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Predictable Regular Continued Cotangent Expansions*

Jeffrey Shallit**

(March 22, 1976)

Expansions of the form x = cot(arc cot n, — arc cot n; + arc cot n, — . . .) are discussed. It is

shown that if x is of the hmni{r + \Vc? + 4). then the n’s are predictable by a simple recurrence.

Continued fractions derived from the expansion of x are also given.
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1. Introduction

In “A Cotangent Analogue of Continued Fractions™ [1], D. H. Lehmer discussed expansions of
the form

(1) x = cot(arc cot ny — arc cot ny + arc cot ny — . . .).

This expansion is called a continued cotangent. The expansion is called a regular continued
cotangent if

(a) ngis a positive integer satisfyingng=n2, +ne + 16 =1,2,...).
(b) If the expansion (1) is finite and ny is the last n, thenny >n + n% |, + np, + L.

Given any positive real number x, its regular continued cotangent expansion is generated by the
following algorithm:

2 Xo = X, ng = [xg]
q, + 1

3) OIS TR S T R
Xs — N

As usual, the brackets denote the greatest integer function.

Lehmer called the xg's complete cotangents and the ng's incomplete or partial cotangents.

He did not find any combination of familiar constants whose regular continued cotangent
expansion was in any way predictable.

Here we present an infinite sequence of quadratic irrationals with the property that each
member of the sequence has a predictable regular continued cotangent expansion.
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2. Irrationals With Predictable Expansions

We will show that, for a positive integer c,

c + Ve + 4

2

has a predictable regular continued cotangent expansion. More precisely, we state the following:
THEOREM: Let .83 be the roots of the quadratic x> — cx — 1 = 0, with ¢ a positive integer,
and o>f. Let « be expanded into its regular continued cotangent expansion, with ng, n;, ns,
.. . being the sequence of partial cotangent, and x¢, Xi, X, ...being the sequence of complete
cotangents. Then
k
(D Xk = o’
) — B gl
(1) ng = a® + B

Proor: We start out by stating some facts about « and f3:

c + \Ve? + 4 c —Vc2+4

(4) o= 5 , B = 3
This follows from the definition of « and .

(5) aB = — 1, a+ B =c, a—[3=\/mq[a]zc.
We now define the sequence V:

(6) Vi=ak + B* (k=0
It is easily shown by induction that

(7) Vi=cViy +Vie (k=2).

We are now ready to prove the theorem. The proof of part (1) proceeds by induction.

A. Verification for £ = 0:

30 1

Xg=«a" =« =«
ng=ao" + " =a' + B8 =c¢
= gl = @] = @,

B. Assume the theorem is true for & = s. Then we want to show that the theorem is true for &
=s + 1.
From (3), we have

xsng + 1
Xst1 = —

Xg = Ng

(a®’) (a® + B%) + 1
a:x-“ _ (a:s'* b Bs‘)
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az¥ + as'\.B:}s +1

_ B:i“'
oz
= ? (SII](‘C (,Yﬁ = —1)
st .
Xy = (since B = —1/a)

The proof of part (I) of the theorem is now complete by induction. We complete the proof of the
theorem by showing that

Mg = [Xgr1] = [(Y:Wl] =" + ﬁ:wl
Since 8 = —1/a, and « > 1, we have
(8) -1 <B" <0 (rodd, = 1).

If we add «” to this inequality, we get

(9) a"—1<a"+B"<a" (rodd, = 1)
Now it is obvious that «’ is a quadratic irrational. so neither «” — 1 nor «” are integers.
| &
Therefore, there must be exactly one integer between o’ — 1 and «”. Since Vy = o + B = 2 and

Vi = o' + B' = c. we have, from (7), that V', = «” + B is an integer for r = 0. Therefore, V, is the
integer between o — 1 and «’, and we have

(10) [a"] = a" + B (r odd, = 1.
We may now take r = 3*'! to get
Nery = [Xer1] = [a®'] = &3 + [3”” (s = 0).
The proof of both parts of the theorem is now complete.

In the following tables, we give the values of « and B for the first few values of ¢, and the
values of n for the first few values of ¢ and 4.

TABLE 1. Values of « and 3

c « B

] l11+\/§; l41—\/:»
2 ' 2 ?

2 1 + V2 | = /3
1

3 5B+ \V13) %U‘ - V13)

4 2+5 2 -5

_ 1 1

5 36+ \/29) 36 - \V/29)

287



TABLE 2. Values of ny

c
k 1 2 3 4 5
1 1 2 3 4 5
2 4 14 36 76 140
3 76 2786 46764 439204 2744420

3. Some Observations on n, and x,

First, we note that, as a special case of the theorem for ¢ = 1, we have a = ¢, the golden ratio,
and V), = Ly, the kth Lucas number [2]. In fact, we have

xx = & and ny = L.
Second, from part (II) of the theorem, it is not difficult to show that
(11) Ngyr = nap + 3ny (k= 0).

We also point out that, empirically, the regular continued cotangent expansion of an “average”
irrational number satisfies

Ny =00
1 .
For a = 5 (c + V% + 4), however, we have, in view of (11)

et = O@)

so that, in a certain sense, this group of quadratic irrationals is approximated unusually well by the
continued cotangent algorithm.

(—c + Ve? + 4)

also is predictable. For if the regular continued cotangent expansion of x (x > 1) is ny, ny, ng .. .
then the expansion for 1/x is 0, ngy, ny, ns, . .. From this it easily follows that the expansion for 1/«
is predictable as follows:

N | —

Third, we observe that the regular continued cotangent for l/a = — 3 =

En = 1/(1, no = 0
A;l\'*l

Xp = R n; = a3k-| + [33"‘" (k > 1).

We now introduce the sequence Uy, defined as follows:
(12) Uk —a— e

The sequence U satisfies the same recurrence as V., that is,
(13) Uk = CUk—l Sl l]k—2 (/f = 2).
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Now x; = o is a quadratic irrational and can obviously be put in the form

(14) Xp = Vp + up Ve + 4

where v, and u, are rational numbers. From the definitions of ¥, and U,, it is easily verified that

1
(15) U = §V3“
(16) |
up = Eljgk.

Letting m; = Uz, we have the following recurrence formula which can be verified by
substitution:

(17 My = (€2 + HYm3 — 3my

(]8) Vi+1 — 41’2- ar 31)}\-.

Il

(19) Upsr = d(c® + Duit — 3uy.
Lehmer [3] observed that

(20) 2u, =3+ Dn?+ DnZ + 1) ... (¢, + 1)
We also have

(21) (I’A-+1)/l’k = “llﬁl)/llk + 2.

Many similar identities can be obtained.

4. Unusual Continued Fractions

We observe that the regular continued fractions for « and 1/« are as follows:
1 1 1 1

oa=c + - = = =
@ A @ ap @ F @ ar

lla=- - - =

Lehmer showed that if the n,’s (the partial cotangents) for a real number x are known, then x
can be expanded into the following irregular continued fraction:

ng + 1 n? + 1 n3 + 1

ng,—ng+ng —n; +ng— ng +

X =ngy+

It can be shown by induction that the kth convergent to this continued fraction, p,/q satisfies
(22) Prlqr = UeglU,._; where e = (3 + 1)/2
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The first few such continued fractions are as follows:

] 2 17 5777
SA+VE) =142 — 224
71+ V9 3+ 72 + 439128 +
5 197 7761797
1 +v2 =242 o
V2 12 + 2772 + 21624369228 +
] 10 1297 2186871697
—(3EN/3) =3+ — - 7L
2 33 + 46728 + 102266868085272 +

These continued fractions converge extremely rapidly.
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