
equality in (7) implies that all entries of f are the same. Thus D — F and equality holds in (7) precisely
when 4 is already doubly stochastic.

Note: A related but rather different inequality when A is symmetric appears in [3, theorem 3]. Also a
portion of the proof of that result could be used to prove part of the first statement in our theorem 1.
It follows from theorem 2 that

COROLLARY 2: If A is a row stochastic matrix with property (*) and B is related to A by (1), then
|det A| < |det B|.
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We denote the eigenvalues of 4 by ay," * *,as, ordered so that |a;] < +++ < |an|, and those of B by
B1," * *,Bn, ordered so that |3;| < -+ - < |B,]. Since a, = 1 = 3, it follows from corollary 2 that

CoROLLARY 3: If A is @ row stochastic matrix with property (*) and B is related to A by (1), then
n—1 n—l1
i Jol <0 161

We conjecture that in case 4 is row stochastic with property (*) and B is related to 4 by (1),
then actually

]ai| S |Bi|a i — 13' Y
The result of theorem 2 may be extended to all matrices with property (*) in the following way.

THEOREM 3: If A is any nonnegative n by n matrix with property (*) and D and E are positive
diagonal matrices guaranteed by (1), then det DE > p(A)™. Furthermore, equality holds only if
DE = p(A)1.

Proor: It is enough to assume A4 is completely irreducible (for, if not, it is equivalen to a direct
sum of same) and then A is irreducible. In this event there is a positive vector x such that Ax = p(4)x
1 . . c N
and, therefore, ) X14X is row stochastic, where X — diag{xy, * *,x,}. Application of theorem 2 to

P

=1e X1A4X vyields det D’E” > 1 where D’(L X1AX)E" = B. Setting D = L D’X™! and
p(4) p(4) p(4)

E = XF’, gives B—= DAE and det DE > p(A)™ as was to be shown. The case of equality also follows
from theorem 2.

REMARK 3: The reader may wish to note the relationship between the present work and the notion of the
equilibrant,
E(B) = inf p(FB)

(where the inf is taken over all positive diagonal matrices of determinant 1)

, of a nonnegative matrix
mentioned in [5].
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