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Based on purely matrix-algebraic arguments, we prove three new results on the eigenvalue
problem [Zimm, 1956] arising from modeling the bulk hydrodynamic and dielectric properties of very
dilute polymer solutions:

1. Let N be the number of identical segments joining N+1 beads of a bead/spring model for any
polymer molecule. Then for any N, the well-known hydrodynamic interaction matrix H is

positive definite if the so-called interaction parameter A* is less than (2V2 + 1)/7 or 0.547.
2. Let A be the tridiagonal matrix governing the elastic link force on each bead. Then if H is
positive definite, there exists a matrix Q such that Q"' HAQ = QTAQ = A, where A is a

diagonal matrix.
3. (Equivalence Statement due to Lodge and Wu [1971]). The nonzero eigenvalues of the matrix
product H A are completely determined by solving the eigenvalue problem associated with a

symmetric matrix S, where Sy = Hy + Hiy j — Hieyj — Hi;,i,j=12...,N.

To illustrate the significance of these results, numerical output for N as large as 300 based on a
Fortran program for several values of A* is given.

Key words: Bead/spring model; dilute polymer solytions; eigenvalue: hydrodynamic interaction;
matrix algebra: necklace model; polymer physics.

1. Statement of Problem

Some twenty years ago, Zimm [1]! formulated a linear, second-order partial differential equation
for a distribution function y which depends on time and 3(N+1) coordinates xq, v Zp . . ., Xn Vns
zy, of the N + 1 beads, for modeling the bulk behavior of very dilute polymer selutions under the
influence of external force, Brownian motion, and hydrodynamic interaction among the beads of the
necklace model. The mechanical model for each polymer molecule is that of a chain of N identical,
ideally elastic segments joining N+1 identical beads with complete flexibility at each bead. Two
length parameters are of interest in this model: a;, the so-called hydrodynamic radius of the bead,
and by, the root mean square of the segment length. The ratio a of the two length parameters (@ =
ay/by), and the number N of elastic segments completely characterize the mathematical problem

*On leave during 1975-76 as a ComSci Fellow, Nuclear Regulatory Comm., Wash., D.C. 20555.

! Figure in brackets indicate the literature references on page 281.
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through the following two symmetric, square matrices of order N +1:

= T
-1 2 -1
0o -1 2. 0
(L)l
é —
2 -1 0
-1 2 -1
0 —1 1 J
1 a a.2™t a3’ a. N}
a 1 a a2t . alN—1)%
(1.2) l"__l = a2t a 1 a ... alN-2)"%
a Nt  alN=D3% . 1

The symmetry of the two matrices, A and H, and an assumption based on physical arguments that
the eigenvalues of the matrix product H A are distinct, led to an eigenvalue problem with a
coordinate transformation matrix () such that a similarity transformation with Q diagonalizes H A,

and congruent transformations with () diagonalize A and H as follows:

(1.3) Q' HA Q = A
(1.4) Q" A Q = M,
(1.5 QUH QT = N =AM

where o= diag(\o, A1, . . .o Ay, M = diag(mo, pys - - ., my), and L= diag(vy, vy, . .., vy), are

diagonal matrices, and the superscripts ~! and ¢ in eqs (1.3) through (1.5) denote the inverse and
the transpose of a matrix, respectively. A closed form solution for a specific linear laminar flow with
a transverse gradient constant over all beads, was first given by Peterlin and appeared at the end of
Zimm’s paper [1, p. 278] as a note added in proof. Computationally speaking, the modeling problem
is reduced to the construction of the transformation matrix () such that both  Aand M are known

for constructing the distribution function .
The purpose of this paper is to derive some new results based on matrix algebraic arguments
and another obvious property of the matrix H, namely, its positive-definiteness under certain

conditions, which Zimm [1] failed to exploit. In section 2, we first show that H is positive definite if

the parameter a is positive and is bounded from above by a constant a,.x which equals 1.0 for N =
1, 0.872 for N = 2, 0.815 for N = 3, and 0.773 for N = 4. In section 3, we prove our main result
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that for positive definite H, there exists some () such that A = Mand N = 1, ie., \; = p; and v;

=1forj =0,1,2, ..., N. In section 4, we furnish an algebraic proof as an alternate to the proof

of a result due to Lodge and Wu [2], which we subsequently use in calculating the eigenvalues of
the matrix product H A. In section 5, we discuss the significance of our three mathematical results.

