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This pape r s tudies the tree partitioning of a graph whose definition is based o n the patt e rn of 
zero e le ment s prese nt in a given matrix. This partitioning the n indicates a particula rly advantageo us 
strategy for employing bloc k Gaussian eliminat ion over a certain class of matrices. The strategy is 
exploited for matrix inve rsion, where it is espec ially appropr iat e for problems which require findin g 
only selected submatrices of the inverse. A graph-theoretic algorithm is given for automatically 
generating tree partitionings fo r any matrix. Combinator ial properties of this procedure are al so 
di sc ussed. 
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1. Introduction 

The solution of "sparse" systems of linear equations has rece ived conside rable attention in 
recent years [13] t , [15], [19], and justifiably so, since coeffi c ie nt mall-ices having relatively few 
nonze ro entries arise quite freque ntly from physical proble ms [1], [4], [8]. The object of this paper is 
to di scuss a partitioning method for inve rting such sparse matrices which can rathe r readily adapt to 
the given zero-nonzero structure of a particular s parse matrix. This work is motivated by the 
observation [12] that the solution of a linear system is partic ularly simple when the graph underlying 
the coeffi c ient matrix is exac tly a tree. The prese nt approach shows how a natural tree-like 
re presentation can be obtained for any matrix and how thi s leads to an es pecially simple method for 
inverting the given matrix . In addition, a straightfo rward exte ns ion of the method allows one to 
solve, rathe r effectively, systems of linear equation s. 

He nce forth , our attention will be fo cused on the class K of square matrices all of whose 
principal s ubmatrices are nons ingular. Inasmuch as the class K conta in s all positive definite 
symmetric matrices (which do arise quite often in phys icalJy meaningful contexts), the me thod to be 
described will be appli cable to a number of important s ituation s. it is not necessary that the 
coefficient matrix A be symmetric; in fa c t , nonsymmetric matrices for which A + AT is positive 
definite also belong to K, as well as the nonsymmetric M-matrices [6] (having nonpos itive off­
diagonal elements and all principal minors positive). 

2. Tree Partitionings 

Le t the real n X n matrix A be in K. Eventually, a simultaneous permutation of the rows and 
columns of A will be protluced so that the resulting matrix has an especially simple form with 
identifiable (and exploitable) blocks of ze ro entries. To do this, we first associate a finite undirec ted 
graph G A with the matrix A = (aij). The nodes of C A correspond to the rows/co lumns of A , and an 
edge (i, j) will join node i to node j whene ve r laol + lajil > O. 

In any graph C , the sequence of edges (e" e2, . .. , ek) forms a chain whenever k + 1 nodes i o, 
ito ... , ik can be identified so that ej joins nodes ij _ , and ij for j = 1, ... , k; a c hain is elementary 
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if it does not meet the same node twice. A chain which consists of at least three distinct edges and 
which joins a node to itself is termed a cycle. If every pair of distinct nodes in a graph is joined by a 
chain, then the graph is said to be connected. A tree is a connected graph which contains no cycles. 

It is now supposed that the nodes N of the graph C A are partitioned into m ~ 2 distinct sets of 
nodes Nh N2 , ••• , N m which exhibit a tree structure when viewed as an undirected graph TA • 

Namely, the nodes of TA are the sets Nb N2 , . •• , N m and an edge joins N; with N j (i = j) in TA 
whenever an edge exists in C A between some node in N; and another node in N j. The graph TA so 
constructed is assumed then to be a tree. It will be shown in section 4 how to construct for 
connected graphs such a tree partitioning. (If the graph CA is not connected then clearly A is 
decomposable as a block diagonal matrix; in tlus case the inverse of A is readily computable from 
the inverses of the diagonal blocks, each of which corresponds to a connected graph.) As an 
example, the "snowflake" graph [14, p. 209] de picted in figure 1 has the tree partitioning given in 
figure 2. 

FIGURE 1. An illustrative graph. 
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FIGURE 2. A tree partitioning for the graph offigu.re I (the nodes comprising each node set are also shown) . 

The concept of a tree partitioning has bee n pre viously app~ed [16] to shortest pa th calc ulations 
in large sparse networks. This concept can also be applied to the present situation of matrix 
inversion. The basic idea is that of decomposing the original proble m into s maUe r s ubproblems, the 
solutions to which can be easily recombined to yield the information required from the o ri gin a l 
problem. 

