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Based on p ure ly m at r ix-a lge braic a rgume nt s, we prove three ne w res ult s on the e ige nvalue 
proble m [Zimm , 1956] a ri s in g from mode lin g th e bulk h yd rodynamic a nd di e lec tric prope rti es of ve ry 
dilut e polymer soluti ons: 

1. Le t N be the number o f ide nti ca l segme nts joining N+ I bead s of a be ad/s prin g mode l fo r any 
pol yme r molec ule. The n fo r a n y N, the we ll-known hyd rodyna mic int e rac ti on matrix I;! is 

po sitive definit e if the so-ca lle d int e raction paramete r It ' is less t ha n (20 + 1)/7 or 0.547. 
2. Le t ~ be the tridi ago na l matrix go ve rnin g the elastic link fo rce on each bead . The n if I;! i 

pos iti ve defin it e, the re ex is ts a matrix \J s uc h tha t \J -I I;! 1 \J = \JT 1 Q = ~, whe re ~ is a 

di ago na l matrix. 
3. (Equiva le nce S tatemen t due to Lodge and Wu [1 97 1] ). The nonze ro e ige nva lues of the matrix 

produ ct I;! 1 a re com ple te ly de t ermin ed by solvin g the e ige nva lue prob le m assoc iate d with a 

symm etri c matrix ~, whe re Su = Hu + 11 ; - I ,H - 11 ;- l. i - H i .i - I , i,j = 1,2, ... , N. 

T o illustra te the s ig nifi ca nce of these res ult s, nume rical o ut put fo r N as la rge as 300 base d on a 
Fo rtran program for se ve ra l va lues o f It ' is given . 

Key word s: Bead/sprin g mode l; dilut e polym e r so lutions; e ige n va lu e; hyd rodynam ic int e rac tio n: 
matrix algebra; nec kl ace mode l; polyme r phys ics. 

1. Statement of Problem 

Some twenty years ago, Zimm [1] 1 formulated ~ linear, second-order partial differential eq uation 
for a distribution function IjJ which depends on time and ~N + 1) coordinates Xo. Yo. Zoo .. , , XN, YN, 

Z N, of the N + 1 beads, for modeling the bulk behavior of very dilute polymer s0lutions under the 
influe nce of external force, Brownian motion, and hydrodynamic interaction among the beads of the 
neckJace model. The mechanical model for each polymer molec ule is that of a c hain of N identical, 
ideally elastic segments joining N + 1 identical beads with comple te flexibility at each bead. Two 
length parameters are of interest in thi s model: ah, the so-called hydrodynamic radius of the bead, 
and bo, the root mean square of the segment length. The ratio a of the two length parameters (a = 

a,/ bo), and the number N of elastic segments completely charac terize the mathematical problem 

·On leave during 1975- 76 as a ComSci Fellow, Nuclear Regula tory Co mm .. Was h .. D. C. 20.~5:J. 

1 Figure in bracke ts indica te the lite ratu re rdere nces on page 28 1. 
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through the following two symmetric, square matlices of order N + 1: 

1 -1 O. 0 0 0 

- 1 2 -l. 0 0 0 

0 - 1 2. 0 0 0 

(l.l) .... . ... . .... . ......... .. .. . 
A 

0 0 O. 2 -1 0 

0 0 O. -1 2 -1 

0 0 0 0 - 1 

a 

a a 

(1.2) H a 1 a 

a(N-1)- ; 

a.N-; 

a(N - 1)- ; 

a(N-2)- ; 

1 

The symmetry of the two matrices, ~ and li, and an ass umption based on physical arguments that 

the eige nvalues of the matrix product li ~ are di stinct, led to an eigenvalue proble m with a 

coordinate transformation matrix ~ such that a similarity transformation with ~ diagonalizes It A~ 
and congruent transformation s with Q diago nalize ~ and H_ as follows: 

- --

0. 3) ~ - I H A Q ;\ 

(1. 4) QT A Q M 

(1..S) ~ - I t! [Q - IF N 

diagonal matr.ices, and the superscripts - I and t in eqs (1.3) through (1.5) denote the inverse and 
the transpose of a matrix, respectively. A closed form solution for a spec ific linear laminar flow with 
a transve rse gradient constant over all beads, wa s first given by Peterlin and appeared at the e nd of 
Zimm's paper [1 , p. 278] as a note added in proof. Computationally speaking, the modeling problem 
is reduced to the construction of the transformation matrix ~ such that both ~and ~ are known 

for constructing the distribution function 1jJ. 
The purpose of this paper is to derive so me new result s based on matrix algebraic arguments 

and another obvious property of the matrix li, namely , it s positive-de finiteness unde r certain 

conditions, which Zimm [1] failed to exploit. In section 2, we first show that li is positive definit e if 

the parameter a is pos itive and is bounded from above by a constant am", which equals 1.0 for N = 
1, 0.872 for N = 2, 0.815 for N = 3, and 0.773 for N ?: 4. In sec tion 3, we prove our main result 
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that for positive definite ~, there exists some g such that ~ = M and ~ = 1, i.e., Aj = J1. j and Vj - - - -
= 1 for j = 0, 1, 2, ... , N. In section 4, we furnish an algebraic proof as an alternate to the proof 
of a result due to Lodge and Wu [2] , which we s ubseq uently use in calculating the eigenvalues of 
the matrix product ~ ~. In section 5, we discuss the significance of our three mathematical results . 