To illustrate the significance, we include in an appendix a sample Fortran program and output for
several values of the nondimensional parameter a and for N as large as 300.

2. Positive Definiteness of the Interaction Matrix

As shown in (1.2), the so-called interaction matrix H is not only symmetric, but also a “stripe

matrix,” i.e., all entries along a line parallel to the main diagonal are equal to one another.
Furthermore, H depends on a scalar parameter a, which is required to be positive (a > 0) from

physical considerations.? We now wish to show that, for any given order of the matrix H, there is an
upper bound a .y for the parameter a such that I:{ is positive definite for 0 < a < aax.

Since H is a stripe matrix, an application of a standard result in matrix algebra® implies the
corollary that H is positive definite, if and only if, the determinant of H, ie., det H, is positive for a

specific order N + 1 as well as for all orders less than N + 1. It is convenient to introduce a new

matrix B and a new positive constant ¢ as defined below:

(2.1) @ =@
C ] 274 3 L N4
1 c 1 274 N-1)4
(2.2) B=| 2 ] c | (N—=2)"4
N1 N-1)1%t N=2% N=-3)1% ... c

Since det B = ¢V*! det H, ¢>0, our problem is reduced to the study of the positivity of det B.

From the property of a determinant that its value is unaltered if any multiple of one line is
added to a different, parallel line,* let us perform the following operations on the matrix B:

Step | Keep the first row of B fixed, and replace the jth row with the difference between the jth

and the (j—1)th rows forj = 2,3, . . ., N+1.

Step 2 Keep the first column of the new matrix following step 1 fixed, and replace the jth column
of the new matrix with the difference between the jth and the (—1)th columns of the new
matrix forj = 2,3, . . ., N+1.

2 We have already seen that by definition, a(=a,/b,) is required to be positive if the hydrodynamic radius a, is positive. In Zimm'’s formulation [1, pp. 270—

271, the parameter is defined by the expression (6m%) 4 p n~' b"!, which is positive for p > 0,7 >0, and b > 0.
©>ee, e.g., Hohn |5, pp. ZoB—20U].

+ See, e.g., Hohn [3, p. 37].
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The resulting matrix, to be denoted by B’, is again symmetric as shown below:

(2.3)
c 1—c 2=l Soasoonnoe
1—c 2e=1l) —2744+2—c..........
B’ — 2711 —274+2—¢c 2c=1 ool
= 3-1_2-4 —371+2(2)74-1 —27442—c..........

N3A—-(N-1)t —-N"442N - )t=(N-27¢ ...

Since det B’ = det B, we have further reduced the study of the positive definiteness of the
interaction matrix H to a study of the matrix B’.  As it will become clear very shortly, our

derivation so far is intended to pave the way for the application of a sufficient condition for the
positive definiteness of H or B'.

We now observe that for the lowest order of H, B, or B’, i.e., all the 2 X 2 matrices given by
(1.2), (2.2), or (2.3), the positivity of det Ii (and thus det B:or det B:’) always yields the condition
that either @ < 1 or ¢ > 1. It follows that the symmetric matrix B’ has the property that all its

diagonal elements are positive. A well-known theorem in matrix algebra states that a symmetric
matrix with positive diagonal elements is positive definite if the matrix is “strongly diagonal
dominant,” i.e., the absolute value of the diagonal element at every row exceeds the sum of the
absolute values of all off-diagonal elements in that row:®

N
(2.4) B3l > Y |Bjl|, forj=0,12,....N.
k=0,1,..

(k=3j)

We denote the generic of E’ as By, j,k =0,1,2, . . ., N.

To apply (2.4), we consider two ranges of the values of ¢ for which one can write down easily
the NV +1 inequalities:

