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The pape r is concerned with sy mm et ry c lasses of te nso rs whic h a ri se fro m a pe rmut ation gro up 
C a nd irred uc ible c ha racte r X of C . In case X is o f degree 1, a we ll-kno wn a lgo rith m is ava ilab le fo r 
induc ing a bas is of the sym me try c lass from the unde rl ying vecto r s pace. Whe n the degree of X is 
grea te r than 1, no com pa ra ble construc tion has been di scove red . The diffi c ulties are d isc ussed and 
result s obt a ined in some spec ia l cases. 

Key wo rds: Decomposable (o r pure) te nso r prod ucts; irre du c ible complex c harac te r ; o rthogo na lity 
re lat ions; pe rmutat ion group. 

1. Introduction 

Let V be a complex inner product s pace of dimension n . Let '&v de note the mth te nso r power 
of V, and let V I ® ' . . ®V on be the (pure or decomposable) tenso r product of the indicated vectors. The 

inner product in V induces an inner produc t in ~ which is co mple tely de termined by its ac tion on 
the set of decomposable tensors, namely 

III 

(1) 

By Sm, we mean the full symmetric pe rmuta tion group on {l, m}. If er E Sm, the re is a 

(unique) linear ope rator P(er - I) on ~V which has the e ffect P(er- l}u/ii ... ®V m = vU(l iZl .. . ®V <T(mh 

for all V t. •.• , V m E V. It follows that p eer) p en) = P(CT7T). Moreover, fro m (1), P(er)* = P(er - I). Let G 
be a s ubgro up of S"" and X an irreduc ible (complex) cha racte r of G. Defin e 

X(id) ~ 
T(G, X) = - (G) L x( er) p eer), 

o <TEe 

where id = identity of G, and o(G) is the order of G. By the orthogonalit y rela tions for characte rs, 
T(G, x) is an orthogonal projection onto its range Vx(G) (see, e.g., [5]1 or [12]). The subs pace Vx(G) is 
called a symmetry class of tensors [8]. Several authors have exploited these symmetry classes to 
obtain information ' about so called ge ne ralized matrix fun ctions (see, e .g., [5], [8] , [9], and [11]). 

Until recently , howe ve r, most of the work has involved only linear charac te rs. One reason for 
this preference is the exi stence, in the case ~id) = 1, of a convenient bas is for VJ.G) which is 
induced from a gi ve n basis of V. In the case ~id) > 1, it is not easy to obtain s uch a basis. A more 
precise idea of our inte rest must await furthe r introductory material. 

With r m, n we denote the set of fun ctions f ro m the firs t m positive integers to the first n. It is 
convenient to think of f,n ,n as a set of integer sequences of length m . Thus 
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L __ 

rm.n= {y = (r-{l), ... , r-{m)): 1::; r-{t)::; n, 1 ::; t ::; m}. 

If eb ... , en is an orthonormal basis of V, it is well known (see, e.g., [8]) that {e~ = 
m 

eY(i)0 ... 0eY(m) : Y E I'm.m} is an o.n. basis of 0V. It follows that {e~ = T(G, xle ~ : y E r m.n} 
must span V ~G). (In general, write XI * ... * Vm = T(G, X)v10 ... ®V m.) If ex, f3 E I'm.n, observe that 

(e~, d) = (T(G, x)er;, T(G, x)e~) 

= (T(G, x)er;, e ~) 

( 'd) III 

- X ~ '" - I IT - (G) L x(u) (e"O(t), e/3(t)). 
o 'nG t~ l 

(2) 

It follows from (2) that (e~, e~ = 0 unless there is a 1T E G such that f3 = a1T. We will say that a '= 

f3 (mod G) if there exists a 1T E G such that f3 = a1T. Clearly, ",= (mod G)" is an equivalence 
relation. 

If f3 = a1T, for some fixed 1T E G, then 

,rd) 11/ 

* * - A\~ '" IT ) (e." ell) - -(G) L X(u) (eO«t), e.,,,O"(/) 
o a.G t~ 1 

_ X(id) -, _ I 11/ 

- -(G) 2. X(1T T) n (e.,u), e ar(/)) 
o TEG t~ 1 

(3) 

where G., = {T E G: aT = a} is the stabilizer subgroup of a. In particular, by taking 1T = id in (3) 
one sees that e~ i= 0, if and only if 

a E n = {y E r m •n : I x(u) i= A}, 
O"EG y 

i.e., n consists of those sequences y which have the property that the restriction of X to G y contains 
the identically 1 character as a component. (Although not explicit in the notation, n depends on m, 
n, G and X.) It follows that {e~: WEn} spans V ~G). 