To illustrate the significance, we include in an appe ndix a sample FOltran program and output for 
several values of the nondimensional parameter a a nd for N as large as 300. 

2. Positive Definiteness of the Interaction Matrix 

As shown in (1.2), the so-called inte raction matrix ~ is not only symmetric, but a lso a "stripe 

matrix ," i. e., all e ntries along a lin e paralle l to the main diagonal are equal to one anothe r. 
Furthermore, !::! de pends on a scalar paramete r a, which is required to be pos iti ve (a > 0) from 

physical cons ide rati6n s.2 We now wish to show that, for a ny give n orde r of the matrix t;! , there is an 

upper bound am", fo r the paramete r a suc h that t! is positi ve definite for 0 < a < am",' 

Since H is a stripe ma trix , an app li cation of a standa rd result in matri x a lge bra:l im plies the 

coroll ary that ~ is positi ve definite, if and on ly if, the de te rminant of ~ , i. e ., de t Hd is pos itive for a 

spec ific o rde r N + 1 as well as {or all orde rs less than N + 1. It is conve nie nt 10 introduce a new 
matrix B and a ne w positive constant c as defined be low: 

(2.1) c = a - I 

c 2-1 3- 1 N- I 

1 c ] 2- 1 (N- ] )- l 

(2.2) B 2-1 c I (N - 2) - 1 

c 

Since det ~ = C N+ I det I:!, c>O, our problem is reduced to the study of the positivity of det ~. 

From the property of a determinant that its value is unaltered if any muJtiple of one line IS 

added to a different, parallel line, 4 let us perform the following operations on the matrix ~: 

Step I Keep the first row of ~ fixed, and replace the jth row with the difference be tw een the jth 

and the (j - 1)th rows for j = 2,3, .. . , N + 1. 

Step"2 Keep the first column of the new matrix following step 1 fixed, and replace the jth column 
of the new matrix with the difference be tween the jth and the (j - l )th co lumns of the new 
matrix for j = 2,3, . . . , N + 1. 

2 We have a lready see n that by deG nition, a( = o ,.Ibo) is re<luired to be pos iti ve if the hydrodynamic radiu s a lo is pos iti ve. In Zimm's fo rmulation [1. pp. 270----

271], the paramete r is defined by the express ion (6rr:J)- . P 11 - 1 b- ', whic h is pos iti ve for p > 0,1) > O. a nd b > O. 
w ~ee. e.g .. 1"1 0 1111 Lj. pp . l.)l)-Z()UJ . 

" See. e.g .. Holm [3. p. 3i ]. 
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The resulting matrix, to be denoted by ~' , is again symmetric as shown below: 

(2.3) 

B' 

c 
1-c 

2-1-1 
3-1-2-1 

1-c 
2(c -1) 

-2-1+2-c 
-3- 1+2(2)- 1-1 

-2-1+2-c ........ . . 
2(c-1) ......... . 

-2-!+2-c .. ..... .. . 

Since det ~' = det~, we have further reduced the study of the positive definite ness of the 

interaction matrix!i to a study of the matrix B~. As it will be co me clear very s hortly , our 

derivation so far is intended to pave the way for the application of a sufficient condition for the 
positive definiteness of !i or ~'. 

We now observe that for the lowest order of!;! , ~, or Ii', i. e., all the 2 X 2 matrices given by 

(1.2), (2.2), or (2.3), the positivity of det ~ (and thus det B_ or det B~) always yields the co ndition 

that either a < 1 or c > 1. It follows that the symmetric matrix ~' has the property that all its 

diagonal ele ments are positive. A well-known theorem in matrix algebra states that a symmetric 
matrix with positive diagonal elements is positive defi nit e if the matrix is "strongly diago nal 
dominant," i.e., the absoltife value of the diagonal element at every row exceeds the sum of the 
absolute values of all off-diagonal elements in that row :5 

(2.4) for j = 0,1,2, ... , N. 

We denote the generic of~' as Bjk,j,k = 0,1,2, ... , N. 

To apply (2.4), we consider two ranges of the values of c for which one can write down easily 
the N + 1 inequalities: 

Case I (c 2: 2 - 2-1): 

(2.5) j=O: c > c - N- I. 

(2.6) j=1: 2(c - 1) > 2(c - 1) - (N -l)- ! + N- I. 

(2.7) j=2: 2(c - 1) > 2(c - 1) - (N -2)- ! + (N -1)- I. 