Case | c =2 — 27¥:
(2.5) j=0: c >c— N1
(2.6) =l 2c—1)>2c -1 —(N=-1)*t+ N4

(2.7 Jj=2: 2-1D>2c—-1)—-(N-2t+ (N-1 %

(2.9 Jj=N: 22 —1)>c -1
Case2 (1 <c <2 -2

2.5  j=0: ¢ >c-Ni

5 See. e.g.. Schwarz [4, pp. 17-19].
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29 j=1: 2c-1)>1-27%

(2.10) or, 2Ac—1)>2-32%+ 3% (N =3,
(2.11) or, 2c—-1)>2-22%- (N-1)+Nt (N = 4.
212 j=22 22Ac-1)>3-229t-c¢ (N =2,
(2.13) or, 2c—-1>5-32%-2 (N =3),
(2.14) or, 2c—1>6-527%— 2 + 37} (N =9,
(2.15) or, 2c—1>6-42*—2%—(N-24+(N-D (N =2 5).
(2120 j=3 2Ac-1D)>3-22t-c (N =3),
(2.13) or, 2Ac—-1>5-32%t-2 (N = 4,
(2.14) or, 2Ac—1>6-527%—2 +37% (N =5,
(2.15) or, 2c—1>6-427%—2% - (N=-3)4+ (N-274 (N = 6)
o1 j.='/'V':' S LR N .

What distinguishes the above two cases is the fact that for case 1, every off-diagonal element of B’

is negative, whereas for case 2, care must be exercised on elements Bj;, By B, . . ., B'yy_1, €ach
of which equals —27% + 2 — ¢. An examination of inequalities (2.5) through (2.8) for case 1 implies
that they are always satisfied for every N. On the other hand, for case 2, the controlling inequalities
are given by (2.9), (2.10), and (2.11). Combining all results derived in this section, including (2.1)
where a = ¢!, we obtain various upper bounds anax for the parameter a for various N as listed in

table 1.

TaBLE 1. Upper bounds for a or h* for positive definite H

@ max h:’:\ux = 2_”2(amax)
Number of Chains
(Exact) (Approx.) (Approx.)
N=1 1 1.0 0.707
1

N=2 702+ 2V2) 0.872 0.617
N=3 3216 + 1278\/2 — 484\/3 — 288\/6 0.815 0.576

4273
N = 4 and above ;(4 +1/2) 0.773 0.547
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We have included in table 1 a list of upper bounds for a parameter A* which appears frequently in
the literature with A* = 27% a. Since most of the applications of the bead/spring model require more
than four chains (N = 4), the key result, 0 < A* < 0.547, a criterion which assures positive
definiteness of H, will be used in the next section to achieve a significant simplification of Zimm’s

eigenvalue problem.

3. Diagonalization—A Simplification of Zimm’s Result

The derivation of an upper bound for the parameter a (0 < a < 0.773) or, equivalently, the
parameter A* (0 < h* < 0.547), with h* = 27% @, as shown in the last section, enables us to inject
the positive definiteness of the matrix H as an additional matrix property into Zimm’s eigenvalue

problem. We begin with another standard result in matrix algebra that any symmetric, positive
definite matrix can be represented by the square of another symmetric matrix.® Hence, for 0 < A*
< 0.547, the symmetric matrix H is positive definite and there exists a symmetric C such that H =

C?% CT = C. Since the matrix A as defined in (1.1) is symmetric, the matrix product C A C is

also symmetric. By the well-known diagonalization theorem on symmetric matrices,” we assert that
there exist an orthogonal U and a diagonal D such that

3.1

e
(=
1o
I
=
|
I~}
[fe=
=
=

= i

By choosing Q as the matrix product C U =" eqs (1.3) through (1.5) can be simplified as follows:

3.2 Q'HAQ =UCCACUT =D =4,
(3.3 Q"AQ=UC A CU'=D=M
(3.4 Q' HQT=UCICICUT = 1 =N

Thus we have shown that for 0 < A* < 0.547, there exists a transformation matrix

Q such that A = 1\21 and Ii = .

4. Equivalence of Two Eigenvalue Problems—An Algebraic Proof
For the bead and spring model of dilute polymer solutions, the result of last section shows that
it is sufficient to find the N+1 eigenvalues of the matrix product H A if the criterion 0 < a < 0.773
or 0 < A* < 0.547 is satisfied. Since A is singular and all eigenvalues are distinct, det (}__! é)

vanishes and exactly one of those N + 1 eigenvalues must be zero, i.e., Ao = 0.
To find the other N eigenvalues, A\, . .., Ay, Lodge and Wu [2] introduced an equivalence
statement which asserts that the eigenvalue problem for the unsymmetric product H A of order N +

1, aside from the addition of a zero eigenvalue, is equivalent to that of a symmetric matrix

% See, e.g.. Halmos [2. p. 139].
" See. e.g.. Halmos [2. p. 157, bottom lines).
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S of order N, where the elements S;; of S are combinations of elements of H as follows:

(4.1) Sij=Hiyy+Hi ;. —Hiy,; — H .y, =Moo on e

The equivalence statement is important because the matrix S for the reduced problem is symmetric
and, therefore, computationally more attractive than the matrix product H A. To prove that
statement, Lodge and Wu [2] introduced a nonsingular matrix A, with elements (4¢);; = A;; for

each i,j = 0,1, ..., N, except for i =) = 0 where (4de)oo = Ago + €. Using a theorem® on the
continuity of eigenvalues, a triangular decomposition of the matrix A, and a property of the

determinant of a matrix product, it was shown that as € — 0, the nonzero eigenvalues of H A,
approach those of H A and S.

