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A More Tractable Solution to a Singular Integral 
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The singular integral equation 

ll(_I_+ +~ )if;(X) dx=h, 0< 0'< 1, 
x-O' x 0' 

is converted into another singular integral equation 

where 

1 r oo cjJ(t) 3 r oo cjJ(t) _ -2h, OJ - -- - dt+-..;x - ri dt - /- l < x< , 
2Jl t-x 2 Jl -yt(t-x) 'x 

(1) if; T-
cjJ(x)=~. 

~x 

The form er was derived from a boundary value problem in wave guide theory, and the solution is known. By 
solving a related I-Iilbert problem for two unkno,,-n function s, the solution of the latter integral equation is 
obtained. Then, the expression 

is compared to the former known expression obtained for if; (x), and the new expression is found to be marc 
tractable. 

Key ,yords: Analytic function; Cauchy principlc value; Hilbcrt problem for two unknowns; singular integral 
equation; wave-guide boundary problem. 

1. Introduction 

This paper illustrates an alternate procedure for solving in closed form an integral equation 
derived from a problem concerning a 3-dimensional wave-guide structure and discussed by 
G. T. Bierman [IP namely 

f 1(_I_+ +~ )if;(X)dX=h, 0<0'<1. Jo X-O' x 0' 
(1) 

The more general class of equations, of which (1) is a special case, in also treated by H. F. 
Bueckner [2] using numerical approximation methods. 

One purpose for the alternate procedure is to arrive at the solution is a more simplified 
expression than previously obtained. Another purpose is also intended. The method we employ 
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involves solving a Hilbert problem for two unknowns. Although the method for solving the 
general Hilbert problem for one unknown is known, [3], [5], [7], Vekua [10] states that the 
solution to the general problem for several unknowns cannot be expressed in closed form. 
The other purpose is to illustrate a special technique which can be used to solve certain non­
homogeneous Hilbert problems for several unknowns. 

2. Physical Origin of (l) 

Equation (1) has been shown by Bierman [1] to arise from a problem involving a wave­
guide structure in which a perfectly conducting surface extends from - co to co in the direc­
tion of the z axis, making the boundary problem 2-dimensional in nature. Although some 
numerical results for the physical problem are reported in [6] and [9], the objective in [1] is to 
obtain a closed form solution. Here, we summarize the results beginning with the following 
diagram taken from [1] of the boundary and boundary conditions in the x-v plane. 

Ey = 0 E = 0 

Ey = 0 , 0 < q < 1 

y 

2~ ~~---------------- Lx 2qn ~<-----------

Transmitted 
Wave 

Ey = 0 

E = 0 

Reflected 
Wave 

Ey = 0 

1 

FIGURE 1. Widening, straight, 2-dimensional wave guide 

By Fourier analysis, the following equation for ° ':5:. y ':5:. q7r is obtained. 

ik(l- )E ( _1+ p)_2. rq". E'( ) q + q sm m d~ [
sin (t) .] 

p 0 q I-p -7rqJo ~ cos(D-cos(~) cos(~)-cos(y) , 
(2) 

where E(x, y) is the v-component of the electric field of the wave guide, and E(y) =E(O, y) 
represents the field in the aperture. Solving for E' (y) and hence E(y) then determines the 
reflection coefficient p by 

(l-p)Eo=-21 f q7r E(~)d~. 
7rq -q". 

(2a) 

Once p is computed, the transmission coefficient is given by 

T=q(l-p). (2b) 

Although the general solution to (2) for arbitrary q, O<q<l, is unknown, Bierman arrives 
at a solution for the specific case 

1 
q=-' 

2 
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This is done by letting 

x=cos (y), l1=cos W, 1/;(x)=E'(cos-1 (x)), h=~ik(l-p)EoG-~~:} (2c) 

in which case (2) for 

becomes 

1 
q=-

2 

(1(_1_+ +~ )1/;(X)dX=h,O<I1<1. Jo X-IT X IT 

Then (1) is solved for 1/;(x) and E' (y) obtained from (2c). 

