The Structure of Higher Degree Symmetry Classes of **Tensors***

Russell Merris**

(March 22, 1976)

The paper is concerned with symmetry classes of tensors which arise from a permutation group G and irreducible character χ of G. In case χ is of degree 1, a well-known algorithm is available for inducing a basis of the symmetry class from the underlying vector space. When the degree of χ is greater than 1, no comparable construction has been discovered. The difficulties are discussed and results obtained in some special cases.

Key words: Decomposable (or pure) tensor products; irreducible complex character; orthogonality relations; permutation group.

1. Introduction

Let V be a complex inner product space of dimension n. Let $\overset{m}{\otimes}V$ denote the mth tensor power of V, and let $v_1 \otimes \ldots \otimes v_m$ be the (pure or decomposable) tensor product of the indicated vectors. The inner product in V induces an inner product in $\bigotimes V$ which is completely determined by its action on the set of decomposable tensors, namely

$$(v_1 \otimes \ldots \otimes v_m, w_1 \otimes \ldots \otimes w_m) = \prod_{t=1}^m (v_t, w_t).$$
(1)

By S_m , we mean the full symmetric permutation group on $\{1, \ldots, m\}$. If $\sigma \in S_m$, there is a (unique) linear operator $P(\sigma^{-1})$ on $\overset{m}{\otimes}V$ which has the effect $P(\sigma^{-1})v_1 \otimes \ldots \otimes v_m = v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(m)}$, for all $v_1, \ldots, v_m \in V$. It follows that $P(\sigma) P(\pi) = P(\sigma \pi)$. Moreover, from (1), $P(\sigma)^* = P(\sigma^{-1})$. Let G be a subgroup of S_m , and χ an irreducible (complex) character of G. Define

$$T(G, \chi) = \frac{\chi(id)}{o(G)} \sum_{\sigma \in G} \chi(\sigma) P(\sigma),$$

where id = identity of G, and o(G) is the order of G. By the orthogonality relations for characters, $T(G, \chi)$ is an orthogonal projection onto its range $V_{\chi}(G)$ (see, e.g., [5]¹ or [12]). The subspace $V_{\chi}(G)$ is called a symmetry class of tensors [8]. Several authors have exploited these symmetry classes to obtain information about so called generalized matrix functions (see, e.g., [5], [8], [9], and [11]).

Until recently, however, most of the work has involved only linear characters. One reason for this preference is the existence, in the case $\chi(id) = 1$, of a convenient basis for $V_{\chi}(G)$ which is induced from a given basis of V. In the case $\chi(id) > 1$, it is not easy to obtain such a basis. A more precise idea of our interest must await further introductory material.

With $\Gamma_{m,n}$ we denote the set of functions from the first m positive integers to the first n. It is convenient to think of $\Gamma_{m,n}$ as a set of integer sequences of length m. Thus

AMS Subject Classification: Primary, 15A69: Secondary, 20C15. *An invited paper. The research leading to this article was supported in part by the National Science Foundation. **Present address: Department of Mathematics, California State University, Hayward, CA 94542.

$$\Gamma_{m,n} = \{ \gamma = (\gamma(1), \ldots, \gamma(m)) \colon 1 \leq \gamma(t) \leq n, \qquad 1 \leq t \leq m \}.$$

If e_1, \ldots, e_n is an orthonormal basis of V, it is well known (see, e.g., [8]) that $\{e_{\gamma}^{\otimes} = e_{\gamma(i)} \otimes \ldots \otimes e_{\gamma(m)} : \gamma \in \Gamma_{m,m}\}$ is an o.n. basis of $\otimes V$. It follows that $\{e_{\gamma}^{*} = T(G, \chi)e_{\gamma}^{\otimes} : \gamma \in \Gamma_{m,n}\}$ must span $V_{\chi}(G)$. (In general, write $x_1^{*} \ldots * v_m = T(G, \chi)v_1 \otimes \ldots \otimes v_m$.) If $\alpha, \beta \in \Gamma_{m,n}$, observe that

$$(e^*_{\alpha}, e^*_{\beta}) = (T(G, \chi)e^{\otimes}_{\alpha}, T(G, \chi)e^{\otimes}_{\beta})$$