The purpose of this section is to show that Lodge and Wu’'s equivalence statement is true by a
purely algebraic argument without resorting to the continuity theorem involving the parameter e. We
first observe that there exists a triangular decomposition of A such that A = L™ L:

0 0 0
—1 1 0
0 _
(4.2) = : :
1 0
0 —1 1
Let \; be any nonzero eigenvalue of HA, i =12 ... N. Letx;be the corresponding eigenvector
of A\;. By definition, we have
(43) I;l éxi: )\,-x,-.

Substituting é = L7 L into (4.3), we obtain

(4.4)

=

I_JT L XN= )\,-xi.
By definition, x; is a nonzero vector satisfying (4.3), hence the right-hand side of (4.4) cannot vanish.
This implies that L x; is a nonzero vector (proof by contradiction). Therefore it makes sense to

premultiply both sides of (4.4) by the singular matrix L:

(4.5)

e
1=
e
e

2o = }\i L Xi.
Denoting L x; by a nonzero vector y;, we obtain

(4.6)

e
Ja=
ez
=
[

= NiYi-

* Lodge and Wu [2] attribute this theorem to Ostrowski [6].
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Equations (4.3) and (4.6) show that the nonzero eigenvalues of H A and L H L " are identical. Some
algebraic manipulation with L H L7, which is symmetric, shows that its nonzero eigenvalues are

given by those of S with components S;; defined in (4.1).

5. Significance of Results

To discuss the significance of our mathematical results, it is appropriate here to introduce a
closed-form solution of the distribution function s, originally due to Peterlin [1, p. 278 footnote], for
a specific linear laminar flow with a constant transverse velocity gradient k expressible through a
nondimensional gradient parameter 3:°

(6-1) ll! = d’l lllz ..... l!l,' ..... L[IN,
where

_ 3 i 2 2B 232 2 ,82 2
(6.2) Yi = C; exp 21 + BN »fi \, a7 (1 }\%) G+ (1+ }\'2) n| o

Ci = (wi/m?2 (1 + BYAH 2, and N, wi, ¢ = 1,2, ..., N, are the nonzero diagonal elements of
matrices A and M as defined in (1.3) and (1.4), respectively. The symbols &. ¢, m; in (6.2) denote

the nondimensionalized transformed coordinates of the (i + 1)th bead as defined below:

7 =

(6.3) &= b Q15 x5

1

<
Il
-

=)
=
i

|
1=

b3 Qi v

<.
Il
—

7 =

(6.5) ni= 2 b [0z

1

<
Il
-

The principal result of this paper has been the demonstration that the diagonal elements of both
matrices A and M are identical for each i, i = 0,1,2, ..., N, if the hydrodynamic interaction

parameter h* is less than 0.547. This means that once we have computed the values of A\, i = 0,1,2,
..., NV, from the eigenvalue problem of the matrix product H A as defined in (1.3), it is no longer

necessary, as understood previously by Zimm [1], to compute () explicitly in order to calculate the
diagonal elements w;, i = 0,1,2, . . ., NV, of the matrix 1\:1 as defined in (1.4).

The result \; = w, ¢ = 0,1,2, ..., N, for h* < 0.547 is also significant in discrediting some
computational results in the literature such as Zimm, Roe, and Epstein [7], etc., where the
transformation matrix (), being not explicitly known, was expeditiously approximated by the

orthogonal transformation matrix Q of the well-known Rouse model of zero hydrodynamic

interaction (i.e., H= 1). Under that circumstance, the matrix M is given by Q tAQ r or

*The flow field is specified by the velocity vector v = (k y. 0. 0). and the parameter 8 is related to x by the formula B = ma, bl «/(kT). where k is
Boltzman’s constant and 7 is the absolute temperature.

