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Interrelated inequalities involving doubly stochastic matrices are presented. For example, if B 
is an n by n doubly stochasti c matrix, x any nonnega tive vector and y = Bx, the n XIX,· •• ,x" :0:::; 
YIY" •• y ... Also, if A is an n by n nonnegotive matrix and D and E are positive diagonal matrices 
such that B = DAE is doubly s tochasti c, the n det DE ;:::: p(A) ... , where p (A) is the Perron· 
Frobenius eigenvalue of A. The relationship between these two inequalities is exhibited. 
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n 

An n by n entry·wise nonnegative matrix B = (b i;) is called row (column) stochastic if l bi ; = 1 
;= 1 

for all i = 1,. . ',n (~l bij = 1 for all j = 1,' . ',n ). If B is simultaneously row and column stochastic 

then B is said to be doubly stochastic. We shall denote the Perron·Frobenius (maximal) eigenvalue of 
an arbitrary n by n entry·wise nonnegative matrix A by p (A). Of course, if A is stochastic, p (A) = 1. 

It is known precisely which n by n nonnegative matrices may be diagonally scaled by positive 
diagonal matrices D, E so that 
(1) B=DAE 

is doubly stochastic. If there is such a pair D, E, we shall say that A has property ("). In this event it is 
our interest to obtain inequalities on D and E. In the process, certain related inequalities for doubly 
stochastic matrices are noticed. 

It was first realized by Sinkhorn [4)1 that if A is entry·wise positive and square, then A has 
property (*), The proof amounts to showing that the process of alternately scaling A to produce a row 
stochastic matrix, and then a column stochastic matrix, and then continuing the process, actually con
verges to a doubly stochastic matrix. The hypothesis of positivity, however, can be weakened somewhat. 
If there exists no single permutation matrix P such that 

PTAP = (Au 
A21 

where Au and A22 are square, then A is called irreducible. If there is a pair of permutation matrices 
P, Q such that C = P AQ, then we shall say that A and C are equivalent. If, further, A is equivalent to 
no matrix of the form 

AMS Subject Classification: 15A4S, ISA48, ISASI, 6SF3S . 
.. Work supported in part by NSF grant GP20555 . 

** Present address: Institute for Physical Science and T echnology, University of Maryland, College Park, Md. 20742. 
1 Figures in brackets indicate the literature references at the end of this paper. 

433 



(2) 

where All and A~2 are square, then A is termed completely irreducible. It is an easy calculation to show 
that A has property (-);) if and only if each matrix equivalent to A does, and it is equally clear that for A 
to have property (l<-) it must have the zero-nonzero sign pattern of a doubly stochastic matrix. For 
example, if A has property C'-) and if A is of form (2) this means we must then have A~l = O. It has 
further been shown [1] that when A is completely irreducible the alternate scaling process of Sinkhorn 
still converges and thus A has property (If). Since property (If ) is preserved under direct summation, we 
may summarize as follows. 

REMARK 1: A square nonnegative matrix A has property (") if and only if A is completely irreducible 
or A is equivalent to a direct sum of completely irreducible matrices. 
Thus, property (If) depends only on the zero pattern of A. It is also a straightforward calculation (fol
lowing [4]) that 

REMARK 2: If A has property (*), then the product DE of (1) is unique. 

Our first observation is both necessary for later proofs and of interest by itself. 

THEOREM 1: If B = (b jj ) is an n by n doubly stochastic matrix and x ?: 0 is any nonnegative vector, 
then, for y = Bx, we have 

(3) 11 Xi::::: 11 Yi' 
i==l i=l 

If B is completely irreducible, equality holds in (3) if and only if the right-hand side is 0 or all com· 
ponents of x are the same. Furthermore, among all irreducible nonnegative square matrices B satisfying 
pCB) ::::: 1, only those diagonally similar to doubly stochastic matrices satisfy (3) for all x ?: 0. 

PROOF: From the arithmetic-geometric mean inequality [2] 

(4) 
n n 

11 x;'Y' ::::: ::s YiXi 
i=l i=l 

where x = (Xl,' .. ,Xn) T is any nonnegative vector, and Y = (Y1," . ,Yn) is a vector of nonnegative num· 
n 

bers satisfying ::s Yi = 1. Equality holds in (4) if and only if the x;'s corresponding to nonzero Yi'S are 
i=l 

all equal. Now, suppose B = (b ij ) is row stochastic and y = Bx, x ?: 0. It follows from (4) that 

n biJ n 

(5) 11 Xj ::::: ::s b;jxj = Yi, for i = 1,. .. ,no 
j=l j=l 

Taking a product over i of both sides, we arrive at 
n ,. n 

(6) 11 xj::s bij ::::: 11 Yi. 
j=1 ,=1 i=l 

,. 
If B is doubly stochastic, ~ bij = 1 for each j = 1, ... ,n, and it follows that (3) holds. 

i==l 

To analyze the case of equality, it is clear that equality holds in (3) if either x is a vector of equal 
components or the right.hand side of (3) is O. On the other hand, if equality holds in (3) and the right. 
hand side of (3) is not 0, then equality must hold in (5) for each i = 1,' .. ,no This means that for each 
i, the x/s corresponding to nonzero b;/s are all equal. This, in turn, implies, by virtue of equality hold· 
ing in (5) for all i, that y = QTX for some permutation matrix Q. Since BQQTX = y, we have that BQ 
has QTX = Y as a Perron-Frobenius eigenvector (corresponding to p(BQ) = 1). If B is completely 
irreducible, then BQ is irreducible, and, since BQ is doubly stochastic, its Perron-Frobenius eigenspace 
is one-dimensional (because of the irreducibility) and is spanned by (1,1,.·· ,1) T. Therefore all com· 
ponents of QTX, and thus of x, are the same. It should be noted that even in case B is completely irreduc· 
ible it is possible that the right-hand side of (3) be 0 for a nonnegative nonzero vector X. For example, let 
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1/3 
1/6 
1/2 

1/3 
1/ 6 
1/2 

Thus, the second statement of the theorem is proven. It should also be noted that the case of equality in 
(3) may similarly be analyzed if B is equivalent to a direct sum of completely irreducibles. It is enough 
to assume B is equal to a direct sum of completely irreducibles. Then, in addition to equality occurring 
in (3) when the right-hand side is 0, equality occurs precisely when the components of x are equal 
within each piece corresponding to a direct summand of B. 