= $(T(G, \chi)e^{\otimes}_{\alpha}, e^{\otimes}_{\beta})$
= $\frac{\chi(id)}{o(G)} \sum_{\sigma \in G} \chi(\sigma^{-1}) \prod_{t=1}^{m} (e_{\alpha\sigma(t)}, e_{\beta(t)}).$ (2)

It follows from (2) that $(e_{\alpha}^*, e_{\beta}^*) = 0$ unless there is a $\pi \in G$ such that $\beta = \alpha \pi$. We will say that $\alpha \equiv \beta \pmod{G}$ if there exists a $\pi \in G$ such that $\beta = \alpha \pi$. Clearly, " $\equiv \pmod{G}$ " is an equivalence relation.

If $\beta = \alpha \pi$, for some fixed $\pi \epsilon G$, then

$$e_{\alpha}^{*}, e_{\beta}^{*} = \frac{\chi(id)}{o(G)} \sum_{\sigma \in G} \chi(\sigma) \prod_{t=1}^{m} (e_{\alpha(t)}, e_{\alpha \pi \sigma(t)})$$

$$= \frac{\chi(id)}{o(G)} \sum_{\tau \in G} \chi(\pi^{-1}\tau) \prod_{t=1}^{m} (e_{\alpha(t)}, e_{\alpha \tau(t)})$$

$$= \frac{\chi(id)}{o(G)} \sum_{\tau \in G_{\alpha}} \chi(\pi^{-1}\tau),$$
(3)

where $G_{\alpha} = \{\tau \in G: \alpha \tau = \alpha\}$ is the stabilizer subgroup of α . In particular, by taking $\pi = id$ in (3) one sees that $e_{\alpha}^* \neq 0$, if and only if

$$\alpha \in \Omega = \{ \gamma \in \Gamma_{m,n} \colon \sum_{\sigma \in G_{\gamma}} \chi(\sigma) \neq 0 \},\$$

i.e., Ω consists of those sequences γ which have the property that the restriction of χ to G_{γ} contains the identically 1 character as a component. (Although not explicit in the notation, Ω depends on m, n, G and χ .) It follows that $\{e_{\omega}^*: \omega \in \Omega\}$ spans $V_{\lambda}(G)$.

Now, if $\alpha \equiv \beta \pmod{G}$, then G_{α} is conjugate to G_{β} . Therefore, Ω is a union of equivalence classes, i.e., if $\alpha \equiv \beta \pmod{G}$, then $e_{\alpha}^* = 0$ if and only if $e_{\beta}^* = 0$. Let $\overline{\Delta}$ be a system of distinct representatives for the equivalence classes in Ω . (In practice, $\overline{\Delta}$ is usually chosen to consist of those elements of Ω which come first, in lexicographic order, in their equivalence classes.) Then

$$\Omega = \bigcup_{\alpha \in \overline{\Delta}} \{ \alpha \sigma \colon \sigma \in G \}.$$
(4)

THEOREM A ([10]): Let e_1, \ldots, e_n be a basis of V. Then $V_X(G)$ is the direct sum of the spaces $\langle e_{\alpha\sigma}^*: \sigma \in G \rangle$, as α ranges over $\overline{\Delta}$. (The angular brackets denote linear closure.)

PROOF: Choose the inner product on V with respect to which e_1, \ldots, e_n is orthonormal. The theorem follows from (4) and the definitions.

The result which makes the degree one case so fruitful is this:

THEOREM B (Marcus and Minc [9]): Let e_1, \ldots, e_n be a basis of V. Suppose $\chi(id) = 1$. Then $\{e_{\alpha}^*: \alpha \in \overline{\Delta}\}$ is a basis of $V_{\chi}(G)$.

