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Given the bases of a matroid, this paper presents a primal algorithm and a dual algorithm for finding the 
circuits of the matroid. 
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1. Introduction 

A matroid is a combinatorial structure that possesses important combinatorial properties 
of a wide variety of mathematical structures. Such varied structures as vector spaces, trans
versals, certain ployhedral corner points , cycles in a graph, spanning trees, and the source arcs 
used by a network flow are all special cases of matroids. Matroid theory provides a convenient 
way to summarize these scattered results and to extend them simultaneously [1, Ch. 21],1 
[2-5], [8], [11]. 

Let E be any finite set of elements. There are several equivalent ways to define a matroid 
on E [1, p. 476], [2], [9], [10] . The following definition is convenient for the purposes of this 
paper. 
Independence Definition of a Matroid Let !J be any set of subsets of E with the fol-
lowing properties : 

(1) If A' cA and AE!J, then A' E!J and 

(2) for any subset E' of E , all maximal 2 members of !J that are contained in E' have the 
same cardinality. 

The members of family !J arc called the independent sets of the matroid. The maximal 
members of !J are called the bases of the matroid. It follows from (2) that all bases have the 
same cardinality. Let ill denote the set of all bases. Set ill equivalently defines a matroid on E . 

For example, let E be the se t of edges in a connected, undirected graph. The se t of all 
forests of this graph form the independent se ts of a matroid on E. The bases of this matroid 
are the spanning trees of the graph. Call this matroid a tree matroid. 

A subset of E that is not ind ependent is called dependent. A circuit is any minimal dependent 
set. The circuits of the tree matroid constitute the set of all simple cycles in the graph. 

Let M be a matroid on set E that is specified by its base set (jJ. Form set ill * by taking 
the complements in E of each member of ill. The independent sets corresponding to ill* also 
satisfy properties (1) and (2) and thus ill* defines a matroid M* on set E. Matroid M* is 
called the dual of matroid M. 

For example, the dual of a tree matroid is the matroid whose bases are the complements 
of spanning trees. Call this matroid the co-tree matroid. The set of all simple cuts forms the 
circuit se t of the co-tree matroid . 

What furth er rel ationships exist between the bases and circuits of a matroid? 
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LEMMA 1: Let I be any independent set of matroid M. 

Let x E E, x; I and I U {x} be dependent. 
Then, I U {x } contains exactly one circuit. For the proof, see [1, p. 479]. 
Let D be any subset of E . For matroid M, the rank of D, denoted by r(D), is defined as 

the cardinality of the largest independent set of !v! that is contained in set D. Thus, 
o :::;r(D):::; ID I. 

The closure of set D, denoted by cl (D), is defined as the largest set D' such that D C D ' 
and r(D) = r(D' ). It can be shown [2, p. 70] that cl(D) is unique. -

Set D is called closed if D=cl(D). For example in a tree matroid, the rank of a subset D 
of edges is the cardinality of the largest forest that can be grown inside set D. The closure of 
set D is set D together with all other edges that have both endpoints in the same component 
of D. Consider the tree matroid of the graph in figure 1. L et D= {a, b, f }, then, r(D) =3, 
cl(D) = {a, b, e,f, g}. Since Drr=cl(D), setD is not closed . However, set {a, b, e,f, g} is closed. 

A hyperplane of matroid M is any closed set whose rank equals r(E) -1. Let 8{ denote 
the set of all hyperplanes of matroid M. Consider the tree matroid for the graph shown in 
figure 1. For this matroid, r(E) equals 4 which is the cardinality of each spanning tree (base). 
The set {a, b, f , e, g} is a hyperplane of this matroid since a forest of at most 3 edges can be 
formed from this set. 

Let C *,0*, !J*, 8{*, r*, respectively denote the circuit set, base set, independent sets, 
hyperplane set and rank function of matroid M*, the dual of matroid M. 

FIGURE 1 

LEMMA 2: C = {E-H*:H E 8{* } 

PROOF. Let C E C. Since C is a minimal dependent set of M, it follows that C- {x } is inde
pendent for any x E C. Thus, E-C U {x } contains a base of M*, but E-C does not contain 
a base of M*. 

Thus, E- C is a hyperplane of M*. 
Consequently C c;{ E-H*: H* E 8{* }. 

Let H* E 8{*. Then E-H* contains a base of M . Suppose x f H*. Then H* U {x } is a base 
of M*, and E - H*- {x } is a base of M. By Lemma 1, E-H* contains a unique circuit of M. 
Sinc~ E-H*- {x} is independent in M, E-H* is a circuit. Thus C ::J {E-H*: E* E 8{*} . 

Q.E.D. 
Hence to determine the circuits of M we need only determine the hyperplanes of M*. 

