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Let G be a pe rmutation group of degree n. Think of the e le ments, a, of C as It- square 
permutation matri ces . The paper concerns a reduc tion of the represent ation a -> the rth Kronec ker 
powe r of a . [n case C is the full symmetric permutation group, a formula is give n which invo lves the 
Stirlin g numbe rs of the second kind. 
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1. Introduction 

Let Sn denote the full symmetric permutation group of degree n. For each a E e, let (J (a) be 
the corresponding permutation matrix, i.e., Q(a) = (0 iUU»)' If e is any subgroup of S n, then Q is a 

faithful representation of e whose c haracter, e, counts the number of fixed points . In trus note, we 
in vestigate a red uction of fr, the character of the rth Kronecker power of (J . 

The reduction of the Kronecker (or inner) product of two irred ucible representations is called a 
Clebsch-Gordon series. When e = S'" the proble m of obtaining a Clebsch-Gordon series has been 
solved (see, e.g., [3],1 [4] or [7]). However, the solution does not eas ily lead to explicit formulas for 
the red uction of higher Kronecker powers of re presentations. 

When 1 :::; r :::; n , the problem naturally arises in connection with a ce rtain class of matrix 
function s: Let iI. be an irreducible character of e. If A = (au) is an n-square co mplex matrix, Je t 

er(A) = I iI.(a)E r(a lU(I ), ... , anU(n»), 
UEe 

where Er is the rth elementary symmetric function. It is easily seen, by making spec ial choices for r, 
e, and iI., that determinant, permanent and trace are all examples of e r functions . It is proved in [5, 
Theorem 6] that e r is not identically zero, if and only if iI. is a component of fr. Thus, although our 
general interest is to obtain a reduction of fV, we are specifically interested in the smallest number k 
such that iI. is a component of (Jk. 

2. Results 

If iI. and X are characters of e, then by (ii., X)e we denote the usual "inner product" of 
characters. Let fr ,n be the set of functions from the first,. to the first n positive integers. It will 
sometimes be convenient to trunk of a function y E fr,n as a sequence, y = (y(l), y(2), ... , y(r)). 
The rth Kronecker power of Q(a) is an nr-square matrix wruch is indexed by rT,n (usually ordered 

lexicographically). For lX, f3 E fr,n, the lX, f3 entry of this big matrix is TI 00(t), u/3(t) = o(}, u{3. In 
t~ 1 
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particular, 

For y E fr,n. define G(y) = {a E G:o-y = y}. It is straight forward to verify that G(y) is the subgroup 
of G which individually fixes the elements of the range of y. 

LEMMA: Let A. be an irreducible character of G. Then 

PROOF: 

(A., e')G = .2: [G: G( y)] - I (A., 1)c;(Y). 
YErr,n 

1 " (A., (V)c = - J A(a)W(a) 
o( G) :;;c 

1 " " = -G J . J A((r)Oy fIA 
o( ) ~G YEr;,n . 

= _1_ S )' A(a) 
o( G) y<r;.,n fIE'a; y) 

S [G: G(y)]-I (A., l)c(Y)o 
YEi;.n 

(1) 

Let Or.n be the subset of f r •n consisting of strictly increasing functions, i.e., Y E Qr.n if and only 
if 1 :::::; y(1) < y(2) < ... < y(r) :::::; n. Since G(y) consists of those a E G which individually fix the 
integers in the range of y, it follows that G( y) = {id} for all YEO n- I .,,' In palticular, (A., l)c(Y) = 

A.(id) for all y E On- I.n' It follows from the lemma that (A., fJ" - lk > 0 for every irreducible character 
A. of G. Since the principal (identically one) representation is a component of 0 (i.e., (1, elc > 0) we 
see that (A., W)c :::::; (A., W+I)C' These remarks are restated as 

COROLLARY 1: Let G be a subgroup of SI1' There exists a positive integer m :::::; n - 1 such that (X, 
Wk > 0 for every irreducible character X of G and every r :2: m. 

In general, we may expect a randomly chosen irreducible character to appear in er for some 
r < m. 

COROLLARY 2: Let A. be an irreducible character of G. Suppose k is the smallest integer such that 
(A., e1<jG > O. Then 

(A., e,k)G = (k!) 2: [G; G]- I (A., l)(;(Y)o (2) 
y«'k.11 

PROOF: Take {3 E f k,n' Suppose {3 contains exactly s distinct integers. Let a EO s.n be the 
sequence which contains the distinct integers appearing in (3. Then G(a) = G(f3). If s < k, then by 
(1) and the definition of k, (A., l)C(!» = O. Therefore, for r = k, the only terms of (1) which survive 
correspond to sequences of distinct integers. These are precisely {ya: YEO k,n' a E S d. 

