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This article gives an expression for the spectral measure corresponding to a self-adjoint
operator for which separation of variables is possible. The construction makes use of the
amalgamation theorem for normal operators in a natural way to obtain the required measure
as a tensor convolution of the spectral measures of the part operators.
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Let A be a self-adjoint operator in a complex Hilbert space ©, (-, -). A separation of variables
consists of a description of  as a Hilbert space tensor product

\{):\61®‘€32
of two spaces £y, (-, -); and ., (-, ), together with a decomposition of A. The requirements

of the decomposition are (1) that there exist self-adjoint operators A, in &; and A, in O, such

that on the elementary products u; ® s, 1; in a core D, of A, and uyin a core D, of Ay, A has

the expression
Ay ®ug) = A1 @ us+ 11 @ Aty

and (2) that the linear hull © of such products be a core of A. The operator A is said to be
separated with A, and A, part operators, and the decomposition is written

A=A,Q1,+1,® A,.

Denote by £, E, and FE, the spectral measures corresponding to A, A, and A, respectively.
The goal 1s to give meaning to and to justify the relation

E=E, ® E,.
The first steps are to use the amalgamation theorem to define a tensor product spectral measure
E,® E, analogous to the product measure for complex measures. Then the tensor convolution
E, ® F, has a natural definition. Finally, £, ® [, is identified with /.
Denote by 8 the family of Borel sets of the reals 2, and by 8? the Borel sets of RXZ.
A spectral measure defined over 9 is said to be real. Here all spectral measures are normalized.

The generality needed here is given by the following version of the

AmancaMaTioN TuroreM: If By and B,y are commuting real spectral measures in a Hilbert space
9, then there exists one and only one spectral measure B in § over B* such that

E(BXB')=E\(B)Ey(B'),  forall B, B'€®.
That £, and £, commute means
E\(B) Ey(B")=Ey(B’") E\(B)
for all B B’ € %,

*An invited paper. This work has been supported in part by the Aerospace Research Laboratories, Office of Aerospace Research, United
States Air Force under Contract AR-8-0001 and in part by the Department of the Navy under Contract N00017-72-C-4401.
**Present address: Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20810.

347



The problem at hand is to use the amalgamation theorem to construct the spectral measure
E for a separating self-adjoint operator A. The first step is

LemmA 1: If E; and E, are real spectral measures in O, and ,, respectively, then By ® I, and
I, ® E, are commuting real spectral measures in £; ® Do.

Proor: Clearly £ ® I, defined by
(E1®1,) (B)=E; (B)®1,, for all Be 9,

is an $; ® Hy-projection-valued function defined on B, and

(Bi®1,) (R)=1[,=I.
The countable additivity follows from that of £; and the fact that strong convergence of factor
operators implies strong convergence of their tensor product. Thus F,® /1, is a real spectral
measure; and by a parallel argument, so is [;® F,. Finally
[(E1®1) (B)] [(11® Ey) (B')]=Ei(B) @ Ex(B')=[(1:Q E) (B)] [(Ei®1:) (B)], for all B, B'e B,
by elementary computations.

The next step is to establish a product spectral measure analogous to a product measure
derived from ordinary measures. As usual, the product is defined on rectangles and then ex-
tended. This matter is taken care of by
LemMma 2: The $;® Ho-projection-valued set function i@ Ey defined on rectangles BX B’ €8? by

(Ey® Ey) (BXB')=E\(B)® Ey(B")
has an unique extension as a spectral measure in $;® D, over B
Proor: This is a direct application of the amalgamation theorem in which
E=EQIL, B2:=1LQE,

and R
E=E QE,.

The relation . . .
E(BXB')=E\(B)LEy(B")

can be read off from the last lines of the proof of Lemma 1.
It is quite natural to call E,® E, the tensor product spectral measure of E, with E,.

The third step is to define the tensor convolution of E; with E, as for convolutions of
complex measures. In preparation we need

LemMa 3: Let E be a spectral measure on R* and for each B € B let
B*(B)={(=, y) € R*lz+y € B},
then E, defined on B by
E(B)=E[B*(B)]

18 @ real spectral measure.