2. Algorithms to Construct the Circuits from the Bases 

An algorithm to construct the base set using only knowledge of the circuit set was developed 
by Hull [6]. This section presents two complementary algorithms that construct the circuit 
set using knowledge of only the base set. These algorithms exploit the properties of circuits 
given in Lemmas 1 and 2. 
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Primal Algorithm 

For each B ~ (B and for ea,ch x E E, x E B, form the set B U {x}. LetB= {xj,x2 , . .. , Xr(E) }' 

Fori=l, 2, ... ,r(E), check if B U {x}-{ xd is a base. If so, color Xi orange; otherwise, 
color Xi blue. Element x together with all orange elements form a circuit. 

PROOF: By Lemma 1, B U {x}, x ; B, contains exactly one circuit C. If deleting an element 
Xi, 1:= 1, 2, ... ,r(E), creates an independent set B U {x}-{x i }, then Xi must be present in 
circuit C. Otherwise, Xi is not present in circuit C. Consequently, circuit C must consist of x 
and all orange elements. 

Since a cirucit is a minimftl dependent se t, the deletion of any member X of a circuit C 
results in an independent set I . Thus, there is some base B, I C B, such that C C B U {x} . 
Hence, all circuits are generated by the algorithm. - -

Since E is a finite set, the algorithm must terminate after a finite nnmber of steps. 

Improving the Algorithm 
Q.E.D. 

The essential operation of the algorithm is coloring. Coloring involves checking if the set 
B U {x} - {x;} is a base. To generftte one circuit requires r(E) such base list checks, i.e., for 
XI, X2, • •• ,Xr(E)' If the elements of E are treated as letters and the bases written in alphabetic 
order, each base list check is equivalent to checking if a word of dE) letters appears or does 
not appear in a dictionary consisting only of words of r(E) letters. Of course, computational 
short cuts can be developed for bases with special structures, such as trees. 

Needless to say, it is probable that some circuit C will be generated more than once. 
Repeated generation of the SA me circuit can be avoided by checking to see if each set B U {x } 
under consideration contains a circuit previously generated. If so, there is no need to examine 
B U {x} furth er since it will yield a previously discovered circuit. 

However, as the number of discovered circuits increases, this becomes more involved. 
Also, this operation is not an identity check as above but a proper subset check which involves 
more compu tations. Consequently, it might be computationally advantageous to generate a 
circuit repeatedly rather than to perform many proper subset operations. Ultimately, this 
depends on the magnitude of T(E) and the computational efficiency of the proper subset opera
tion. See [7, p . 391]. 

EXAMPLE: Let's generate the circuits of the tree matroid of the graph in figure 2. The bases 
are listed below: 

Given Bases 
(Spanning Trees) 

1. abde 
2. abd} 
3. abe} 
4. aede 
5. acd} 
6. aee} 
7. bede 
8. bed} 
9. bee} 

FIGURE 2 
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1. Examination of abde 
Consider abde+c 

a-color a orange since bede is a ba..<;e 
b-color b orange since aede is a base 
d-color d blue since abee is not a base 
e-color e blue since abed is not a base 

Resulting circuit abc 
Consider abde+f 

a-color a blue since bdef is not a base 
b-color b blue since adef is not a base 
d-color d orange since abef is a base 
e-color e orange since abdf is a base 

Resulting circuit dej. 

All further sets contain either circuit abc or def and will yield no new circuits. 
From section 1, we know that the circuits of the tree matroid are the simple cycles of the 

graph. Obviously, the circuits abc and clef produced by the algorithm are the only simple cycles 
of this graph. 

Dual Algorithm 

Step 1. Determine (B * from (B by taking complements. 

Step 2. For each B* f (B * and for each x f B*, form the set B*-{x}. 
For each y f E, y t B*, determine if (B*- {x}) U {y} has rank r*(E) by consulting (B *. 
If so, ignore y. Otherwise, color y red. After examining all y t B*, let HB*,x be the set 
B*- {x} along with all red y. For all B* and all x f B*, generate HB.,x. 

Step 3. Find the complement of each HB.,x generated in Step 2. These sets are the circuits 
of M. 

PROOF: By Lemma 2, we need determine only the hyperplanes of M*. From Step 1, we can 
determine the bases of M*. Clearly, each base B* of M* less one of its members x has dual rank 
r*(E) -1 and is contained in exactly one hyperplane of M*. This hyperplane H B. , x is con
structed in Step 2. 

Since E is assumed to be finite, the algorithm termiQates in a finite number of steps. 
Q.E.D. 