" See. e.g.. Zimm, Roe and Epstein [7]. Hearst [8]. and Tschoegl [9].
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Q& }=\ Qg and the eigenvalues w; are given by 4 sin? [j #/2(N+1)] which contradict our exact result
with A; = p;, and M™* A = N = 1 as shown in (3.4).

Computationally speaking, we are interested in the solution of the eigenvalue problem (4.3), for
large N, and particularly, in the smaller values of A;. The equivalence statement of L.odge and Wu
[2] provides the basis for computing those eigenvalues very economically with the aid of a large-scale
computer. The exact computer-generated calculation renders many earlier approximation schemes
obsolete.’® Without the benefit of the equivalence statement, Thurston and Morrison [10] used a
computer to obtain the eigenvalues of the matrix product H A for values of N up to 15. Based on

their equivalence statement, Lodge and Wu [11] were able to extend the computational capability
and reported some numerical results for bead/spring models with as many as 300 links.
Unfortunately, Lodge and Wu did not exhibit all eigenvalues, nor the computer program with which
eigenvalues could be generated for interesting applications. In the appendix we list a Fortran
program and output to illustrate the significance of this paper and to enable others to extend these
calculations, if they so desire.

We are indebted to Morris Newman, Senior Research Mathematician, National Bureau of
Standards, Washington, D.C., for substantial original contribution and critical comments during the
course of this investigation. We also wish to thank Martin Cordes of NBS Applied Mathematics
Division for technical consultation related to the computational aspect of this work.
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7. Appendix

The following is a Fortran V driver program as executed on a UNIVAC-1108 Exec 8 computer
at National Bureau of Standards Laboratory at Gaithersburg, Md. To simplify our programming
effort, we take advantage of the well-documented subroutines furnished by the International
Mathematical and Statistical Libraries, Inc., of Houston, Texas. For a complete description of these
subroutines used in our program, the reader may consult the reference manual entitled “IMSL
Library 2, Edition 4 (FORTRAN V), UNIVAC 1100 Series, Reference Manual, November 1974.”
The appearance of trade names such as UNIVAC and IMSL does not imply an endorsement of their
product or services.
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20

30

50

70
60

200
250
320
330
340
100

COMMON A(300),B(300),D(300),E(300),E2(300), HMINOR(45150)
N = 300

HSTAR = 0.4
DO 201 =1,N

A(l) = HSTAR * SQRT (2./FLOAT(I))
CONTINUE

CONTINUE

DO 501 = I,N
IM=1*a+1)/2
HMINOR(I) = 2. * B(D)

CONTINUE

DO 70) =1, N2
K=I+)h*d+]J-1)/2)+]
HMINOR(K) = B(I+1) — B(])

CONTINUE

CONTINUE

CALL EHOUSS (HMINOR, N, D. E, E2)
CALL EQRT2S (D, E. N, DUMMY. 1, IERR)
IF (IERR .NE. 0) GO TO 100

SUMDI1 =0

SUMD2 =0

= SUMDI1 + 1./D(D)
SUMD2 = SUMD2 + 1./DdyD(I)

FORMAT (1H1, 10X, 4HN = | 14. 20X 8HHSTAR = F6.2.7/)

WRITE (6.200) N, HSTAR

FORMAT (1H. 4X. 422HNONZERO EIGENVALUES FOR MATRIX PRODUCT H*A.//)
WRITE (6.250)

FORMAT (1H0, 10F12.5)

WRITE (6,320) (D(I). I=1. N)

FORMAT (1H0,8X,E12.5.2X,20H(SUM OF RECIPROCALS))

WRITE (6.330) SUMDI1

FORMAT (1H0,8X .E12.5.2X.27TH(SUM OF RECIPROCAL SQUARES))
WRITE (6.340) SUMD2

WRITE (6,400) IERR

FORMAT (1H1. 10X. 36HROUTINE FAILS AT EIGENVALUE NUMBER .14)
END
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For N = 300, and A* = 0.4 (corresponding to a = 0.566), the following output was obtained at a
total run cost of $47.91 for a total run time of 5 min 42 s. The CPU cost was $24.21 with a run time

NONZERO EIGENVALUES FOR MATRIX PRODUCT H*A

of 5 min 36 s.