PROOF: It is routine to verify that $P(\sigma)$ commutes with $T(G, \chi)$ for all $\sigma \in G$. Moreover, if $\chi(id) = 1$, then $P(\sigma)T(G, \chi) = \chi(\sigma^{-1})T(G, \chi)$. It follows that $e^*_{\alpha\sigma} = \chi(\sigma)e^*_{\alpha}$ if $\chi(id) = 1$. So, each subspace in the direct sum of Theorem A is one dimensional.

That $\{e_{\alpha}^*: \alpha \in \overline{\Delta}\}$ is not a basis of $V_{\chi}(G)$ when $\chi(id) > 1$ is evident from the following result of S. Pierce [12]:

THEOREM C: Let $\alpha \in \overline{\Delta}$ be arbitrary. There is a $\sigma \in G$ such that e^*_{α} and $e^*_{\alpha\sigma}$ are linearly independent if and only if $\chi(id) > 1$.

R. Freese [5] has improved Theorem C. Let $s_{\alpha} = \dim \langle e_{\alpha\sigma}^* \rangle$: $\sigma \in G \rangle$. Freese's result is this: THEOREM D. If $\alpha \in \Gamma_{m,n}$, then

$$s_{\alpha} = \chi(id) (\chi, 1)_{G_{\alpha}},$$

i.e., s_{α} is $\chi(id)$ times the number of occurrences of the identically one character in the restriction of χ to G_{α} .

To conclude this section, we list a number of facts about s_{α} which follow from our discussion above.

(i) $s_{\alpha} \neq 0$, if and only if $\alpha \in \Omega$.

(ii)
$$\sum_{\alpha \in \overline{\Delta}} s_{\alpha} = \dim V_{\chi}(G)$$

(iii) $\chi(id) \leq s_{\alpha} < \chi(id)^2$, for all $\alpha \in \Omega$.

(iv) $s_{\alpha} \leq [G:G_{\alpha}]$, for all α . (In fact, it is clear from Freese's proof of Theorem D that $s_{\alpha} < [G:G_{\alpha}]$ unless χ is identically 1 and $G = G_{\alpha}$.)

(v) $||e_{\alpha}^*||^2 = s_{\alpha}/[G:G_{\alpha}],$ if e_1, \ldots, e_n is an o.n. basis of V. (See (3).)

2. Results

Presently, the outstanding problem is to choose from $\{e_{\alpha\sigma}^*: \sigma \epsilon G\}$ a basis of $\langle e_{\alpha\sigma}^*: \sigma \epsilon G \rangle$. In this generality, the task seems quite difficult. We are able to supply an answer (Theorem 4 below) only in a very special situation.

As a first step toward analyzing the dependence relations among the elements of $\{e_{\alpha\sigma}^*: \sigma \in G\}, \alpha \in \Omega$, one is naturally led to consider

 $G^{\alpha} = \{ \sigma \in G: \text{ there exists } c_{\alpha}(\sigma) \text{ such that } e^*_{\alpha\sigma} = c_{\alpha}(\sigma)e^*_{\alpha} \}.$

(If $\chi(id) = 1$, then $G^{\alpha} = G$ and $c_{\alpha} = \chi$. Moreover, $G_{\alpha} \subseteq G^{\alpha}$ for all $\alpha \in \Omega$.)

We first claim that G^{α} does not depend on the basis e_1, \ldots, e_n . Let v_1, \ldots, v_n be another basis of V. Define a linear operator T on V by $T(e_i) = v_i$, $1 \le i \le n$, and linear extension. It is well known (see, e.g., [10]) that T induces a linear operator K(T) on $V_{\chi}(G)$ such that

$$K(T)(x_1*...*x_m) = (Tx_1)*...*(Tx_m),$$

for all $x_1, \ldots, x_m \in V$. Since T is invertible, it follows that K(T) is invertible. Indeed, $K(T)^{-1} = K(T^{-1})$. Applying K(T) to both sides of the equation $e_{\alpha\sigma}^* = c_{\alpha}(\sigma) e_{\alpha}^*$ one obtains $v_{\alpha\sigma}^* = c_{\alpha}(\sigma) v_{\alpha}^*$.