(2.8) j=N: 2(c - 1) > c - 1. 

Case 2 (l < c < 2 - 2- !): 

(2.5) j=O: 

.5 See. e.g . . Sc hwarz r4, pp. 17- I Y]. 
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(2.9) j=l: 2(c - 1) > 1 - 2-; (N = 2), 

(2.10) or, 2(c - 1) > 2 - 3(2)- ; + 3-; (N = 3), 

(2.11) or, 2(c - 1) > 2 - 2(2) - 1 - (N - 1)- ; + N; (N i:::; 4). 

(2.12) j=2: 2(c - 1) > 3 - 2(2) - 1 - c (N = 2), 

(2.13) or, 2(c - 1) > .5 - 3(2) - 1 - 2c (N = 3), 

(2.14) or, 2(c - 1) > 6 - .5(2) - 1 - 2c + 3-1 (N = 4), 

(2.1 .5) or, 2(c - 1) > 6 - 4{2) - ; - 2c - (N -2)- ; + (N -1)- 1 (N i:::; 5). 

(2.12) j =3: 2(c - 1) > 3 - 2(2)-; - c (N = 3), 

(2.13) or, 2(c - 1) > 5 - 3(2)- ; - 2c (N = 4), 

(2. 14) or, 2(c - 1) > 6 - S(2) - ; - 2c + 3- 1 (N = 5, 

(2.15) or, 2(c - 1) > 6 - 4{2)- 1 - 2c - (N-3) - ; + (N-2) - 1 (N i:::; 6). 

.. ...... ... ........ . . ... .. . .. .. . . ....... .... ...... ............. .. ..... . . . .. 
(2.16) j = N: 2(c - 1) > ;) - 2(2)- ; - c (N i:::; 2). 

What distinguishes the above two cases is the fact that for case 1, every off-d iagonal element of ~' 

is negative, whereas for case 2, care must be exercised on elements B~30 B3'lJ B'34 . .. , B' N ,N- t. each 
of which equals -2- 1 + 2 - c . An examination of inequalities (2 . .5) through (2.8) for case 1 implies 
that they are always satisfied for every N. On the other hand, for case 2, the controlling inequalities 
are given by (2.9), (2.10), and (2.11). Combining all results derived in thi s section, including (2.1) 
where a = c - 1, we obtain various upper bounds a m3x for the parameter a for various N as listed in 
table 1. 

TABLE 1. Upper bounds for a or h* for positive definite t! 

a max 
Number of Chains 

h~lax = 2 - 1/2(allHl:',) 

(Exact) (Approx.) (Approx .) 

N = I 1 1.0 0.707 

N = 2 
1 

17 (12 + 20) 0.872 0.617 

N = 3 3216 + 12780 - 484\13 - 288\/6 0.815 0 .. 176 
4273 

N = 4 and above 
1 
7(4 + 0) 0.773 0.:;47 
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We have included in table I a list of upper bounds for a parameter h* which appears frequently in 
the literature with h* = 2-! a. Since most of the applications of the bead/spring model require more 
than four chains (N 2:: 4), the key result, 0 < h* < 0.547, a criterion which assures positive 
definiteness of li, will be used in the next section to achieve a significant simplification of Zimm's 

eigenvalue problem. 

3. Diagonalization-A Simplification of Zimm's Result 

The derivation of an upper bound for the parameter a (0 < a < 0.773) or, equivalently, the 
parameter h* (0 < h* < 0.547), with h* = 2- ! a, as shown in the last section, enables us to inject 
the positive definiteness of the matrix li as an additional matrix property into Zimm's eigenvalue 

problem. We begin with another standard result in matrix algebra that any symmetric, positive 
definite matrix can be represented by the square of another symmetric matrix.6 Hence, for 0 < h * 
< 0.547, the symmetric matrix!;! is positive definite and there exists a symmetric ~ such that!;! = 

~ 2, ~ l' = ~. Since the matrix ~ as defined in (1.1) is symmetric, the matrix product ~ A C is 

also symmetric. By the well-known diagonalization theorem on symmetric matrices,7 we assert that 
there exist an olthogonal 1I and a diagonal ~ suc~ that 

(3.1) CAe !I -I Q !I; 1. 

By choosing Q as the matrix product ~ U -,. eqs (1.3) through (1..5) can be simplified as follows: 

(3.2) 

(3.3) QT ~ Q = !I ~ A C U - I D M 
- - - --

(3.4) Q - I li (Q - I) l' UC - IC2C - IU - 1 N. 
- --

Thus we have s hown that for 0 < h* < 0 . .547, there exists a transformation matrix 
Q such that A M, and ~ = I. 