(1) 

Actually, a general class of equations of which (1) is a specific case is treated in [1]. In 
the treatment, the general equation is converted into an equivalent integral equation to which 
the Wiener-Hopf technique is applied, i.e., the technique of Fourier transforms, functional 
equations, and analytic continuation procedures. The genClal solution obtained for (1) is 

xh d {I (I (X) (~) 1 
1/;(x) =coko(x) + 7ri dx Jo Jx ko f kl t t d~dt, (3) 

where 

(3a) 

and 

Expression ko(x) of (3a) is a nontrivial eigenfunction of (2), and Co is a constant. 
A disadvantage of the above resul t is the complicated expression for the particular part 

of the solution to (1). Limitation due to the difficulty in evaluating k1('x) and the particular 
part of the solution (3) is admitted in [1] by stating that it does not seem likely they can be 
expressed in terms of elementary functions. However, we shall show that the solution can be 
expressed in terms of elementary functions. 

3. An Alternate Approach to Solving (l) 

In this section, we shall convert (1) into a singular integral equation in which only the 

Cauchy kernel term -t 1 appears under the integral sign. This new integral equation will 
-x 

subsequently be converted into an equivalent Hilbert problem for two unknown functions [10]. 

By the transformations, 

eq (1) becomes 

1 1 
X=-'I1=-' r 8 
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where we have used a bar through the first integral sign to denote the Cauchy-principle 
value of the integral. Then the substitutions s=·/x, r=·/i, transform (4) into 

where 

N ow if the term 

cp(t)=if;(~). 
{i 

.Jx fOO cp(t) !!! 
2 J1 ({i-Fx) 2{i 

is added and subtracted on the left-hand side of (5a), then 

Also, if the term 

is added and subtracted on the left-hand side of (5a), then 

--/x foo cp(t) dt+(I+!).JX r oo cp(t) d~_=h. 
J 1 t-x 2 J1 (.Jt+.Jx) 2-vt 

Finally, by adding eqs (6) and (7), 

!Ioocp(t)dt+~.JxIOO cp(t) dt= -~hd<x<oo 
2 J 1 t-x 2 J 1 .Jt(t-x) .Jx 

where 

if;(~) 
cp(x)= .J_x . 

.Jx 

Equation (8) is a special case of the singular integral equation 

a(x) I'" cp(t) dt+b(x)IOO cp(t) dt=c(x), l<x< CD 

J1 t-J' J 1 .Jt(t-x) 

(5a) 

(5b) 

(6) 

(7) 

(8) 

(9) 

(10) 

where the bar through each integral sign denotes the Cauchy principle value of the integral. 
This class of equations is considered in [8] where the approach is to consider a Hilbert problem 
derived from (10). Another case of (10) has been shown by Latta [4] to arise from a convolution 
integral equation with finite limits. In the next section we begin discussing the Hilbert problem 
related to (8). 

4. Conversion of (8) to a Hilbert Problem for Two Unknowns 

To solve (8), one can try to proceed with a method similar to one of the standard approaches 

used to solve certain singular integral equations with the Cauchy kernel term -t 1 [3], [5], [7]. -x 
The method is based on the theory of Cauchy integrals [5], [7]. 
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If a solution is known to exist, the theory of Cauchy integrals suggests its derivation (for 
reasons which will become clear in the ensuing analysis) by considering the functions 

1 f OO l/>(t) 1 f OO </>(t) 
F(z)=-2' - dt, G(z)=2------- ~ dt, zdl, (0). 

7r'/, 1 t - Z 7r'/, 1 t (t- z) 
(11) 

If l/> (t) is of a suitable class of functions/ then F(z) and G(z) have the following properties: 

and 

I. F(z) and G(z) are analytic in the finite complex z-plane excluding the real semi­
infinite interval [1, (0). 

II. F(z) and G(z) have at worst growth rate at Z= 1 less than that of a simple pole. 
III. There exists a 'Y > 0 such that 

F(z) =O( lzl -"l) 

G(z) = O( lzl -(-r+~)) as Izl-)OO, ze[l, (0). 