Improving the Algon:thm 

Step 1 and Step 3 require only the operation of taking complements. 
Step 2 requires that we test if a set (B*-{x}) U {y } is a base of M*. As before, this re

quires checking to verify if this set is on the list of all bases. 
Clearly, it is possible that there exist bases B*l and B*2 with Xl f B*J and X2 f B*2 such that 

In this case, the algorithm would generate this hyperplane twice, which is computationally 
inefficient. To avoid generating this hyperplane more than once, the algorithm could maintain 
a list of of all the hyperplanes already generated. Before the algorithm starts to generate the 
closure of a set B*- {x } in Step 2, the algorithm could check if set B*- {x} is a subset of any 
hyperplane H* in list oC. If so, then B* - {x} c:;; H*, and 

r*(B*- {x} )=r*(E)-l=r*(H*) 

Since closures are unique, it follows that 
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If B*- {x} is not contained in any member of list .£, then the algorithm should proceed to 
generate H B " x as outlined in Step 2. 

Checking list .£ involves verifying if the set under consideration is a proper subset of any 
member of this list. If the list is long, this can involve a large number of operations. Moreover, 
the proper subset operation is computationally more difficult than an identity check. Conse
quently, it might be better to generate a hyperplane repeatedly. Ultimately, this depends on 
the magnitude of r*(E) and the computational efficiency of the proper subset operation. 

EXAMPLE: Let's generate the circuits of the tree matroid of the graph in figure 2 using the dual 
algorithm. The bases and their complements are listed below: 

Step l. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Given Bases (Spanning Trees) 
abde 
abdj 
abej 
aede 
aedj 
aeej 
bede 
bedj 
bee} 

Step 2. Examination of cf 

1. Consider ej-j=e 

a-color red since r(ae) = 1 
b-color red since r(be) = 1 
d-ignore d since r(ed) = 2 
e-ignore e since r(ee) =2 

Resulting hyperplane abc 

2. Consider ej-e=j 

a-ignore a since r(aj) =2 
b-ignore b since r(bj) = 2 
cl-color red since r(clj) = 1 
e-color red since r(ej) = 1 

Resulting hyperplane de} 

Examination of ee 

Step 1 Complemen ts 
ej 
ee 
cd 
bf 
be 
bd 
aj 
ae 
ad 

1. Consider ee-e=e 
2. Consider ee-e=e 

e is already contained in abc generated above. 
e is already contained in dej generated above. 

As seen, the examination of each remaining member of (jJ * will yield no new hyperplanes. 

Step 3. Take the complements of the sets generated in Step 2. 

Set 
abc 
dej 

3. Primal Versus Dual Algorithm 

Circuit 
clej 
abc 

The primal algorithm and the dual algorithm are complementary algorithms. 
To generate a circuit, the primal algorithm adds one element to a primal base and then 

deletes elements from the resulting set of r(E) + 1 members. Each deletion decision requires 
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checking the list of all primal bases. For each primal base, r(E)(IEI-r(E)) such list checks are 
required. Thus, at worst, I ill Ir(E) (!EI-r(E)) list checks are required in total. 

To generate a dual hyperplane , the dual algorithm deletes one element from a dual base 
and then adds elements to the resulting set of r*(E) -1 elements. E ach addition decision re
quires checking the list of all dual bases. For each dual base, r*(E)(IEI-r*(E)) list checks are 
required. Thus, at worst, I ill * lr *(E) (IEI-r*(E)) list checks are required in total. 

Since 

and 
1 ill 1=1 ill *1 

r*(E)= IE I-r(E), 

both algorithms require the same number of list checks. Moreover, these lists have the same 
number of members. 

Which algorithm should be used? Barring special computational procedures that exploit 
the special nature of the matroid, it is probably best to use the primal algorithm if r(E) <r*(E) 
and the dual algorithm if r*(E)<r(E). In this way, the length of the words on the base list 
will be minimized. 

What if we elect not to generate repeatedly the same circuit or the same hyp erplane? 
Which algorithm is best? If the primal algorithm is selected , then we must check if se ts of 
r(E) + 1 elements contain any circuit already generated. If the dual algorithm is selected, we 
must check if sets of r*(E) -1 elements are contained in any hyperplane already generated. 

If r(E) <r*(E), the former is preferable computationally. If r*(E) <T(E), the latter is 
preferable computationally. This is consistent with the above preferences. 

Hull [6) gives an algorithm for constructing the circuits of M from the circuits of ]1,£*. If 
T*(E)<r(E), the primal algorithm applied to M* could generate th e circuits of M*, and Hull's 
algorithm could be used to generate the circuits of 111 from the circuits of M*. If r(E) <r*(E), 
the dual algorithm applied to M* could generate the circuits of M*, and Hull's algorithm could 
be used to generate the circuits of iVl from the circuits of M*. Unfortunately, Hull's algorithm 
is rather involved, and there seems to be no computational advantage in this circuitous 
approach. 
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