JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematical Sciences Vol. 80B, No. 3, July-September 1976

Spectral Measures and Separation of Variables*

David W. Fox**

November 18, 1975

This article gives an expression for the spectral measure corresponding to a self-adjoint operator for which separation of variables is possible. The construction makes use of the amalgamation theorem for normal operators in a natural way to obtain the required measure as a tensor convolution of the spectral measures of the part operators.

Key words: Convolution; Hilbert space; separation of variables; spectral measure; tensor products.

Let A be a self-adjoint operator in a complex Hilbert space \mathfrak{H} , (\cdot, \cdot) . A separation of variables consists of a description of \mathfrak{H} as a Hilbert space tensor product

$$\mathfrak{H}=\mathfrak{H}_1\otimes\mathfrak{H}_2$$

of two spaces \mathfrak{H}_1 , $(\cdot, \cdot)_1$ and \mathfrak{H}_2 , $(\cdot, \cdot)_2$ together with a decomposition of A. The requirements of the decomposition are (1) that there exist self-adjoint operators A_1 in \mathfrak{H}_1 and A_2 in \mathfrak{H}_2 such that on the elementary products $u_1 \otimes u_2$, u_1 in a core \mathfrak{D}_1 of A_1 and u_2 in a core \mathfrak{D}_2 of A_2 , A has the expression

$$A(u_1 \otimes u_2) = A_1 u_1 \otimes u_2 + u_1 \otimes A_2 u_2;$$

and (2) that the linear hull \mathfrak{D} of such products be a core of A. The operator A is said to be *separated* with A_1 and A_2 part operators, and the decomposition is written

$$A = A_1 \otimes I_2 + I_1 \otimes A_2.$$

Denote by E, E_1 and E_2 the spectral measures corresponding to A, A_1 and A_2 , respectively. The goal is to give meaning to and to justify the relation

$$E = E_1 \circledast E_2.$$

The first steps are to use the amalgamation theorem to define a *tensor product spectral measure* $E_1 \otimes E_2$ analogous to the product measure for complex measures. Then the *tensor convolution* $E_1 \otimes E_2$ has a natural definition. Finally, $E_1 \otimes E_2$ is identified with E.

Denote by \mathfrak{B} the family of Borel sets of the reals R, and by \mathfrak{B}^2 the Borel sets of $R \times R$. A spectral measure defined over \mathfrak{B} is said to be real. Here all spectral measures are normalized. The generality needed here is given by the following version of the

AMALGAMATION THEOREM: If \hat{E}_1 and \hat{E}_2 are commuting real spectral measures in a Hilbert space \mathfrak{H} , then there exists one and only one spectral measure \hat{E} in \mathfrak{H} over \mathfrak{B}^2 such that

$$\widehat{E}(B \times B') = \widehat{E}_1(B)\widehat{E}_2(B'), \quad for \ all \ B, \ B' \in \mathfrak{B}.$$

That \hat{E}_1 and \hat{E}_2 commute means

$$\hat{E}_1(B) \ \hat{E}_2(B') = \hat{E}_2(B') \ \hat{E}_1(B)$$

for all $B B' \in \mathfrak{B}$.

^{*}An invited paper. This work has been supported in part by the Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force under Contract AR-8-0001 and in part by the Department of the Navy under Contract N00017-72-C-4401. **Present address: Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20810.

The problem at hand is to use the amalgamation theorem to construct the spectral measure E for a separating self-adjoint operator A. The first step is

LEMMA 1: If E_1 and E_2 are real spectral measures in \mathfrak{H}_1 and \mathfrak{H}_2 , respectively, then $E_1 \otimes I_2$ and $I_1 \otimes E_2$ are commuting real spectral measures in $\mathfrak{H}_1 \otimes \mathfrak{H}_2$.

PROOF: Clearly $E_1 \otimes I_2$ defined by

 $(E_1 \otimes I_2)$ $(B) = E_1$ $(B) \otimes I_2$, for all $B \in \mathfrak{B}$,

is an $\mathfrak{H}_1 \otimes \mathfrak{H}_2$ -projection-valued function defined on \mathfrak{B} , and

$$(E_1 \otimes I_2) (R) = I_1 \otimes I_2 = I.$$

The countable additivity follows from that of E_1 and the fact that strong convergence of factor operators implies strong convergence of their tensor product. Thus $E_1 \otimes I_2$ is a real spectral measure; and by a parallel argument, so is $I_1 \otimes E_2$. Finally

 $[(E_1 \otimes I_2) (B)] [(I_1 \otimes E_2) (B')] = E_1(B) \otimes E_2(B') = [(I_1 \otimes E_2) (B')] [(E_1 \otimes I_2) (B)], \text{ for all } B, B' \in \mathfrak{B},$

by elementary computations.