THEOREM 1: For all $\alpha \in \Omega$, G^{α} is a group and c_{α} is a linear character on it.

$$\begin{aligned} e^*_{\alpha \ \sigma \ \pi} &= P(\pi^{-1}) \ e^*_{\alpha \sigma} \\ &= c_{\alpha}(\sigma) \ P(\pi^{-1}) \ e^*_{\alpha} \\ &= c_{\alpha}(\sigma) \ e^*_{\alpha \pi} \\ &= c_{\alpha}(\sigma) \ c_{\alpha}(\pi) \ e^*_{\alpha}. \end{aligned}$$

Thus $\sigma \pi \epsilon G^{\alpha}$ and, since $e_{\alpha}^* \neq 0$, $c_{\alpha}(\sigma \pi) = c_{\alpha}(\sigma) c_{\alpha}(\pi)$.

We remark (without proof since the result seems peripheral to the present undertaking) that the restriction of χ to G^{α} contains c_{α} as a component for all $\alpha \in \Omega$, i.e.,

$$(\chi, 1)_{G_{\alpha}} > 0$$
 implies $(\chi, c_{\alpha})_{G^{\alpha}} > 0$.

The converse fails.

COROLLARY 1: If $\alpha \in \Omega$, then $s_{\alpha} \leq [G: G^{\alpha}]$. (Indeed, if S^{α} is a system of right coset representatives for G^{α} in G, then $\bigcup_{\alpha \in \Lambda} \{e_{\alpha\pi}^*: \pi \in S^{\alpha}\}$ spans $V_{\chi}(G)$.)

(It follows from Corollary 1 and (iii) of section 1 that $\chi(id) \leq [G: G^{\alpha}]$ for all $\alpha \in \Omega$. This inequality may be of some interest in itself because G^{α} is generally not normal in G [1, Theorem (53.17)].)

EXAMPLE 1: Let $G = S_3$. Let χ be the irreducible character of G of degree 2, and take $\alpha = (1, 1, 2)$. Then $G_{\alpha} = S_2$. If G_{α} were not all of G^{α} , then G^{α} would be all of S_3 , implying that $[G: G^{\alpha}] = 1 < s_{\alpha} = 2$, contradicting Corollary 1. Therefore, $G_{\alpha} = G^{\alpha}$, and $[G: G^{\alpha}] = 3$. In particular, it's not true in general that $s_{\alpha} = [G: G^{\alpha}]$.

Subsequent developments will make clearer the relationship between G_{α} and G^{α} . We now make another definition. Let G be a subgroup of S_m . Let χ be an irreducible character of G. Define

$$G_{\chi} = \{ \sigma \in G : |\chi(\sigma)| = \chi(id) \}.$$

It is easy to see that G_{χ} is a normal subgroup of G and $\lambda = \chi/\chi(id)$ is a linear character on it [4, p. 35], [11]. In fact, G_{χ} consists of those σ which are represented by scalars in any representation which affords χ .

THEOREM 2: For $\alpha \in \Omega$, $G\chi \subseteq G^{\alpha}$, and the restriction of c_{α} to G_{χ} is λ . PROOF: Let $\sigma \in G_{\chi}$. Then

$$e_{\alpha\sigma}^{*} = \frac{\chi(id)}{o(G)} \sum_{\pi \in G} \chi(\pi) P(\pi\sigma^{-1}) e_{\alpha}^{-}$$
$$= \frac{\chi(id)}{o(G)} \sum_{\pi \in G} \chi(\pi\sigma) P(\pi) e_{\alpha}^{-}$$
$$= \frac{\chi(id)}{o(G)} \lambda(\sigma) \sum_{\pi \in G} \chi(\pi) P(\pi) e_{\alpha}^{-}$$
$$= \lambda(\sigma) e_{\alpha}^{*}.$$

COROLLARY 2: For all $\alpha \in \Omega$, $G_{\alpha}G_{\chi} \subseteq G^{\alpha}$.