4. Equivalence of Two Eigenvalue Problems-An Algebraic Proof 

For the bead and spring model of dilute polymer solutions, the result of last section shows that 
it is sufficient to find the N + I eigenvalues of the matrix product li ~ if the criterion 0 < a < 0.773 

or 0 < h* < 0.547 is satisfied. Since ~ is singular and all e igenvalues are distinct, det (If A) 
- --

vanishes and exactly one of those N + 1 eigenvalues must be zero, i.e., Ao = O. 
To find the other N eigenvalues, At. . .. , AN, Lodge and Wu [2] introduced an equivalence 

statement which asserts that the eigenvalue problem for the unsymmetric product li ~ of order N + 

1, aside from the addition of a zero eigenvalue, is equivalent to that of a symmetric matrix 

I; Set'. e.!!., I-Ialmo ~ f2. 1.1 . I :Wj. 
7 See, e.g .. Hal mo!' [2. p. lSi. bo ll o m lin e!'], 
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,§ of order N, where the elements Sij of ~ are combinations of elements of !;! as follows: 

(4.1) i,j=I,2, ... , N. 

The equivalence statement is important because the matrix S for the reduced problem is symmetric 

and, therefore, computationally more attractive than the matrix product !;!~. To prove that 

statement, Lodge and W u [2] introduced a non singuJar matrix ~. with elements (A .)i j = A Ii for 

each i,j = 0,1, ... , N, except for i = j = 0 where (A .)00 = A 00 + E2. Using a theoremM on the 
continuity of eigenvalues, a triangular decomposition of the matrix A., and a property of the 

determinant of a matrix product, it was shown that as E -'> 0, the nonzero eigenvalues of !;! ~. 
approach those of !;! ~ and §,. 

The purpose of this section is to show that Lodge and Wu's equivalence statement is true by a 
purely algebraic argument without resOlting to the continuity theorem involving the parameter E. We 
first observe that there exists a triangular decomposition of ~ such that ~ L T L: 

0 0 0 
- 1 0 

(4.2) L 
0 - 1 1 

1 0 
0 - 1 

Let Ai be any nonzero eigenvalue of !;! ~, 
of Ai' By de finition, we have 

1,2, ... , N. Let Xi be the corresponding eigenvector 

(4.3) !;! ~ Xi = AiXi' 

Substituting ~ 1T 1 into (4.3), we obtain 

(4.4) AiXj. 

By definition, Xi is a nonzero vector satisfying (4.3), hence the right-hand side of (4.4) cannot vanish. 
This implies that 1 Xi is a nonzero vector (proof by contradiction). Therefore it makes sense to 

premuJtiply both sides of (4.4) by the singular matrix 1: 

(4.5) 

Denoting 1 X i by a nonzero vector y;, we obtain 

( 4.6) 

" Lodge and Wu [2] attribute t~is theorem to Ostrowski [6]. 

279 



Equations (4.3) and (4.6) show that the nonzero eigenvalues of tl1 and k Ii ~ T are identical. Some 

algebraic manipulation with 1 tl1 T, which is symmetric, shows that its nonzero eigenvalues are 

given by those of § with components 5 ij defined in (4.1). 

5. Significance of Results 

To discuss the significance of our mathematical results , it is appropriate here to introduce a 
closed-form solution of the distribution function '-/1, originally due to Peterlin [1 , p. 278 footnote], for 
a specific linear laminar flow with a constant transverse velocity gradient K expressible through a 
nondimensional gradient parameter {3: 9 

where 

(6.2) 

C; = (!1-Jrr)3 /2 (l + {32/A'f} - 1/2, and Ai, !1-i, i = 1,2, .. . , N, are the nonzero diagonal elements of 
matrices ~ and M as defined in (1.3) and (1.4), respectively. The symbols ~i ' S;, YJi in (6.2) denote 

- -

the nondimensionalized transformed coordinates of the (i + l)th bead as defined below: 

(6. 3) 

(6.4) 

(6.5) 

N 

~i = L b,-; I [0 - 1]0 Xj . 
j = 1 

N 

~i = L b,-; I [O - I]jj Yj. 
j = 1 

N 

YJi = Y b,-;I [(J - I]jj Zi. 
j = l 

The principal result of this paper has bee n the demonstration that the diagonal elements of both 
matrices ~ and M are identical for eac h i , i = 0,1,2, ... , N , if the hydrodynamic inte raction 

parameter h* is less than 0.547. Tills means that once we have computed the values of Ai, i = 0,1 ,2, 
... , N, from the eigenvalue problem of the matrix product H A as defined in (1. 3), it is no longer 

necessary, as understood previously by Zimm [1] , to compute () explicitly in order to calc ulate the 
diagonal elements !1-i, i = 0,1,2, ... , N, of the matrix M as defined in (1.4). 