The next step is to establish a product spectral measure analogous to a product measure derived from ordinary measures. As usual, the product is defined on rectangles and then extended. This matter is taken care of by

LEMMA 2: The $\mathfrak{H}_1 \otimes \mathfrak{H}_2$ -projection-valued set function $E_1 \otimes E_2$ defined on rectangles $B \times B' \in \mathfrak{B}^2$ by

 $(E_1 \otimes E_2) (B \times B') = E_1(B) \otimes E_2(B')$

has an unique extension as a spectral measure in $\mathfrak{H}_1 \otimes \mathfrak{H}_2$ over \mathfrak{B}^2 .

PROOF: This is a direct application of the amalgamation theorem in which

$$\hat{E}_1 = E_1 \otimes I_2, \ \hat{E}_2 = I_1 \otimes E_2,$$

 $\hat{E} = E_1 \otimes E_2.$

The relation

and

$$\widehat{E}(B \times B') = \widehat{E}_1(B)\widehat{E}_2(B')$$

can be read off from the last lines of the proof of Lemma 1.

It is quite natural to call $E_1 \otimes E_2$ the tensor product spectral measure of E_1 with E_2 .

The third step is to define the tensor convolution of E_1 with E_2 as for convolutions of complex measures. In preparation we need

LEMMA 3: Let E be a spectral measure on R^2 and for each $B \in \mathfrak{B}$ let

$$B^{2}(B) = \{(x, y) \in R^{2} | x + y \in B\},$$

$$E_{*}(B) = E[B^{2}(B)]$$

is a real spectral measure.

PROOF: Since

then E_* defined or

 $B^2(B) \in \mathfrak{B}^2$, for all $B \in \mathfrak{B}$,

 E_* is a projection-valued set function on \mathfrak{B} ; and clearly

 $E_*(R) = I$.

then
$$B \cap B' = \emptyset,$$

 $B^2(B) \cap B^2(B') = \emptyset,$

and if

then

$$B^2(B) = \bigcup_i B^2(B_i).$$

 $B = \bigcup B_i$

These follow directly from the definition of $B^2(B)$. Hence if

$$B = \bigcup_i B_i$$

and

$$B_i \cap B_j = \emptyset, i \neq j,$$

$$E_{*}(B) = E[B^{2}(B)] = E[\bigcup_{i} B^{2}(B_{i})] = \sum_{i} E[B^{2}(B_{i})] = \sum_{i} E_{*}(B_{i}),$$

so that E_* is countably additive.

Now it is natural to formulate the

DEFINITION: Let E_1 and E_2 be real spectral measure in \mathfrak{H}_1 and \mathfrak{H}_2 , respectively, and let $E_1 \otimes E_2$ be their tensor product. The tensor convolution of E_1 with E_2 , designated $E_1 \circledast E_2$, is the real spectral measure in $\mathfrak{H}_1 \circledast \mathfrak{H}_2$ given by

$$(E_1 \circledast E_2)(B) = (E_1 \otimes E_2)[B^2(B)], \quad \text{for all } B \in \mathfrak{B},$$

where $B^{2}(B)$ is as defined in Lemma 3.

The tensor convolution of E_1 with E_2 has a tidy relation to the convolution of the measures associated with E_1 and E_2 as given by

LEMMA 4: Let $E_* = E_1 \otimes E_2$, where E_1 and E_2 are real spectral measures in \mathfrak{H}_1 and \mathfrak{H}_2 , and let $u = u_1 \otimes u_2$ and $v = v_1 \otimes v_2$ be elementary tensor products, then for all such u and v

$$(E_*u, v) = (E_1u_1, v_1)_1 \otimes (E_2u_2, v_2)_2,$$

where \circledast indicates the convolution of measures.

PROOF: Using the definition of $E_1 \circledast E_2$ it is evident that

$$((E_1 \otimes E_2)(B \times B')u, v) = (E_1(B)u_1, v_1)_1(E_2(B')u_2, v_2)_2$$
, for all $B, B' \in \mathfrak{B}$.

Since the product measure

$$(E_1u_1, v_1)_1 \times (E_2u_2, v_2)_2,$$

is the unique extension to \mathfrak{B}^2 of the right side of the preceding equation and $((E_1 \otimes E_2)u, v)$ is also an extension to \mathfrak{B}^2 , the two extensions coincide, i.e.,

$$((E_1 \otimes E_2) \ (B^2)u, v) = [(E_1u_1, v_1)_1 \times (E_2u_2, v_2)_2] \ (B^2),$$
 for all $B^2 \in \mathfrak{B}^2$.