EXAMPLE 2: It is tempting to conjecture that $G_{\alpha}G_{\chi} = G^{\alpha}$. Unfortunately, this is not always the case. Let $G = S_5$. Suppose χ arises from the frame (3, 2). Let $\alpha = (1,1,1,2,3)$ and let σ be the transposition (45). Then $\alpha\sigma = (1,1,1,3,2)$, and a brute force computation shows that $e_{\alpha}^* = e_{\alpha\sigma}^*$. In particular, since $G_{\chi} = \{id\}$ and $G_{\alpha} = S_3$, it follows that (45) $\epsilon G^{\alpha} \setminus G_{\alpha}G_{\chi}$.

It was proved in [11] that $\chi(id)^2 \leq [G: G_{\chi}]$, so the inequality $s_{\alpha} \leq [G: G_{\chi}]$ which arises from Theorem 2 is not very interesting. However, one might be tempted to conjecture that $\chi(id)^2 \leq [G: G_{\alpha}G_{\chi}]$ for all $\alpha \in \Omega$. A counterexample follows.

EXAMPLE 3. Let G be the subgroup of S_4 generated by $\{(14)(23), (1234)\}$. Then G is the dihedral group D_4 of order 8. Let χ be the irreducible character of G of degree 2. Then $\chi(id) = 2 = -\chi((13)(24))$, and χ is zero on the rest of G. Thus, $G_{\chi} = \{id, (13)(24)\}$. If $\alpha = (1,1,2,2)$, then $G_{\alpha} = \{id, (12)(34)\}$, and $\alpha \in \overline{\Delta}$. Moreover, $G_{\alpha}G_{\chi} = \{id, (12)(34), (13)(24), (14)(23)\}$ and $[G: G_{\alpha}G_{\chi}] = 2$, which is less than $\chi(id)^2 = 4$.

It is worth pointing out some other features of Example 3: Since

$$1 < s_{\alpha} \leq [G: G^{\alpha}] \leq [G: G_{\alpha}G_{\chi}] = 2,$$

it follows that $s_{\alpha} = [G: G_{\alpha}G_{\chi}]$, and hence $G^{\alpha} = G_{\alpha}G_{\chi}$. Moreover, $\chi(id)^2 = [G: G_{\chi}]$. In a moment, we shall see that these observations are connected. First, however, it should be mentioned that the case of equality in $\chi(id)^2 \leq [G: G_{\chi}]$ is related to some recent work of F. DeMeyer, S. M. Gagola, G. Janusz, K. M. Timmer, and J. Yellen ([2], [3], [6], [13], and [14]) in which the case of equality in $\chi(id)^2 \leq [G: Z(G)]$ is studied. In particular, since $Z(G) \subseteq G_{\chi}$, $[G: Z(G)] = \chi(id)^2$ implies $[G: G_{\chi}] = \chi(id)^2$.

THEOREM 3: If $\chi(id)^2 = [G: G_{\chi}]$, then $s_{\alpha} = [G: G_{\alpha}G_{\chi}]$ (and therefore $G^{\alpha} = G_{\alpha}G_{\chi}$) for all $\alpha \in \Omega$.

PROOF: If $[G: G_X] = \chi(id)^2$, then $\chi(\sigma) \neq 0$, if and only if $\sigma \in G_X$ [11]. It follows from Theorem D that

$$s_{\alpha} = \frac{\chi(id)}{o(G_{\alpha})} \sum_{\sigma \in G_{\alpha}} \chi(\sigma)$$
$$= \frac{\chi(id)^2}{o(G_{\alpha})} \sum_{\sigma \in G_{\alpha} \cap G_{\chi}} \lambda(\sigma),$$

where $\lambda = \chi/\chi(id)$. Since $s_{\alpha} \neq 0$, and since λ is a linear character, it must be that $\lambda(\sigma) = 1$ for all $\sigma \in G_{\alpha} \cap G_{\lambda}$. Thus

$$s_{\alpha} = \chi(id)^2 o(G_{\alpha} \cap G_{\chi})/o(G_{\alpha})$$
$$= o(G) o(G_{\alpha} \cap G_{\chi})/o(G_{\chi}) o(G_{\alpha})$$
$$= [G: G_{\alpha}G_{\chi}]$$

from elementary group theory (see, e.g., [7, p. 45]).