The result Ai = !1-i, i = 0,1,2, ... , N, for h* < 0. 547 is also significant in discrediting some 
computational results in the literature such as Zimm, Roe , and Epst ein [7] , etc., where the 
transformation matrix Q, being not explicitly known , was expeditiou sly approximated by the 

orthogonal transformation matrix QR of the well-known Rouse mode l of zero hydrodynamic 

interaction (i.e . , t! = 1). Under that circ umstan ce, the matrix M is given by (~)~~R or 

iii The fl ow fie ld is s pec ifi ed by the ve loc it y vec tur v = IK y . O. 0). an d the pu rallH'ter fJ i ~ rt'iatt,d III K h y Iii fe' 141rmulct t3 = rr(J lt h ,~, Kllkn . wh t' l t' k i ~ 
Bolt z ma n"s co ns. tan t a nd T is the abso lute te mpe rature. 

III See. c.g .. Zimm . Roe and Epstein [7]. Hearst [8), and Tsc hoegi [9J. 
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Q -h ~ Q R, and the eigenvalues J-tj are given by 4 sin2 [j rr/2(N + 1)] which contradict our exact result 

with Aj = J-tj, and M- 1 ~ = l":!: = ~ as shown in (3.4) . 

Computationally speakin g, we are interested in the solution of the eigenvalue problem (4.3), for 
large N, and particularly, in the smalle r values of Ai' The equivalence statement of Lodge and Wu 
[2] provides the basis for computing those e igenvalues very economically with the aid of a large-scale 
computer. The exact compute r-generated calculation renders man y earlier approximation schemes 
obsolete. 10 Without the benefit of the equivalence statement, Thurston and Morrison [10] used a 
computer to obtain the eige nvalues of the matrix product H A for values of N up to 15. Based on 

their equivalence statement, Lodge and Wu [ll] we re able to extend the computational ca pability 
and reported so me nume rical res ult s for bead/s pring mode ls with as many as 300 li nks. 
Unfortunately, Lodge and Wu did not exhibit all e igenvalues , nor the compute r program with which 
eigenvalues could be generated for interesting applications. In the appendix we li st a Fortran 
program and output to illustrate the signifi cance of this paper and to enable others to extend these 
calculations, if they so desire. 

We are inde bted to Mo rri s Newman, Senior Researc h Mathe matic ian, Na tional Bureau of 
Standards, Was hington, D.C., for substantial original co ntribution and c riti cal co mme nts during the 
course of thi s in vestiga tion. We also wi sh to thank Martin Cordes of NBS Ap plied Mathe matics 
Division for tec hnical consultation related to the co mputational aspect of thi s work . 

6. References 

[ I] Zimm, B. H., J ( he m. Ph I'S. 24, 2li9 (19S1i). 
[ 2] Lodge, A. 5 .. a nd Wu. Y. -j . . Hheo l. Ac la. 10. :'>:)9( 197 1) 

[ 3] Hohn , F. E.. Ele me nl a ry ~l a lri x Algebra (MacMil la n. 19:18). 

[ 4] Sc hw arz , H. H., N um erica l Ana lys is of Sy mm e lric Malrices, Ira ns la led from Ihe Ge rm a n by P. He rl e le nd y 
(Pre nl ice-Ha ll. t973). 

[ oS] Ha lmos, P. H .. Finil e ·Dim ens iona l Vec lor S paces (Va n Nus l rand , t%8). 

[ Ii] OSl rowski . A. , Jbe r. De ui sc h. Ma lh . Ve re in . 60 , 40 ( 1%7). 

[ 7] Zimm , B. H., Hoe, G. M. , a nd Eps le in , L. F. , J. ( he m. P hl's . 24. 279, (19S1i). 
[ 8] Hearst , J. E., J. ( hem. Phl's. 37. 2.~47 ( 1962). 

[ 9] Tschoegl, N . W., J. ( hem. Phys . 39 . 149 ( 1963) . 

[l0] Thurs lon . G. B. , and Morrison. J . D., Polyme r 10. 42 1 ( 1909). 
[II] Lodge, A. 5 ., a nd Wu, Y. -j .. Unive rs il y of Wiscons in-Malh e malics Hesearc h (enl e r He por! No. 12.:;0. Madi so n. 

Wisconsin (19 72). 

7. Appendix 

The following is a Fortran V driver program as executed on a UNIVAC-ll08 Exec 8 computer 
at National Bureau of Standards Laboratory at Gaithe rsburg, Md. To simplify our programming 
effort, we take advantage of the well-doc um e nted s ubroutines furni shed by the Inte rnational 
Mathe matical and Stati stical Libraries, Inc., of Houston, Texas. For a co mplete desc ription of these 
subroutines used in our program , the reader may consult the reference manual entitled " IMSL 
Library 2, Edition 4 (FORTRAN V), UNIVAC 1100 Series, Reference Manual, November 1974." 
The appearance of trade names such as UNIVAC and IMSL does not imply an endorsement of the ir 
product or services. 
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1* 
2* 
3* 
4* 
5* 
6* 
7* 
8* 
9* 