On specializing this to $B^2(B)$ for any $B \in \mathfrak{B}$ and invoking the definitions of the convolutions, the desired result follows.

Based on what has been done so far, it is now quite easy to show that

$$E_* = E_1 \circledast E_2$$

is, indeed, the spectral measure corresponding to A. From Lemma 3 and the Definition, it is clear that E_* is a real spectral measure and consequently corresponds to some self-adjoint

operator A_* in \mathfrak{H} . The business at hand is to show that A_* is equal to A. This will complete the construction and prove the

THEOREM: Let A be a separated self-adjoint operator with A_1 and A_2 part operators, and let E_1 and E_2 be the real spectral measures corresponding to A_1 and A_2 , respectively; then the real spectral measure given by the tensor convolution $E_1 * E_2$ of E_1 with E_2 corresponds to A.

PROOF: Let A_* be the self-adjoint operator corresponding to E_* . We shall show that A_* is defined and coincides with A on the core \mathfrak{D} of A made up of finite linear combinations of elementary products $u_1 \otimes u_2$, $u_1 \in \mathfrak{D}_1$, $u_2 \in \mathfrak{D}_2$.

Recall that the domain \mathfrak{D}_* of A_* is given by

$$\mathfrak{D}_{\pmb{\ast}} \!=\! \{ u \!\in\! \mathfrak{H} | \! \int \! \lambda^2 \! d(E_{\pmb{\ast}} u, \, u) \! < \! \mathfrak{o} \, \}$$

and that

$$(A_{\pmb{\ast}}u,v) \!=\! \int \! \lambda d(E_{\pmb{\ast}}u,v)$$

for all $u \in \mathfrak{D}_*, v \in \mathfrak{H}$. Let $u=u_1 \otimes u_2, u_1 \in \mathfrak{D}_1, u_2 \in \mathfrak{D}_2$ and let $v=v_1 \otimes v_2$.

By separation of variables and the spectral theorem for A_1 and A_2 it follows that

$$||Au||^{2} = \iint_{\mathbb{R}^{2}} (\lambda_{1} + \lambda_{2})^{2} d(E_{1}u_{1}, u_{1})_{1} d(E_{2}u_{2}, u_{2})_{2}$$

and

$$(Au, v) = \iint_{\mathbb{R}^2} (\lambda_1 + \lambda_2) d(E_1 u_1, v_1)_1 d(E_2 u_2, v_2)_2.$$

By Fubini's theorem

$$||Au||^{2} = \int_{\mathbf{R}^{2}} (\lambda_{1} + \lambda_{2})^{2} d[(E_{1}u_{1}, u_{1})_{1} \times (E_{2}u_{2}, u_{2})_{2}]$$

and

$$(Au, v) = \int_{\mathbb{R}^2} (\lambda_1 + \lambda_2) d[(E_1u_1, v_1)_1 \times (E_2u_2, v_2)_2].$$

Now by an immediate consequence of the definition of convolution of measures

$$||Au||^2 = \int_{\mathbf{R}} \lambda^2 d[(E_1u_1, u_1)_1 \circledast (E_2u_2, u_2)_2]$$

and

$$(Au, v) = \int_{R} \lambda d \left[(E_1 u_1, v_1)_1 \circledast (E_2 u_2, v_2)_2 \right].$$

According to Lemma 4, this is the same as

$$||Au||^{2} = \int_{R} \lambda^{2} d(E_{1} \circledast E_{2}u, u)$$

and

$$(Au, v) = \int_{R^1} \lambda \, d(E_1 \circledast E_2 u, v).$$

Thus A_* is defined on each such u, and by linearity on \mathfrak{D} . Further, by the last equation

 $(Au, v) = (A_*u, v)$ for all $u \in \mathfrak{D}$, $v = v_1 \otimes v_2$.

But since elementary products are total in \mathfrak{H} ,

as was to be shown.

 $Au = A_*u$, for all $u \in \mathfrak{D}$,

(Paper 8083–450)

References

- Berberian, S. K., Notes on spectral theory, Van Nostrand Mathematical Studies 5 (D. Van Nostrand Company, Inc., Princeton, 1966), sec. 11.
- [2] Berezanskiĭ, Ju. M., Expansions in eigenfunctions of self-adjoint operators, Translations of Mathematical Monographs Vol. 17, Amer. Math. Soc., Providence, 1968, Chap. VI, sec. 4.
- [3] Rudin, W., Real and Complex Analysis (McGraw-Hill Book Co., New York, 1966), sec. 11.

Paper 80B3-450