Other basic properties of F(z) and G(z) come from relations between their boundary values. 
Let F+ (x), G+ (x) and F _ (x), G _ (x) denote the limits of F(z), G(z) as Z~X, 1 < x< 00, from above 
and below the real axis respectively. From the theory of Cauchy integrals [5], [7], these limits 
exist and are given by 3 

which leads to the Plemelj formulae 

(13a) 

F+(x)-F_(x)=l/>(x), (13b) 

1 r oo q,(t) 
G+(x) +G_(X)=-= -J ~ elt, 

7r'/, 1 t(t-x ) 
(13c) 

(13d) 

l <x< 00. 

N ow, the integral equation (8) can be expressed as an equivalent problem in terms of 
F(z) and G(z) defined in (11). Note that (13a) and (13c) reveal that (8) is equivalent to 

(14a) 

2 It is sufficient that -...;x", ( "/x) be of class C( A) described by Levinson [5] wherc C= (0, 1). Then, by 
results in [5], the function 

is analytic in the complex z-plane cut along [0,1], and has at worst growth rate at z=o and z=1 less than 
that of a simple pole. Thus, by replacing 

z by ~ and t by i in 'It (z), 

conditions I, II, and III follow for the function 

F(z)= 'ItO) =~ r oo ift(J-J (~) dt. 
z 27l'dl .,[t l-Z 

3 Again, it is sufficient that ---{Xift( --Ix) bc in class C( A) described by Levinson [5] where C= (0, 1). 
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while (13b) and (13d) reveal that 

F+(x)-F_(x)=-/x(G+(x)-G_(x)), l<x< 00. (14b) 

Equations (14a) and (l4b) along with conditions I, II, and III constitute a Hilbert problem 
for two unknown functions F(z) and G(z) [10]. Solution of the problem determines 4>(x) to (8) 
by either (13b) or (13d). In matrix form, (14a) and (14b) can be written as 

which is the matrix analogue of the Hilbert problem on an arc for one unknown function [5], [7]. 
As mentioned in the introduction, the method for solving the general Hilbert problem for 

one unknown is known. However, as Vekua [10] states, the solution to the general Hilbert 
problem for several unknowns cannot be expressed in closed form. One of two special methods 
developed in [8] will be used to solve the Hilbert problem (14). 

5. Solution of the Hilbert Problem (14) 

Relations (14a) and (14b) do not uncouple into equations involving just boundary values 
of F or just boundary values of G. To solve this system, a special procedure which generates 
particular solutions to certain nonhomogeneous problems from known homogeneous solutions 
will be used. 

We first observe that the eigenfunction (3a) to (1) admits an eigenfunction to the cor­
responding homogeneous form of (8). Specifically, by the relation (9) and the expression (3a), 
the function 

must be an eigenfunction and the only nontrivial one satisfying 

Likewise, by the Plemelj formulae (13) and the integral definitions (11), the function 

[
FO( Z) ] [~ r oo 4>0(t) dt ] 

211''1, Jl t-z 
= ,z¢[l, (0), 

Go(z) ~. r oo 4>0(t) dt 
211''1, Jl .Jt(t-z) 

must be an eigenfunction to 

~ 1I'i( Fo+ (x) + Fo_ (x)) +~ .JX1I'i(Go+ (x) +GL (x)) =0, 

(Fo+ (x)- Fo_ (x)) =.JX(Go+ (x) -GL (x)), l<x< 00. 

(15) 

(16) 

(17) 

(18) 

To generate candidates for a particular solution to (14), we shall also need the eigenvector 

[~o(z)] 
Go(z) 
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satisfying the Hilbert problem "adjoint" to (IS), i.e., 

(19) 

The I-Iilbert problem (19), is of course, derived from the singular integral equation adjoint 
to (16), i.e., 

(20) 

by applying the Plemelj formulae for Cauchy type integrals to 

(21) 

By the same procedure in which (S) was derived from (1), (20) can be derived from the 
integral equation 

( 1) 1 1 -2-r - +-+ ifio(x)dx= O, 0< <T < 1, Jo X-<T x (]" 
(22) 

where 

-(1) ifio -
;o(x)= -IX. 