Proor: Since
B*(B) € ¥2, for all BE€ 9,

E, is a projection-valued set function on B; and clearly

ER)=I.
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Further if

BN B =0,
then
B*(B) N B*(B')=4,
and if
B: U Bi
then

JHUB)= LZJ B*(B)).

These follow directly from the definition of B*(B). Hence if
B=UB;

and '
BN B;=4, 15y,

E«(B)=E[B(B)]=E[U B*(B)) | =2 E[B*(B:) =2 E(B),

then

so that £, is countably additive.
Now it is natural to formulate the
DeriNtrioN: Let Ey and I, be real spectral measure in £, and £, respectively, and let F,® K,
be their tensor product. The tensor convolution of E, with E,, designated E, ® E,, is the real spectral
measure in O ® Oy given by

(£ ® Ey)(B)=(EQ E,)|B*B)], for all BE Y,

where B*(B) is as defined in Lemma 3.

The tensor convolution of £, with £, has a tidy relation to the convolution of the measures
associated with £ and £, as given by

Lemwva 4: Let Ex=FE, ® K, where E, and E, are real spectral measures in £, and O, and
let u=1u; ® wy, and v=0v, ® v, be elementary tensor products, then for all such w and v

(Eyu, v)=(y, v1)1 ® (Laus, 03)s
where ® indicates the convolution of measures.
Proor: Using the definition of /) ® [, it is evident that
(B, ® Ey) (BX B Yu, v)=(Ey(B)u, v1)1(Eo( B’ )y, vs)s, for all B, B’ €9B.

Since the product measure
(Eyury 001X (Eattg, 02)2,

is the unique extension to B? of the right side of the preceding equation and ((#,® £y)u, v) is |
also an extension to B? the two extensions coincide, i.e.,

(Ei® By) (BY)u, v)=[(Eyus, 0)1X (Egus, v2)s] (B,  for all B2€ ¥

On specializing this to B*(B) for any B €3 and invoking the definitions of the convolutions,
the desired result follows.

Based on what has been done so far, it is now quite easy to show that
E.,=E, ® E,

is, indeed, the spectral measure corresponding to A. From Lemma 3 and the Definition, it is
clear that £, is a real spectral measure and consequently corresponds to some self-adjoint
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operator A, in . The business at hand is to show that Ay is equal to A. This will complete the
construction and prove the

TaEorEM: Let A be a separated self-adjoint operator with A, and Ay part operators, and let K, and
E, be the real spectral measures corresponding to A, and A,, respectively; then the real spectral
measure given by the tensor convolution I, * E, of Ky with I, corresponds to A.

Proor: Let A4 be the self-adjoint operator corresponding to /. We shall show that A, is defined
and coincides with A on the core ® of A made up of finite linear combinations of elementary
products u; @ Uy, u; € Dy, uy € D

Recall that the domain ®, of A, is given by
D= (€ | [ Ni(Ey, )< )
and that
(Azu, v):fxd(E*u, )

forall u € Dy, v € H. Let u=u,@uy, u; € D1, U, € D, and let v=0, Q.

By separation of variables and the spectral theorem for 4, and 4, it follows that
= [ Our B, w)id (B, )
and
(Au, v)=ffm()\1+>\2)d(E1u1, & (Eytlg, v3),.
By Fubini’s theorem
|]Aul|2=fR2(x1+)2)2d[(E11¢1, 1)1 X (L, 1Us)s]
and
(Au, v):fRz()\l—i-)\z)d[(Elul, 1)1 X (Eatg, vp)s).
Now by an immediate consequence of the definition of convolution of measures

HAMHQZJ‘R Nd[(Eyuy, uy); ® (Eyug, )]

and
(Au, )= fR N (Bt 02), ® (Eyttg, v2)s]
According to Lemma 4, this is the same as
| | Au| |2:fR N d(E,® Eq, w)
and
(Au, v)=fR‘ Nd(E, ® Eyu,p).
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Thus A, is defined on each such «, and by linearity on ®. Further, by the last equation
(Au, v)=(Au, v) for all u € D, =0, @ Vs.
But since elementary products are total in §,
Au=A,u, for all u € D,

as was to be shown.
(Paper 8083-450)
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