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The Kronecker Power of a Permutation*
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Let G be a permutation group of degree n. Think of the elements, o, of G as n-square
permutation matrices. The paper concerns a reduction of the representation o — the rth Kronecker
power of . In case G is the full symmetric permutation group, a formula is given which involves the
Stirling numbers of the second kind.
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1. Introduction

Let S, denote the full symmetric permutation group of degree n. For each o € G, let (o) be
the corresponding permutation matrix, i.e., Q(o) = (d;0;). If G is any subgroup of S,, then Q is a
faithful representation of G whose character, 6, counts the number of fixed points. In this note, we
investigate a reduction of 0", the character of the rth Kronecker power of ).

The reduction of the Kronecker (or inner) product of two irreducible representations is called a
Clebsch-Gordon series. When G = S,, the problem of obtaining a Clebsch-Gordon series has been
solved (see, e.g., [3]," [4] or [7]). However, the solution does not easily lead to explicit formulas for
the reduction of higher Kronecker powers of representations.

When 1 = r = n, the problem naturally arises in connection with a certain class of matrix
functions: Let \ be an irreducible character of G. If 4 = (a) is an n-square complex matrix, let

e (Ad) = }: No)E (@i16ay - - - Gnom)s

oeG

where E, is the rth elementary symmetric function. It is easily seen, by making special choices for r,
G, and A, that determinant, permanent and trace are all examples of e, functions. It is proved in [5,
Theorem 6] that e, is not identically zero, if and only if A is a component of 6”. Thus, although our
general interest is to obtain a reduction of 67, we are specifically interested in the smallest number k&
such that A is a component of 6.

2. Results

If X and x are characters of G, then by (A, x)¢ we denote the usual “inner product” of
characters. Let I',, be the set of functions from the first r to the first n positive integers. It will
sometimes be convenient to think of a function y € I',, as a sequence, y = (y(1), y(2), . . ., y(r).
The rth Kronecker power of (o) is an n’-square matrix which is indexed by I',, (usually ordered

r

lexicographically). For a, B €I, ,, the «, B entry of this big matrix is H Satty. 0Bty = Oa, op. In
t=1
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particular,

G = 3 Gk

Yelr,n

For y € I, define G(y) = {0 € G:oy = 7y}. It is straight forward to verify that G(y) is the subgroup
of G which individually fixes the elements of the range of y.
LEMMA: Let X\ be an irreducible character of G. Then

(A, 06 = Y [G: GYI' (A, Do, (1)

Yely

PRroOF:

1 <
(A, 0N = — 2 AMa)f"(o)

Il

= [G: GYI (N Deo.

Yely n

Let (), be the subset of I', , consisting of strictly increasing functions, i.e., y € ., if and only
if 1 =7y(1) <y <...<y(r) < n. Since G(y) consists of those o € G which individually fix the
integers in the range of vy, it follows that G(y) = {id} for all y € (),_;,. In particular, (A, 1go, =
Nid) for all y € 0,4, It follows from the lemma that (A, 8" Y); > 0 for every irreducible character
X of G. Since the principal (identically one) representation is a component of () (i.e., (1, 6)¢ > 0) we
see that (A, 0" < (N, 7). These remarks are restated as

COROLLARY 1: Let G be a subgroup of S,. There exists a positive integer m < n— 1 such that (x,
0%); > 0 for every irreducible character x of G and every r = m.

In general, we may expect a randomly chosen irreducible character to appear in 6" for some
r < m.

COROLLARY 2: Let \ be an irreducible character of G. Suppose k is the smallest integer such that
(A, 89¢ > 0. Then

M e = &) Y [G; GI' (A, Do (2)

YeQk n

ProoF: Take B € I'y,,. Suppose B contains exactly s distinct integers. Let « € (), be the
sequence which contains the distinct integers appearing in 3. Then G(o) = G(B). If s <k, then by
(1) and the definition of &, (\, 1)g = 0. Therefore, for r = k, the only terms of (1) which survive
correspond to sequences of distinct integers. These are precisely {yo: 7y €., o €Si}.