N = 300 HSTAR = .40
.11539-02 .35945—02 .67180—02
.45574—01 .51576—01 .57762-01
11251400 .11988+00 .12734+00
.18976+00 .19784+00 .20596+ 00
.27226+00 .28067+00 .28909+ 00
.35690+00 .36539+00 .37388+00
44150+ 00 .44990+00 .45827+00
.52447400 .53263+00 .54075+00
.60458+00 .61240+00 .62017+00
.680914+00 .68830+00 .69566+ 00
L15277400  .75969400 .76656+ 00
.81967+00 .82608+00 .83243+ 00
.88130+00 .88716+00 .89297+ 00
.937484+00 .94279+00 .94806+ 00
.98816+00 .99293+00 .99765+ 00
.10334401  .103764+01 .10418+401
10734401 010771401 .10808+01
11083401 11116401 . 11147401
11385401 11413401 11440401
11643401 .11666+01 .11689+01
L11860+01  .11880+01 .11899+01
12041401 212058401 .12073401
12190401 012203401 .12216+01
L12310401 .123214+01 .12331+401
L12435401  .124144-01  .12422+401
L12480+01  .12486+01 .12492+401
12536401 012541401 . 12545401
12577401 012580401 .12583+01
12600401 .12606+01 . 12608+ 01
12670401 012621401 12622+ 01

.10383-01
.64119-01
. 13489+ 00
21412+ 00
.29754+00
38236+ 00
46663+ 00
.54885+ 00
.62791+ 00
.70296+ 00
. 77338400
.83872+00
.89873+ 00
195326400
.10023+01
.10460+01
.10844+01
11179401
11467401
11712401
.11918+01
12089+ 01
112229+ 01
12341401
12430+ 01
.12492+01
12550401
12586401
.12610+01
.12623+01

. 1448001
.70634—01
14252+ 00
.22233+00
.30599+ 00
.39084+ 00
47496+ 00
55691+ 00
.63531+00
. 71022+ 00
78015+ 00
.84497+ 00
190443+ 00
.95841+00
210069+ 01
10500+ 01
.10880+01
11210401
.11493+01
.11734+01
.11937+01
12104401
.12241+01
.12351+01
.12438+ 01
12504401
12554401
.12589+01
.12612+01
.12674+01

.18953—01
7729701
.15023+00
.23058+00
.31446+ 00
.39932+00
.48328+00
.56495+00
.64326+00
71743400
78686+ 00
.85116+00
.91008+00
.96351+00
10115401
10541401
10915401
.11240+01
.11519+01
11756401
11955+ 01
12119401
.12253+01
.12361+01
12445401
12510401
12558401
.12592+01
12614401
.12624+01

.23749-01
.84098-01
.15801+00
.23886+00
.32294+00
40778+ 00
49157400
57294+ 00
.65088+ 00
. 72459400
.79353+00
.85730+00
.91567+00
196855+ 00
10160+ 01
.10580+01
.10949+01
.11270+01
11545401
11778401
11973401
12134401
.12265+01
12370401
.12452+01
.12515+01
.12562+01
.12595+01
12615+ 01
.12625+01

.28837-01
.91028-01
.16586+00
24717400
33142400
41623+ 00
49983+ 00
58091+ 00
65845+ 00
.73171+00
80014400
.86338+00
192120+ 00
.97353+00
10204401
.10619+01
10984+ 01
11299+ 01
11570401
11799401
11991+ 01
12148+ 01
12277+ 01
12379+ 01
12460+ 01
SIS SR 0]
L12566+01
12597401
12617401
.12625+01

.34185-01
.98078—01
17377400
25551400
33991400
42467+ 00
50807400
.58883+ 00
.66598+ 00
.73878+400
.80670+ 00
.86941+00
192668+ 00
97847+ 00
.10248+-01
10658401
11017401
11328401
11595401
11820401
.12008+01
12163401
112288401
.12388+01
12466+ 01
.12526+01
12570401
12600401
12618401
12625401

.39772-01
10524+ 00
.18174+00
.26387+00
.34840+ 00
43309+ 00
.51629+00
.59673+00
.67347+00
. 74580+ 00
.81321+00
.87538+00
.93211+00
198334+ 00
.10291+01
10696+ 01
11051401
IS SHEEOI]
.11619+01
.11840+01
.12025+01
.12176+01
.12299+01
.12397+01
12473401
.12531+01
N2503=01
.12602+01
.12619+01
.12625+01

By changing the first three statements of the original program, one can find the eigenvalues for any
N and h* as long as the core storage is not exceeded and the value of A* is less than 0.547. To

illustrate this point, we show below for N = 250 and A* = 0.3 the first three statements of the

modified program and the appropriate output. The total cost for the run was $25.29 with a total run
time of 3 min 19 s. The CPU cost was $13.96 and the CPU time was 3 min 14 s.