10* 
II * 
12* 
13* 
14* 
1.5* 
16* 
17* 
18* 
19* 
20* 
21* 
22* 
23* 
24* 
2"* a 
26* 
27* 
28* 
29* 
30* 
31* 
32' 
33' 
34' 
3S' 
36' 
37' 
38* 
39' 
40' 
41' 
42' 
43' 
44* 

COMMON A(300),B(300),D(300),E(300),E2(300),HMINOR(4's1's0) 
N = 300 
HSTAR = 0.4 

DO 20 I = I,N 
A(l) = HSTAR' SQRT (2.1FLOAT(I)) 

20 CONTINUE 
B(l) = I. - A(I) 

DO 30 1= 2,N 
B(I) = A(l - 1) - A(l) 

30 CONTINUE 
DO 50 1= I ,N 

1\ = I * (I + I) / 2 
HMINOR(lI) = 2. * B(l) 

.50 CONTINUE 
NI = N - i 
DO 60 I = I. NI 

N2 = N - I 
DO 701 = I, N2 

K = (11+1) * 11+1- \) / 2) + 1 
HMINORIJ.;) = BII+1l - Bll) 

70 CONTINUE 
60 CONTINUE 

CALL EHOUSS IHMINOR, N, D. E, E2) 
CALL EQRT2S 10, E. N. DUMMY. I , IERR) 
IFIIERR .NE. 0) GO TO 100 
SUMD I = 0 
SUMD2 = 0 
DO 80 I = I,N 

SUMDI = SUMDI + 1.10(1) 
SUMD2 = SUMD2 + I.IDII)/DiI) 

80 CONTINUE 
200 FORMATIIHI. lOX. 4HN = .14. 20X 8HHSTAR = .F6.2.// ) 

WRITE 16.2(0) N. HSTAR 
2.~0 FORMAT IIH. 4\. 42HNONZERO EIGENVALUES FOR i\IATRI\ PRODUCT H*A.I/) 

WRITE 16.2.~0) 
320 FOR'VIAT IIHO. IOFI2.:J) 

WRITEI6.320)IOill.I = 1. N) 
330 FORMAT IIHO.8X.E 12 .. ~.2X.20HISUM OF RECI PROCALS)) 

WRlTE 16.330) SUMOI 
340 FORMAT IIHO.8\.EI2.:J.2\.27HISU'\1 OF RECIPROCAL SI)UARES)) 

WRITE 16.340) SUM02 
100 WRITE 16.400) IERR 
400 FORi\1ATIIHI. lOX. :{6HROUTINE FAILS AT EIGENVALUE NU'\iIBER .14) 

END 
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For N = 300, and h* = 0.4 (corresponding to a = 0.566), the following output was obtained at a 
total run cost of $47.91 for a total run time of 5 min 42 s. The CPU cost was $24.2] with a run time 
of 5 min 36 s. 

N = 300 HSTAR = .40 
NONZERO EIGENVAL UES FOR MATR IX PROD UC T !-I 'A 

. 11 539-02 .35945- 02 .67 180 - 02 .10383-0 1 . ]4480- 01 .18953-01 .23749- 01 .28837- 0 1 .34 185 - 0 1 .39772- 01 

.45574-01 .51576- 01 .. 57762- 0 1 .64 11 9- 0 1 .70634- 01 .77297- 01 .84098- 0 1 .9 1028- 01 .98078- 01 . 10524+00 

.11251+00 .11988+00 .12734+00 . 13489+00 .142S2+00 .IS023+00 .IS801 +00 .16S86+00 . 17377+00 .1 8 174+ 00 

. 18976 +00 .19784+00 .20S96+00 .2 1412 + 00 .222:n+00 .230S8+00 .23886+00 .24717+00 .2SSS I +00 .26387+00 

.27226+00 .28067+00 .28909+00 . 297.~4+00 . :~0599 + 00 .31446+00 .32294+00 .33 142 + 00 .:n99 1+00 .34840+ 00 

.35690+00 .36539+00 .37388+00 .38236+ 00 .39084+ 00 .39932+00 .40778+ 00 .41623+00 .42467+00 .43309 + 00 

.44150+00 .44990+00 .45827+00 .46663+00 .47496+00 .48328+00 .49 1S7+00 .49983+00 .. 50807+00 .SI629 + 00 

.52447+00 .53263+00 .54075 + 00 .54885 + 00 .S5691+00 .S6495+ 00 .57294+ 00 .5809 1+ 00 .58883+00 .59673+00 

.60458+00 .61240+00 .62017+00 .62791+00 .63S31+00 .64326+00 .6:;088+ 00 .6S84:; + 00 .66598+ 00 .67347+00 

.68091+00 .68830+00 .69566+00 .70296 + 00 . 71022+00 .71743+00 .72459+00 .73171+00 .73878+00 .74:;80+ 00 

.75277+ 00 .75969+00 .766:;6+ 00 .77338+00 .780 15+00 .78686+00 .7lJ3S3+00 .800 14+ 00 .80670+00 .8 1321 + 00 