In what follows, we will frequently take G = S,. In this case, we write (A, x), rather than the

more cumbersome (A, x)g,.
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COROLLARY 3: Let \ be an irreducible character of S,. For 1 = r < n,

r

(A, 00 = > S(r, DA, Daoss (3)

—

where the numbers S(r, t) are Stirling numbers of the second kind.

PROOF: Let y be a generic element of I',. For each t = 1,2, .. ., r, there are S(r, t) ways of
partitioning the r components of y into ¢ nonempty subsets. For each such partition, there are n!/(n
— t)! ways of filling the r positions in y in such a way that the same integer appears in two
components if and only if both components belong to the same set of the partition. In other words,
there are n!S(r, t)/(n — t)! sequences in I, which contain precisely ¢ distinct integers. Finally, if G
= S,, then G(y) consists of the symmetric group on the n — ¢ integers not appearing in y. The result
follows from eq (1).

The numbers

r
S

b, = l S(r, t)

=1

~

are called Bell numbers after E. T. Bell. It follows immediately from (3) that for 1 = r < n, (1, 6",
= b,. In fact, a more general result was proved in [6], namely for 1 = r = n, (1, "¢ = b, with
equality if and only if G is r-fold transitive. Strangely, (1, 0" = b,,; — 1, with equality if and only

ifG =S,

COROLLARY 4: Let \ be an irreducible character of S,. Let k be minimal so that (N, 6%, > 0.
Then (N, 65, = (\, 1),k

Proor. This is immediate either from Corollary 2 or Corollary 3.

An important feature of Corollary 3 is that we know how to compute (A, 1),_,. The branching

theorem [2, p. 126] states the following: Suppose A arises from the frame (my, my, . . ., m,), my = m,
=...=m, and my + my +. ..+ m, = n. Then the restriction of X\ to S,_; decomposes as A = \,
+ Ay +...+ A,, where \; is the character of S,_, arising from the frame (m,, . . ., m;_y, m; — 1,
Mityy - - ., mpy), and A; is understood not to appear if m;,_, = m; Since the identically one
representation of S,_, corresponds to the frame p = 1, m;y = n — t, we obtain the following

apparently well-known result.

COROLLARY 5: Let X be the irreductble character of S, which arises from the frame (my, m,, . . .,
m,). Assume that \ is not the principal character. The smallest number k such that (A, 6%, > 0 is k
=n — m,.

EXAMPLE 1: If A = ¢, the alternating character of S,, then A corresponds to the frame p = n,
m; = my =...= m, = l. In particular, by Corollary 5, (e, #) = 0 unless r = n — 1. (This proves
that the bound in Corollary 1 is sharp.) Using Corollary 4, we find that (e, 6", = (¢, 1); = 1.

EXAMPLE 2: Let G = S;. Let A be the character arising from the frame (2, 2, 1). From Corollary
5, the smallest & for which (A, 6%); > 0is £ = 5 — 2 = 3. Using Corollary 4 and the branching
theorem, we obtain (A, 6% Confusing the frame with the character, the restriction of (2, 2, 1) to S4
is (2, 1, 1) + (2, 2). The further restriction to S3 is (1, 1, 1) + (2, 1) + (2, 1). Finally, the restriction
of (2, 2, 1) to S, is 3(1, 1) + 2(2). By Corollary 4, (A, 6%; = (A, 1),. But we have just discovered that
()\, 1)2 = 2

I am grateful to Kenneth R. Rebman for pointing out to me that the numbers in (3) are the
Stirling numbers, and to the anonymous referee of an earlier effort for the brief proof of Corollary 3.
My original proof, involving the Frobenius Reciprocity Theorem for induced characters, is
substantially more complicated; it does not rely on the lemma.
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