1*
9%
a5

COMMON A(250),B(250),D(250),E(250),E2(250), HMINOR(31375)
N = 250
HSTAR = 0.3
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N = 250 HSTAR = .30
NONZERO EIGENVALUES FOR MATRIX PRODUCT H*A

J11737-02.36804—02 .69245—02 .10767—01 .15099—01 .19865-01 .25015—01 .30516—01 .36336—01 .42455—01
.48849—01 .55504—01 .62402—01 .69531-01 .76877—01 .84432-01 .92184—01 .10012+00 .10824+00 .11653+00
.12499+00 .13360+00 .14237+00 .15128+00 .16033+00 .16951+00 .17882+00 .18826+00 .19781+00 .20748+00
.21726+00 .22714+00 .23713+00 .24721+00 .25739+00 .26766+00 .27802+00 .28846+00 .29898+00 .30958+00
.32025+00  .33099+00 .34180+00 .35268+00 .36362+00 .37462+00 .38568+00 .39679+00 .40795+00 .41916+00
.43042+00 .44173+00 .45308+00 .46446+00 .47589+00 .48735+00 .49894+00 .51037+00 .52192+00 .53350+00
54511400 .55674+00 .56039+00 .58006+00 .59174+00 .60345+00 .61516+00 .62689+00 .63863+00 .65038+00
.66213+00 .67389+00 .68565+00 .69742+00 .70918+00 .72094+00 .73270+00 .74446+00 .75621+00 .76795+00
.77969+00 .79141+00 .80312+00 .81482+00 .82650+00 .83817+00 .84982+00 .86145+00 .87306+00 .88465+00
.89622+00 .90776+00 .91928+00 .93077+00 .94224+00 .95368+00 .96508+00 .97646+00 .98780+00 .99912+00
.10104+01 .10216+01 .10328+01 .10440+01 .10551+01 .10662+01 .10773+01 .10883+01 .10993+01 .11102+01
11211401 .11319+01 .11427+01 .11534+01 .11641+01 .11748+01 .11854+01 .11959+01 .12064+01 .12168+01
.12272401 .12376+01 .12478+01 .125814+01 .12682+01 .12783+01 .12884+01 .12984+01 .13083+01 .13182+01
.13280+01 .13378+01 .13475+01 .13571+01 .13667+01 .13762+01 13856401 .13950+01 .14043+01 .14136+01
.14228+01 .14319+01 .14409+01 .14499+01 .14588+01 .14676+01 .14764+01 .14851+01 .14938+01 .15023+01
15108401 .15192+01 .15276+01 .15358+01 .15440+01 .15521+01 .15602+01 .15682+01 .15761+01 .15839+01
15916401 .15993+01 .16069+01 .16144+01 .16218+01 .16292+01 .16365+01 .16437+01 .16508+01 .16579+01
.16648+01 .16717+01 .16785+01 .16853+01 .16919+01 .16905+01 .17050+01 .17114401 .17177+01 .17239+01
.17301401 17362401 .174214+01 .17481+01 .17539+01 .17596+01 .17653+01 .17709+01 .17764+01 .17818+01
17871401 .17923+01 .179754+01 .18025+01 .18075+01 .18124+01 .18172+01 .18220+01 .18266+01 .18312+01
.18356+01 .18400+01 .18443+01 .18485+01 .18526+01 .18567+01 .18606+01 .18645+01 .18683+01 .18719+01
18755401 .18790+01 .18825+01 .18858+01 .18891+01 .18922+01 .18953+01 .18983+01 .19012+01 .19040+01
.19067+01 .19093+01 .19119+01 .19143+01 .19167+01 .19190+01 .19212+01 .19233+01 .19253+01 .19272+01
.19290+01 .19308+01 .19324+01 .19340+01 .19355+01 .19368+01 .19381+01 .19393+01 .19405+01 .19415+01
.19424+01 .19433+01 .19440+01 .19447+01 .19453+01 .19458+01 .19462+01 .19465+01 .19467+01 .19469+01

(Paper 80A2—443)
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