Now, if a == f3 (mod G), then G., is conjugate to Gil' Therefore, n is a union of equivalence 
classes, i.e., if a '= f3(mod G), then e~ = 0 if and only if e~ = O. Let K be a system of distinct 
representatives for the equivalence classes in n. (In practice, K is usually chosen to consist of those 
elements of n which come first, in lexicographic order, in their equivalence classes.) Then 

n = u { au : u E G}. 
aEK 

(4) 

THEOREM A ([10]): Let eb ... , en be a basis of V. Then V ~G) is the direct sum of the spaces 
(e ~O": u E G), as a ranges over K. (The angular brackets denote linear closure.) 

PROOF: Choose the inner product on V with respect to which el, . . . , en is orthonormal. The 
theorem follows from (4) and the definitions. 

The result which makes the degree one case so fruitful is this: 
THEOREM B (Marcus and Mine [9]): Let e ..... , en be a basis of V. Suppose x(id) 

{e~: a E K} is a basis of Vx(G). 
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PROOF: It is routine to verify that P(a) commutes with T(C, X) for all a E C. Moreover, if x(id) 
1, then P(a)T(C, X) = x(a- 1)T(C, X), It follows that e~" = X(CT)e~ if X(id) = 1. So, each 

subspace in the direct sum of Theorem A is one dimensional. 

That {e~: 0' E X} is not a basis of Vx(C) when X(id) > 1 is evident from the following result of 
S. Pierce [12]: 

THEOREM C: Let 0' E X be arbitrwy. There is a CT E G such that e;, and e*"" are linearly 
independent if and only if x(id) > 1. 

R. Freese [5] has improved Theorem C. Let s" = dim<e~,,: CT E C>. Freese's result is thi s: 
THEOREM D. If U' E I'm .", then 

i.e., s" is X(id) times the number of occurrences of the identically one character in the reSlliction of X 
to G". 

To conclude thi s section, we li st a number of fac ts about s" which follow from our discussion 
above. 

(i) s" i= 0, if and only if (r E n. 

(ii) L_ s" = dimV x(C) 
".t. 

(iii) x( id) :s; S" < x(id) 2, for all (r E n. 

(iv) s,,:s; [C:C a] , for all 0'. (In fact , it is clear from Freese's proof of Theore m D that Sa < [C :C,,] 
unless X is iden tically 1 and C = C",) 

if e" ... , en is an o.n. bas is of V. (See (3).) 

2. Results 

Presently, the outstanding problem is to choose from {~,,: CTEC} a bas is of (~,,: CTEC). In 
this generality, the task seems quite diffic ult. We are able to supply an answer (Theore m 4 below) 
only in a very special situation. 

As a first step toward analyzing the de pe ndence relations among the e le me nt s of 
{e;,,, : IT E C}, U' E fl , one is naturally led to consider 

cn = {CT E C: there exists Ca(CT) such that e:i'" = C,,(CT)e:!'}. 

(If X(id) = 1, then cn = C and C a = X. Moreover, C" c:;;; cn for all 0' En.) 
We first claim that cn does not depend on the basis e], ... , en. Let v" ... , Vn be another 

basis of V. Define a linear operator T on V by T(ei) = Vi, 1 :s; i :s; n, and linear ex tension . It is 
well known (see, e.g. , [10]) that T induces a linear operator K(T) on V x(C) suc h that 

for all XI. ... , Xm E V. Since T is inveltible, it follows that K(T ) is invertible. Indeed, K(T) - l 
K(T- 1) . Applying K(T) to both sides of the equation e~" = c ,,(CT) e~ one obtains v* ,,? c ,,(a) v;,. 

THEOREM 1: For all 0' E fl, Gnis a group and c"is a linear character on it. 
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PROOF: If u, 7T E C, then 

Thus U 7T ECa and, since e~ t- O,C,,(U7T) = c,,(u) c c17T). 
We remark (without proof since the result seems peripheral to the present undertaking) that the 

restriction of X to Ca contains c" as a component for all a E D, i.e., 

The converse fails . 
COROLLARY 1: If a E D, then Sa :S [G: Ga]. (Indeed, if sa is a system of right coset 

representatives for Ga in G, then u ~ e~1T : 7T E S a} spans V x(G).) 
", it 

(It follows from Corollary 1 and (iii) of section 1 that X(id) :s [C : Gal for all a E D. This 
inequality may be of so me interest in itself because Ca is generally not normal in C [1 , Theorem 
(53.17)].) 

EXAMPLE 1: Let C = 53' Let X be the irreducible character of C of degree 2, and take a = (1, 
1, 2). Then C" = 52' If C" were not all of ca, then ca would be all of 53, implying that [C: Gal = 

1 < s" = 2, contradicting Corollary 1. Therefore, C" = ca, and [C: Gal = 3. In particular, it' s not 
true in general that s" = [C: ca]. 