.81967+00 .82608+00 .8324.3+00 .83872 + 00 .84497+00 .85 116+ 00 .8:;730+ 00 .86338+ 00 .8694 1+ 00 .87:;38+ 00 

.88130+00 .88716+00 .89297+00 .89873+00 .90443+00 .91008+00 .9 IS67+ 00 .92 120+ 00 .92668+ 00 .932 11 + 00 

.93748+ 00 .94279+00 .94806+00 .%326+00 .%84 1+00 .963:; 1 +00 .9()8:;5+ 00 .973S3+00 .97847 + 00 .98334+ 00 

.98816+ 00 .99293+00 .99765+ 00 .1 0023+0 1 .'10069+0 1 .1 0 11 :;+01 . 10160+ 0 1 . 10204+ 0 1 .10248+ 01 .1029 1 + 0 1 

.10334+01 .10376+01 .10418+ 01 .10460 + 0 1 . 10500+01 .10541+0 1 . 10:;80 + 01 . 10619+ 01 . 10658+0 1 .10696+ 01 

.10734+ 01 .10771+0 1 .10808+ 0 I . 10844+ 0 1 . 10880+ 01 .1091 :; + 01 . 10949+ 0 1 . 10984+ 01 . ] 10 17+0 1 . 11 0:;1+01 

. 11 083 + 01 .1111 6+0 1 . 111 47 + 0 1 . 11 179+ 0 1 .11 210+ 0 1 . 11 240+0 1 .11 270+ 0 1 . 11 299+ 0 1 . 1/.328+ 0 I . 11 3:;7+0 1 

. 11 385 + 0 I .11 4 13+ 01 . 11 440 + 0 1 . 11 467+0 1 . 11 493+0 1 . 11 :; 19+ 0 1 .1 1545 + 01 . 11 570+ 01 . 11 5% + 01 . 11 619+ 0 1 

. 11 643 + 0 1 .1 1666+0 1 . 11 689 + 0 1 .1 1712+ 01 . 11 7.34+ 0 1 .11 756+ 01 . 11 778+ 0 1 . 11 799 + 01 . 11 820 + 0 1 . 11 840+ 01 

. 11 860+ 01 . 11 880+ 01 .11899+ 0 1 . 11 9 18+ 0 1 . 1 19 :~7+0 1 .11 %5+ 0 1 . 11 97.) + 0 1 .11 991 + 01 .1 2008+ 0 1 .1 2025+ 01 

.12041 +0 1 .12058+0 1 .1 2073 + 0 1 .12089+ 0 1 .12104+01 .12 11 9+ 0 1 .12134+ 0 1 . 12 148+ 0 1 .12 163+0 1 . 12176 + 0 1 

.12 190 + 01 .1 2203+0 1 . 122 16+01 . 12229+ 0 1 . 1224 1+ 01 . 122:;3+ 0 1 . 1220:;+ 01 . 12277 + 01 . 12288+0 1 . 12299 + 0 1 

. 123 10+ 0 1 .l n2 1+ 01 .1233 1+ 0 1 . 12341 + 01 . 123:;1+0 1 . 1 2:~6 1 + 01 . 12:370+ 0 1 .12379+ 01 . 12:388+ 01 . 12397+ 0 1 

. 1243:; + 01 .124 14+01 . 12422 + 0 I .12430+ 01 . 1 24:~8+ 0 1 . 1244:;+0 1 . 124:;2 + 0 1 . 12460 + 0 1 . 124·60 + 0 1 . 12473+0 1 

. 12480+ 0 1 .1 2486+0 1 .1 2492 + 0 1 . 12492 + 0 1 . 12504+ 0 1 . 12510+ 0 1 . 1 2.~ 1 5 + 0 1 . 1 2.~2 1 + 0 1 . 12520+ 0 1 . 1 2.~ 3 1+0 1 

. 12536+ 0 1 . 1254 1+ 01 . 12545 + 01 .12550+ 0 1 .125S4+ 01 . 12558+ 01 . 12S62 + 01 . 12566+ 0 1 .12S70+ 0 1 . 12573 + 01 

. 12:;77+ 0 I .1 2580+ 01 .12583+ 01 . 12:;86+ 01 . 12589+ 01 .12592 + 01 . 125% + 01 . 12:;97 + 01 .12600 + 0 1 .1 2602 + 0 1 

. 12600 + 0 1 . 12606 + 01 . 12608+0 1 .1 26 10+ 01 .126 12+ 01 . 126 14+ 01 .1 26 1:;+ 01 . 126 17+ 01 .1 26 18+ 01 .126 19+ 0 1 

. 12670 + 01 . 12621+01 .12622 + 01 .1 2623+ 0 1 . 12674+ 01 .12624+0 1 . 12625 + 0 1 . 1262:; + 0 1 . 1262') + 01 . 12625 + 0 1 

By changing the first three state ments of the ori ginal program , one can find the e igenva lues for any 
Nand h * as long as the core storage is not exceeded a nd the value of h * is less than 0 .. 'i47. To 
illustrate thi s point, we show be low for N = 2.50 and h * = 0. 3 the first three sta teme nt s of the 
modified program and the appropriate output. The total cost fo r the run was $2.5.29 with a total run 
time of 3 min 19 s. The CPU cost was $13.96 and the CPU time was 3 min 14 s. 