For the third statement, it is enough to assume that B satisfies p(B) = 1. It then follows from the 
irreducibility of B that there is a positive diagonal matrix D such that DBD-I is row stochastic (D-I is 
obtained from the Perron-Frobenius eigenvector of B, which is positive). Since Bx = y if and only if 
(DBD-I )Dx = Dy, (3) holds for DBD·I if it holds for B, so that we may as well assume B is row 
stochastic. Then, if B is not doubly stochastic, some column sum is <1, so let 0 = ~ bii < 1. Let 
Xi = 1, i =/= j, and Xi = 1 + £. Then (3) becomes i 

1 + ( S II (l + bij£) = 1 + o( + 0 «(2) , 
i 

which is impossible if ( > 0 is small enough. This completes the proof of the theorem. 
It should be noted that essential portions of theorem 1 may also be demonstrated by a maximization 

argument. 

EXAMPLE: The assumption of irreducibility in the third statement of theorem 1 cannot, in general, be 

relaxed. If B = ( i ~ ) then B satisfies (3) for all X ~ 0 and p (B) = 1, but B is not similar to a 

doubly stochastic matrix. 

An alternate form of (3) is 

COROLLARY 1: If B = (b;j) is an n by n doubly stochastic matrix, then for any n real numbers t],· .. ,tn, 
satisfying ti ~ -1, i = 1,· .. ,n, we have 

II (l + t;) S II (1 + ~ tjb;j) . 
i=1 i=! j=1 

Our primary observation concerns row stochastic matrices with property (*). 

THEOREM 2: If A is a row stochastic matrix with property (*) and D and E are the positive diagonal 
matrices guaranteed by (1) then 

(7) det DE ~ 1. 

Furthermore, equality holds il and only if A is actually doubly stochastic. 

PROOF: As B = (b ij ) runs through all n by n doubly stochastic matrices and F = diag {fl'- .. ,In} 
runs through all positive diagonal matrices, then A = D-IBF runs through all row stochastic matrices 

n n 

with property (*) where D = diag {~ bljfj,···, ~ bnJi}. Thus, since B = DAE, where E = F-t, it 
j= 1 j = 1 

suffices to show that det D ~ det F. If we denote (/1, ... ,In) T by I, this is equivalent to saying that the 
product of the entries of Bf is greater than or equal to that of f for any positive vector f. This, of course, 
follows from theorem 1. To analyze the case of equality in (7), it suffices to assume B is completely 
irreducible. In this event, it follows from theorem 1 and the fact that Bf has no 0 components that 
equality in (7) implies that all entries of f are the same. Thus D = F and equality holds in (7) precisely 
when A is already doubly stochastic. 

Note: A related but rather different inequality when A is symmetric appears in [3, theorem 3]. Also a 
portion of the proof of that result could be used to prove part of the first statement in our theorem 1. 

It follows from theorem 2 that 

COROLLARY 2: I I A is a row stochastic matrix with property (*) and B is related to A by (1), then 
Idet AI S Idet B/. 
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We denote the eigenvalues of A by a1,' .• ,an, ordered so that lad ~ ... ~ lanl, and those of B by 
/31.' .. ,/3n, ordered so that 1/311 ~ ... ~ l/3nl· Since an = 1 = f3n' it follows from corollary 2 that 

COROLLARY 3: If A is a row stochastic matrix with property (*) and B is related to A by (1), then 
n-l n-l 

II lail ~ II lf3d. 
i=l i==l 

We conjecture that in case A is row stochastic with property (*) and B is related to A by (1), 
then actually 

lail ~ l/3il, i = 1,' .. ,no 

The result of theorem 2 may be extended to all matrices with property (*) in the following way. 

THEOREM 3: If A is any nonnegative n by n matrix with property (*) and D and E are positive 
diagonal matrices guaranteed by (1), then det DE ~ p(A) .n. Furthermore, equality holds only if 
DE = ptA) -11. 

PROOF: It is enough to assume A is completely irreducible (for, if not, it is equivalen to a direct 
sum of same) and then A is irreducible. In this event there is a positive vector x such that Ax = p(A)x 

and, therefore, p(~) X"lAX is row stochastic, where X = diag{x1" .. ,xn }. Application of theorem 2 to 

p(~) X"lAX yields det D'E' ~ 1 where D'(p(~) X"lAX)E' = B. Setting D = p(~) D'X-1 and 

E = XE', gives B = D A E and det D E ~ p (A)·n as was to be shown. The case of equality also follows 
from theorem 2. 

REMARK 3: The reader may wish to note the relationship between the present work and the notion of the 
equilibrant, 

E(B) == inf p(FB) 

(where the inf is taken over all positive diagonal matrices of determinant 1), of a nonnegative matrix 
mentioned in [5]. 
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