THEOREM 4: Let e_1, \ldots, e_n be an o.n. basis of V. Let π_1, \ldots, π_k be right coset representatives for G_{χ} in G. Suppose $\chi(id)^2 = [G: G_{\chi}]$. If $\alpha \in \Omega$ is such that $G_{\alpha} \subseteq G_{\chi}$, then $\{e_{\alpha\pi}^*: 1 \le i \le [G: G_{\chi}]\}$ is an orthogonal basis of $\langle e_{\alpha\sigma}^*: \sigma \in G \rangle$.

PROOF. Let $\lambda(\sigma) = \chi(\sigma)/\chi(id)$, $\sigma \in G_{\chi}$. Since $\alpha \in \Omega$, it follows that λ is identically 1 on G_{α} .

Now,

$$(e_{\alpha\pi_{i}}^{*}, e_{\alpha\pi_{j}}^{*}) = \left(e_{\alpha}^{*}, e_{\alpha\pi_{j}\pi_{i}-1}^{*}\right)$$
$$= \frac{\chi(id)}{o(G)} \sum_{\tau \in G_{\alpha}} \chi\left(\pi_{i}\pi_{j}^{-1}\tau\right), \text{ from (3)}$$
$$= \frac{\chi(id)}{o(G)} \chi\left(\pi_{i}\pi_{j}^{-1}\right) \sum_{\tau \in G_{\alpha}} \lambda(\tau)$$
$$= \chi(id) \chi\left(\pi_{i}\pi_{j}^{-1}\right) / [G: G_{\alpha}].$$

The result follows because $\chi(\pi_i \pi_j^{-1}) \neq 0$ if and only if i = j (again appealing to [11]).

3. References

- [1] Curtis, Charles, and Reiner, Irving, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962).
- [2] DeMeyer, Frank, Groups with an irreducible character of large degree are solvable, Proc. Amer. Math. Soc. 25, 615-617 (1970).
- [3] DeMeyer, Frank, and Janusz, Gerald, Finite groups with an irreducible representation of large degree, Math. Z. 108, 145–153 (1969).
- [4] Feit, Walter, Characters of Finite Groups (Benjamin, New York, 1967).
- [5] Freese, Ralph, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl. 7, 337-345 (1973).
- [6] Gagola, S. M., Characters fully ramified over a normal subgroup, preprint.
- [7] Herstein, I. N., Topics in Algebra, 2nd. ed., (Xerox, Lexington MA, 1975).
- [8] Marcus, Marvin, Finite Dimensional Multilinear Algebra, Part I, (Marcel Dekker, New York, 1973).
- [9] Marcus, Marvin, and Minc, Henryk, Generalized matrix functions, Trans. Amer. Math. Soc. 116, 316-329 (1965).
- [10] Merris, Russell, and Pierce, Stephen, Elementary divisors of higher degree associated transformations, Linear and Multilinear Algebra 1, 241-250 (1973).
- [11] Merris, Russell, and Watkins, William, Character induced subgroups, J. Res. Nat. Bur. Stand. (U.S.), 77B (Math, Sci.), Nos. 3&4, 93-100 (1973).
- [12] Pierce, Stephen, Orthogonal decompositions of tensor spaces, J. Res. Nat. Bur. Stand. (U.S.), 74B (Math. Sci.), No. 1, 41–44 (1970).
- [13] Timmer, Kathleen, Subgroups of groups of central type, Trans. Amer. Math. Soc. 189, 133-162 (1974).
- [14] Yellen, Jay, On solvability of certain groups of central type, Notices Amer. Math. Soc. 22, A-104 (1975).

(Paper 80B2–440)