1* COMMON A(250) ,B(250),D(2:;0),E(250),E2(250) , !-IMINOR(3 1375) 
2* N = 250 
3* HSTAR = 0.3 
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N = 250 HSTAR = .30 
NONZERO EIGENVALUES FOR MATRIX PRODUCT H*A 

. 11737-02 .36804-02 .69245-02 .10767-01 .15099-01 .19865-01 .25015-01 .30516-01 .36336- 01 .42455 - 01 

.48849-01 .55504-01 .62402-01 .69531-01 .76877 - 01 .84432 - 01 .92184-01 .10012+00 .10824+00 .11653+00 

. 12499+00 .13360+00 .14237+00 .15128+00 .16033+ 00 . 16951+00 .17882+00 .18826+00 .19781+00 .20748+00 

.21726+00 .22714+00 .23713+00 .24721 +00 .25739+00 .26766+00 .27802+00 .28846+00 .29898+00 .309.58+00 

.32025+00 .33099+00 .34180+00 .35268+00 .36362+00 .37462+00 .38568+00 . . 3967.9+00 .4079.5+00 .41916+00 

.43042+00 .44173+00 .45308+00 .46446+00 .47.S89 + 00 .48735+00 .49894+00 .5 1037+00 :S2192+00 .533:';0+00 

.54511 +00 .55674+00 .56039+00 .58006+00 .59174+00 .60345+00 .6IS16+00 .62689+00 .63863+00 .65038+00 

.66213+00 .67389+00 .68565+00 .69742+00 .70918+00 .72094+00 .73270+00 .74446+00 .75621+00 .7679.5+00 

.77969+00 .79141+00 .80312+00 .81482+00 .826.10+00 .83817+00 .84982+00 .8614.5+00 .87306+00 .8846.1 + 00 

.89622+00 .90776+00 .91928+00 .93077+00 .94224+00 .9.5368+00 .96.108+00 .97646+00 .98780+00 .99912 + 00 

.10104+01 .10216+01 .10328+01 .10440+01 .1O.SS1+OI .10662+01 .10773+01 . 10883+01 .10993+01 .lll02+01 

.1l211 +01 .11319+01 .11427+01 .1l534+01 .1l641 + 01 . 11748+01 .11854+01 .1l9.59+01 .12064+01 .12168+01 

.12272+01 .12376+01 .12478+01 .12581+01 .12682+01 .12783+01 .12884+01 .12984+01 .13083+01 .13182 + 01 

.13280+01 .13378+01 .13475+01 .13571+01 .13667+01 .13762+01 .138S6+01 . . 139.50+01 .14043+01 . 14136+01 

.14228+01 .14319+01 .14409+01 .14499+01 .14588+01 .14676+01 .14764+01 .14851+01 .14938+01 .15023+01 

.1.1108+01 .15192+01 . 15276+01 .15358+01 .IS440+01 .IS521 +01 .15602+01 .IS682+01 .15761+01 .15839 +01 

.IS916+01 .1.5993+01 .16069+01 .16144+01 .16218+01 . 16292+01 .16365+01 .16437+01 .16508+01 .16579+01 

.16648+01 .16717+01 .16785+01 .16853+01 .16919+01 .16905+01 .17050+01 . 17114+01 .17177+01 .17239+01 

.17301 +01 .17362+01 .17421+01 .17481+01 .17539+ 01 .17596+01 .17653+01 .17709+01 . 17764+01 .17818+01 

.17871 +01 .17923+01 .17975+01 .18025+01 .18075+01 .18124+01 .18172+01 .18220+01 .18266+01 .18312+01 

.18356+01 .18400+01 .18443+01 .18485+01 .18526+01 .18567+01 .18606+01 .18645+01 .18683+01 .18719+01 

.187:';5+01 .18790+01 .18825+01 .18858+01 .18891 +01 .18922+01 .189:)3+01 .18983+01 .19012+01 .19040+01 

.19067+01 .19093+01 .19119+01 .19143+01 .19167+01 . 19190+ 01 .19212+01 . 19233+01 .19253+01 .19272+01 

. 19290+01 .19308+01 .19324+01 .19340+01 .193.15+01 .19368+0 1 .19381+01 . 19:W3+01 .19405+01 .1941.1+01 

.19424+01 .19433+01 . 1944D+OI .19447+01 .194S3+ 01 .194.18+01 .19462+01 . 19465+01 . 19467+01 . 19469+01 

(paper 80A2-443) 
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