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On lohvidoV’s Proofs of the Fischer-Frobenius Theorem*

R. C. Thompson**
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A short proof is given of theorem of Fischer and Frobenius exhibiting a conjunctive
transformation mapping Toeplitz matrices onto Hankel matrices.
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1. Introduction

A Hankel matrix H,_; is an n X n matrix with the structure
H, = [5i+5Jo=i.j<n-
A Toeplitz matrix T, is an n X n matrix with the structure
Tpy = [ci—5)osig<n-

It is easy to see that Toeplitz matrices may be converted to Hankel matrices in a uniform way by a
matrix multiplication. Indeed, if

then JT,_, is a Hankel matrix for all Toeplitz matrices T,_;. This procedure, however, does not
carry Hermitian Toeplitz matrices to Hermitian (i.e., real) Hankel matrices. The theorem of Fischer-
Froebenius asserts that a class of transformations exist each of which uniformly carries Toeplitz
matrices to Hankel matrices in such a way that Hermitian Toeplitz matrices are carried to Hermitian
Hankel matrices. Recently I. C. Iohvidov has published three proofs of this result. One of these
proofs is a direct but somewhat intricate calculation; it may be found on pages 211-213 of [1]". A
second proof, to be found on page 217 of [1] and also in [2], makes a preliminary reduction to the
case of positive definite Toeplitz matrices, then takes advantage of a decomposition of definite
Toeplitz matrices known from the theory of the trigonometric moment problem. The third proof, in
[2], avoids the reduction to the positive definite case, and uses instead a more complicated
decomposition of Toeplitz matrices due to Iohvidov and Krein [3, p. 338].

The purpose of this paper is to give a short and direct proof of the Fischer-Frobenius theorem.
Our proof is based on a simple decomposition of arbitrary Toeplitz matrices, for which the proof is
almost a triviality and which was apparently not noticed in [1] and [2]. See equation (3). Iohvidov’s
techniques then may be applied to (3) to produce the desired result rapidly.
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! Figures in brackets indicate the literature references at the end of this paper.
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2. A Decomposition of Toeplitz Matrices
Let €, €1, . . ., € be distinct fixed numbers on the unit circle, and set
V = lef')-an-1ysiz-1, 05202

This square matrix V' is nonsingular since after removal of a factor from each column it becomes a
Vandermonde. Alternatively, a nontrivial linear relation on the rows of V' quickly leads to the
impossible existence of a nonzero polynomial of degree at most 2n — 2 with 2n — 1 distinct roots.

Let T = [ci_;]o=i.j=n1 be an arbitrary Toeplitz matrix and take

© = [C_(nwl), 5 o og Ey o o oo Cn_l]T
to be a column vector formed from the entries of T'. Let
d = [(10, o v oy (12"_2]7'

be an unknown column vector. Since V' is nonsingular, we may choose d such that

c =Vd.

That is,

n—1 2n—2
(1) ci= Y def+ Y deed,  —n<i<n.
t=0 t=n

Equations (1) are the same as the matrix equation

(2) T,, = FDF* + GAG?,

where
D = diag(d,, . . ., d,y),
A = diag(d,, . . -, dan_s),
F = [&/Josi=a-1, o=t=n-1-
G = le&'osiz1, nztmna-

Here F is square, G rectangular, and * denotes conjugate transpose. We shall deduce the Fischer-
Frobenius theorem from (2). Note that both FDF* and GAG* are Toeplitz matrices.

3. The Fischer-Frobenius Theorem
Take a and b to be fixed complex numbers, with ab not real. Let
E=[&, .. ., Enal’, N =1[ ... Nual”

be column vectors, and A an indeterminate. If the right-hand side of the polynomial identity
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n—1 n—1
(3) Y EAN =Y (a +aN" ' (b + by
p=0 =0

is multiplied out, then compared with the left-hand side, each &, is linearly expressed in the n; j =
0, ...,n — 1, with coefficients depending on a and . Thus we obtain a matrix 4 for which

4 &= An

explicit formulas for the entries of 4 may be seen in [1, p. 209]. (We shall not need these formulas.)
Let A = [ap;] o<p.j=n—1- This matrix 4 is nonsingular. Indeed, set ¢ = 0 in (3) and (4), then replace A
in (3) with (aX — b)/(b — a)) to obtain

n=i
E An; = 0,

=0

after cancelling a factor. Thus ¢ = 0 implies n = 0; hence 4 is nonsingular.
In (3) and (4) set my =. . .= Mjy = N1 =. . .= Ny = 0, m; = 1, for fixed j. Then, by (4), &,
= «,;, and hence by (3)

n=1 o :
8 = b+ bNY
(5) D N = (a + ah)"! (1 : )

p=0 a + ak

The theorem of Fischer and Frobenius, slightly generalized is this:
THEOREM 1: Let matrix A be defined as above. Then, for any Toeplitz matrix T, _ ,, the
matrix

(6) Hn—l = ATTn—l A_

is a Hankel matrix. Conversely, for any Hankel matrix H,_,, the matrix T,_, defined by (6) is a
Toeplitz matrix.

ProoF: Choose €, . . ., €5 on the unit circle, distinct and unequal to —a/a. We then have
the decomposition (2). Since Hankel matrices are closed under addition, it will suffice to prove that
both ATFDF*4 and A'GAG*4 are Hankel matrices. We give the proof for the first of these, the
proof for the other being similar. Let I\ = (b + bN/@ + a)). This Mébius function S maps the unit
circle to the extended real axis, and in particular maps €, . . ., €, _ » to finite real values. Set

ri = fle;), 0=i=2n -2,

pi = (a + Eei)"_‘, 0=uv=2n = 2.

Then each r; is real. The (7,/) element of ATF is (by (5))
N

\‘/_‘ (Xm‘Gll} = [)lﬁfl)j = /),r,’.
=0

Thus
ATF = F,D,
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where
Fy =[r'losim-1, og=11
D, = diag(po, - - -» Pn_1)-
Thus F, is a real Vandermonde matrix. We now have
ATFDF*4 = (A"F)DATF)*
= Fy(D,DD*F* = F\D,F,T,

where D, = D\DD* is diagonal. However, any matrix of the form F,D,F,” with F; a Vandermonde
matrix and D, diagonal is a Hankel matrix.

Thus the transformation T,_; — ATT,_;A carries Toeplitz matrices to Hankel matrices. This
evidently is a nonsingular linear transformation from the (2n — 1)-dimensional complex vector space
of Toeplitz matrices into (and therefore onto) the 2n — 1 dimensional complex space of Hankel
matrices. Thus any Hankel matrix H,_, is (uniquely) realizable in the form A’T,_,A. This completes
the proof.

When T,_, is Hermitian, H,_; is also Hermitian, being a conjuctive transform of T,_;.

Conversely, when H,_, is Hermitian, so is its conjunctive transform 7,_, = 4 V" H,_,4-'. Thus we
have:

COROLLARY: Under the Fischer-Frobenius transformation, Hermitian Toeplitz matrices map onto
real Hankel matrices, and conversely.

The preparation of this paper was supported in part by the Air Force Office of Scientific
Research, under Grant 72-2164.
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