Subsequent developments will make clearer the relationship between C" and ca. We now make 
anothe r definition. Let C be a subgroup of Sm. Let X be an irreduc ible character of C. Define 

C x = {u EC: Ix(u)1 = X(id)}. 

It is easy to see that Cx is a normal s ubgroup of C and 'A = X/X(id) is a linear characte r on it [4, p. 
35], [11]. In fact, C x consists of those U which are represented by scalars in any rep resentation 
which affords X. 

THEOREM 2: For a E n, GXc:;;; Ga, and the restriction of c" to Gx is 'A . 
PROOF: Let U E GX. Then 

X(id) , . 
= -C) L X(7TU)P(7T) en 

o ( mC 

X(id ) , . 
= -C) 'A(u) L X(7T)P(7T) en 

o( mC 

= 'A(u) e~. 

COROLLARY 2: For all a E fl, G"G x c:;;; G". 
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EXAMPLE 2: It is tempting to conjecture that GoG x = GOI. Unfortunately, this is not always the 
case. Let G = 55. Suppose X arises from the frame (3, 2). Let 0' = (1,1,1,2,3) and let a be the 
transposition (45). Then O'a = (1,1,1,3,2), and a brute force computation shows that e~ = e~(T. In 
particular, since GX = {id} and GOI = 53, it follows that (45) E' OX \GoGx. 

It was proved in [11] that X(id)2 :s; [G: Gx], so the inequality So :s; [G : Gx] which arises from 
Theorem 2 is not very interesting. However, one might be tempted to conjecture that X(id)2 :s; 

[G: G"G x] for all 0' E' fl. A counte rexample follows. 
EXAMPLE 3. Let G be the subgroup of 54 generated by {(l4)(23), (1234)}. Then G is the dihedral 

group D4 of order 8. Let X be the irreducible c haracter of G of degree 2. Then X(id) = 2 = 

-X((l3)(24)), and X is zero on the rest of G. Thus, Gx = {id, (l3)(24)}. If 0' = (1,1,2,2), then G" = 

{id, (l2)(34)}, and 0' E' Ll. Moreover, GoG x = {id, (12X34), (13X24), (l4)(23)} and [G: G"G x] = 2, 
which is less than X(id)2 = 4. 

It is worth pointing out some other features of Example 3: Since 

1 < SOl:s; [G: G1:s; [G: G"G x] = 2, 

it follows that So = [G: G"G x], and hence COl = CoC x. Moreover, X(id)2 = [G : Gx). In a moment, 
we shall see that these observations are con nected. First, however, it should be me ntioned that the 
case of eq uality in X(id)2 :s; [G : C x] is re lated to some recen t work of F. DeMeyer, S. M. Gagola, 
G. Janusz, K. M. Timmer, and J. Yellen ([2], [3], [6] , [13], and [1 4]) in which the case of eq uality in 
X(id)2 :s; [G: Z(G)] is st udied. In partic ular, s ince Z(G) ~ G x, [G : Z(G)] = X(id)2 implies 
[G: G xl = X (id)2. 

THEOREM 3: If x(id)2 = [C: G xl, then s" = [G: GoG x] (and therefore Get = GoG x) for all 
0' E' fl. 

PROOF: If [G : G x] = X(id)2, then x(a) f- 0, if and only if a E' G x [ll). It follows from Theore m 
D that 

X(id) , 
s" = -(C) 2. x(a) 

o 0: ueGa 

where 'A = X/X(id). Since SOl f- 0, and since 'A is a linea r character, it must be that 'A(a) 
UE'C" n Cx. Thus 

from elementary group theory (see, e.g., [7, p. 45]). 

1 for aU 

THEOREM 4: Let eb ... , en be an o. n. basis of V. Let 7Tb ... , 7Tk be right coset representatives 
for Gx in G. Suppose X(id)2 = [G: Gx). If 0' E' fl is such that Go ~ Gx, then { e~17i: 1 :s; i :s; 

[G: G xl} is an orthogonal basis of < e~(T: IT E' G). 
PROOF. Let 'A(a) = X (a)/x(id) , a E' Gx. Since 0' E fl, it follows that 'A is. identically 1 on C". 
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Now, 

(e ~, e~1Tj 1Ti- 1 ) 

_ xf,id) " ( -I) 
- o(G ) riG X 7T;7Tj T ,from (3) 

a 

X(id) X (7Ti7Tj - I ) L A( T) 
O(G) r<G a 

= X(id) X (7T i7Tj-1 )/[c: Cal 

The result follows becau se X( 7T i7Tj - I) 1= 0 if and only if i = j (aga in appealing to [11] ). 
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