-IX 

(22a) 

But (22) can be solved by the method in [1] which shows that there is one nontrivial eigen­
function given by 

(23) 

Hence, 

(24) 

and therefore, Fo(z) and Oo(z) in (21) are known. 
N ow, in order to explain a method in [S] which will construct a candidate for a particular 

solution to (14), we are going to illustrate the idea it involves on a simple Hilbert problem for 
one unknown. This will require less mechanics than if it is explained directly on (14). 

Consider the function 

h(z) = I 1 , (*1) 
"z-l 

which is analytic in the z-plane eut from Z= 1 to z= co along the real axis. With the choice of 
the branch 
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(*2) 

where h+(x) and L(x) are limits of h(z) as z~x, 1<x< co, from above and below the cut re­
spectfully. Hence h(z) is a solution to the homogeneous Hilbert problem 

(*3) 

where fez) is required to be analytic in the z-plane cut from Z= 1 to Z= 00 along the real axis, 
to tend to zero algebraically as I z l ~ co, and to have at worst growth rate at Z= 1 less than 
that of a simple pole. Also, boh(z) for any constant bo is a solution to (*3) . 

Whole families of particular solutions to certain nonhomogeneous Hilbert problems can 
be generated from h(z) in the following way. Let Zo be a point in the z-plane not on the real 
axis from Z= 1 to Z= co. From 

subtract the principle part of the Laurent expansion of 

about Z=Zo, and define fn(z) as 

(*4) 

where h(k) (zo) is kth derivative of h evaluated at zoo For n= 1, 2, ... , a countably infinite 
family of functions is constructed. Each member is analytic in the z-plane cut from Z= 1 to 
z = co along the real axis. 

To see how the functions (*4) form solutions to certain nonhomogeneous Hilbert problems, 
let 

represent a constant coefficient lineal' combination of functions defined by (*4). If this lineal' 
combination converges uniformly to a function g(z) at all finite z in the cut plane and to g+(x), 
g_(x) on each respective side of the cut, then g(z) will be a particular solution to the Hilbert 
problem 

'" 
f+(x)+f-(x)="22hk(x), 1<x< 00, (*5) 

k=l 

where 

(*6) 

Conversely, if given the Hilbert problem 

(*7) 

where bk , k= 1, 2, ... , m, are constants, there is a constant coefficient linear combination of 
functions from (*4), i.e., 

(*8) 

which satisfies (*7). The constants Ak, k= 1, 2, ... , m, can be determined by substituting the 
boundary values of (*8) into (*7) and equating coefficients of like powers of 

1 
x-zo 
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The generating function scheme illustrated above can be applied to the Hilbert problem (14) 
to find a particular solution. We have as known homogeneous solutions the eigenvector (17) to 
the problem (18) and the eigenvector (21) to the problem (19). There are several ways to gen­
erate families of particular solutions to certain nonhomogeneous problems with left-hand side 
as in (14) . 

By noting the discussion of the scalar Hilbert problem (*7), it seems as though the fol­
lowing construction of functions will yield a particular solu tion to (14): 

[
FO;Z) ] _ [ FO;O) l, [F~:)l_[F~~)]_[FO~(O)] , .. . , 
Go(z) Go(O)J Go(Z)J Go(O) Go' (0) 

Z Z Z2 Z2 Z 

where Fo(z) and Go(z) are defined in (17). 
Another family of particular solu tions can be formed as follows : 

[
Fl(Z) ] [ GO(Z) ] [Fn+ l(Z)] [ Gn(Z) ] 

= Fo(z) Fo(O) , = Fn(z) F lI (O) ,n=l, 2, .... 
OI(Z) --- -- G +I(Z) - - - --

Z Z n Z Z 

However, direct substitution will verify that no constant multiple of the first vector in either 
of the above families will satisfy the boundary relation (14b). 