In what follows, we will frequently take G = S n' In this case, we write (A., X)" rather than the 
more cumbersome (A., Xlsn. 
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COROLLARY 3: Let A be an irreducible character 0/ Sn. For 1 ::5 r < n, 

(A, 8r)n = L S(r, t)(A , 1)n - 1> (3) 
' = 1 

where the numbers S(r, t) are Stirling numbers 0/ the second kind. 
PROOF: Let y be a generic ele ment of f r .n. For each t = 1,2, .. . , r, there are 5(r, t) ways of 

partitioning the r components of y into t none mpty s ubsets. For each s uch partition, the re are n !/(n 
- t)! ways of filling the r positions in y in such a way that the same intege r appears in two 
components if and only if both components be long to the same set of the partition. In othe r words, 
there are n !5(r, t)/(n - t)! sequences in fr,n which contain precisely t di stinct integers. Finally , if G 
= 5n> then G(y) consists of the symmetric group on the n - t intege rs not a ppearing in y. The result 
follows from eq (1). 

The numbers 

bl" = L 5(r, t ) 
1= 1 

are called Bell numbers after E. T. Be ll . It follows immediate ly from (3) that for 1 ::5 r < n , (1, W)" 
= b,.. In fact, a more general result was proved in [6], namely for 1 ::5 r ::5 n , (1, e'k :2: b,. with 
equa lity if and only if G is r-fo ld transiti ve. S trangely, (1 , 8"+')c :2: b,,+, - 1, with equalit y if and only 

ifG = 5 1/ ' 

CO ROLLARY 4: Let A be an irreducible character 0/ Sil' Let k be minimal so that (A, e~1l > O. 
Then (A, 8~n = (A, 1)Il- k. 

PROOF. This is immediate ei the r from Corollary 2 or Corollary 3. 
An important feature of Corollary 3 is that we know how to co mpute (A, 1),,- 1' The branching 

theorem [2, p. 126] s tates the following: Suppose A ari ses from the frame .(m " m2, .. . , m,,), m, :2: m2 
:2: . .. :2: m", and ml + m2 + .. . + mp = n. Then the restri cti on of A to 5"- 1 deco mposes as A = AI 
+ 1..2 + ... + Am where A; is the character of 5"- 1 ari sing from the fram e (m" .. . , m;_" m; - 1, 
mi+h ... , mp), and Ai is unde rstood not to appear if m;_1 = mi' S in ce the ide nticall y one 
re presentation of 5"- 1 corresponds to the fram e p = 1, ml = n - t , we obtain the following 
apparently well-known result. 

COROLLARY 5: Let A be the irreducible character 0/ SII which arises j imn the ji-ame (m" m2, ... , 
m p) . Assume that A is not the principal character. The smallest number k such that (A, 8~1l > 0 is k 
= n - mI' 

EXAMPLE 1: If A = E, the alternating character of 5n , then A corresponds to the frame p = n, 
ml = m2 = ... = mn = 1. In particular, by Corollary 5, (E, 8') = 0 unless r :2: n - 1. (This proves 
that the bound in Corollary 1 is sharp.) Using Corollary 4, we find that (E, 8"- 1)" = (E, 1)1 = 1. 

EXAMPLE 2: Let G = 55' Let A be the character arising from the fram e (2, 2, 1). From Corollary 
5, the smallest k for which (A, 8k)5 > 0 is k = 5 - 2 = 3. Using Corollary 4 and the branc hing 
theorem, we obtain (A, 83h; Confusing the frame with the character, the restriction of (2, 2, 1) to 54 
is (2, 1, 1) + (2, 2). The further restriction to 53 is (1, 1, 1) + (2, 1) + (2, 1). Finally , the restri c tion 
of (2, 2, 1) to.52 is 3(1, 1) + 2(2). By Corollary 4, (A, 8:Ij5 = (A, 1)2' But we have just discove red that 
(A, 1)2 = 2. 

I am grateful to Kenneth R. Rebman for pointing out to me that the numbers in (3) are the 
Stirling numbers, and to the anonymous referee of an earlier effort for the brief proof of Corollary 3. 
My original proof, involving the Frobenius Reciprocity Theorem for induced characters, is 
substantially more complicated; it does not rely on the le mma. 
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