An appropriate candidate for a particular solution to (14) actually comes from the i"ollow­
ing generation of functions : 

where Fo(z) and Oo(z) are defined in (21). We will demonstrate that a particular solution to 
the Hilbert problem (14) is a specific constant multiple of 

(25) 

The constant Fo(O) is described by 

Fo(O) =~ r oo io(t) dt 
27l"~ Jl t 

where ¢0(1) is defined by (24). This definite integral is elementary and not difficult to evaluate 
if one begins with the substitution t=cosh2(O). It turns out that 

(26) 

We shall now show that some constant multiple of (25) is a particular solution of (14). 
Observe that by the way FI (z) and 0 1 (z) were constructed, a constant multiple of (25) satisfies 
conditions I, II , and III for a solution to (14). So, all that is needed is to make it fit the boundary 
relations (140,) and (14b). In terms of Fo(z) and Oo(Z) , the Plemelj formulae (13) for FI (z) 
and 0 1 (z) in (25) are _ 

F1+(x)-F1_(x)= rt>ix)' 

FJ+(x) + FL(X) =Go+(x) +GL(x), 
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1 -GI+(X)-GI (x)=- CPo(X), - x 

First, note that any constant multiple, t., of (25) satisfies the second relation (14b), i.e., 

In order for 

to satisfy relation (14a), t. must be chosen so that 

By substituting the boundary relations for FI (z) and GI (z) in (27), (28b) becomes 

By the known relation (19), (29) reduces to 

Finally, by substituting (26) into (30) and solving for t., 

What has just been shown is that the vector 

(27) 

(28a) 

(29) 

(30) 

is a particular solution to the Hilbert problem (14). The general solution to (14) is an arbitrary 
constant multiple of the homogeneous solution (17) plus a particular solution. Therefore, the 
general solution to (14) is given by 

[ F( Z) ] [Fo(Z)] h [FI(Z)] 
G(z) =ao Go(z) + 7r-/3 GI(z) 

(31) 

where Fo(z) and Go(z) are given by (17). 

6. A More Tractable Solution to n) 
The general solution to the singular integral equation (8) is now readily obtained from (31). 

By the Plemelj formulae (13b), the general solution to (8) is given by 

h 
=ao(Fo+(x) - Fo_(x») + '" (FI+(X)- F1_(x» 7r "\'3 
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= aoct>o (x) + 7r~(;;;1x»)' I<x< ro 

where ct>o(x) is given by (15) and ;;;o(x) is given by (24). 
In turn, by the relations (9), (15), and (22a), the general solution 1/;(x) to (1) is given by 

_ hx -
1/;(x) =ao.J7rko(x) + 7r{31/;o(x), O<x<l, (33) 

where ko(x) is given by (3a) and Jo(x) is given by (23). This expression for 1/;(x) is certainly a 
more tractable one than the expression for 1f(x) given by (3). 

This result can now be used to finish the analysis of the wave-guide problem. An identi­
fication in (2c) says that 

Let 

so that 

/- h-
E'(y)=1/;(cos (y»=ao'l 7r ko(cos (y»+ f<) cos (Y)1/;o(cos (y». 

7r-y 3 

.J; ko (cos (y» = 1/;0 (cos (y» 

h -E'(y) =ao1/;o (cos (y»+ f<) cos (Y)1/;o(cos (y». 
7r-y 3 

(34) 

(34a) 

Following the analysis of Bierman [1], E' (y) is odd and continuous at y= O. Therefore, 
E'(O)=O, or equivalently 

lim (ao1/;o(cos (y»+ 11,/_ cos (y) Jo(cos (y»)= o. 
v-to 7r-y 3 

(35) 

Relation (35) thus determines ao uniquely, 

To obtain E(y) , eq (34) is integrated, and the constant of integration IS chosen so that 

EG)=O 

as required in [1). 

II, 1,,/2 -
E(y) = f<) (cos (a)1/;o (cos (a» -1/;0 (cos (a) »)da. 

7r-y 3 y 
(37) 

The reflection coefficient, p, is obtained from (2a). 

2 i"/2 2 II, 1,,/2 i"/2 -(I-p)Eo=- E(~)d~=- /-3 (cos (a)1/;o(cos (a»-1/;o(cos (a»)dad~ 7r 0 7r7r-y 0 t 

-1 i"/2 ( - ) = /- ikEo(1 +3p) cos (a )1/;o(cos (a»-1/;o (cos (a» ada. 
27r-Y 3 0 
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Hence 

where 

l+M 
P=1-3M 

Once p is computed, T can be computed by (2b). 
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