The present decomposition approach relies on a fundamental property of trees. This is, in eac h 
tree the re always exi s ts a pendant node-a node which is inc ide nt with prec isely one edge. When 
such a pendant node i and its incident edge are deleted from a tree T , then a new tree T - i is 
form ed . This process of deleting a pendant node togethe r with it s in c ident edge ca n the n be 
re peated anew using the tree T - i. Therefore, given the tree TA , the node se ts can be suit ably 
relabeUed so that Nl is a pendant node of TA , N2 is a pendant node of TA - N" ... , and N m- 1 is a 
pendant node of TA - Nl - ... - N m- 2. Such a labelling of TA is shown in fi gure 2. Moreove r, for 
each index i 1= m there is associated a unique index r(i) s uc h that N ,.(i) is the nex t node set after Ni 
on the unique elementaty chain joining N i and N m in the tree TA • Because of the assumed labelling 
induced by the pendant node sets of TA , it is always the case that rei) > i. Table 1 di splays these 
indices for the tree of figure 2. 
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TABLE J. The indices r(i) for the tree of figure 2. 

2 3 4 5 6 7 8 9 

r(i) 3 3 10 6 6 10 9 9 10 

3. The Matrix Decomposition Algorithm 

In this section, a general decomposition algorithm for inverting matrices A E K will be presented 
and justified. This algorithm is based on a tree partitioning N = (Nt. N 2 , ••• , N m) of the associated 
graph GA' Let the matrix A be partitioned as A = (A i)' where A ij is the submatrix composed of 
entries a uv where U E N i and v E Nj • Let A-I be similarly partitioned as A-I = (X ij). It is assumed 
that the node sets have been suitably relabelled in accordance with the scheme described in section 
2. Hence, the ith row of A, i i= m, is given by 

(3.1) Ai = (Ail,' . . ,Ali' 0 , ... ,0, Ai,r(ih 0 , ... ,0), 

where the submatrices A ik = 0 (k < i) unless r( k) = i. Also, the mth row of A is given by 

(3.2) Am = (A mb . .. , Amm), 

where the submatrices A mk = 0 (k < m) unless r(k) = m. The proposed decomposition algorithm for 
obtaining A - I from A is embodied in the following procedure. 

(3.3) 
(3.4) 

PROCEDURE INVERT. 

1. Set Bii = A ii, i = 1, ... , m. 
2. For i = 1, ... , m - 1 calculate 

B i.r(i) = - Bii IA i.r(i) 

B r(D,i = - A r(i) . i B ii I 

and perform the replacement B T(i) . r(i). : = B r(i).r(D + A r(D.i B i.rW' 

3. Compute X mm = B;;;:" and for i = m - 1, ... , 1 

X i.r(O = B i.r(i) X r(i),r(i) 

X rW.i = X r(i).T(i) B r(i).i 

Xii = Bii l + B i.r(O X r(D.i· 

4. The remaining X ij blocks can be calculated using 

i < j 

X ij = X i.r(j) B r(j)j i > j. 

It is noted that this procedure requires the inversion of submatrices B a as well as the 
multiplication and addition of appropriate submatrices B jk' Of course, there is no reason why the 
submatrices Ba cannot be inverted (if still sufficiently sparse) by further applying the decomposition 
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algorithm to the subnetworks based on individual node sets N i• Such an approach can be recursively 
applied until the sparsity of the Bii's has been exploited to its fullest. 

The validity of the procedure will now be established. First, note that at the end of Step 2 of 
INVERT, 

(3.5) B;; =Aii + L AikB ki . 
r(k)= i 

Since A- I = X = (Xjj) is the solution to 

(3.6) A X = / , 

the n from (3.1) with i -f.} , i < m 

(3.7) 

It is now cla imed that 

(3. 8) 

L A ik X ki + A ii Xii + A i , r(i) X r(i) J = O. 
r(k)=i 

This assertion will be establi shed inductively. Inasmuc h as i = r(k ) > k , equation (3.5) shows that 
B 11 = A 11 . Thus, us ing (3.7) with} > 1 

whence from (3.3) 

Therefore, the asseltion (3 .8) holds for i = 1. Suppose the assertion is true for indices k < i , where 
i < m. Then from (3 .7) with i < } 

L A ikB kiX ii + A iiX ij + A i ,r(i)X r(i)J = 0, 
r(k )=i 

since k < r(k) = £ < } and so the inductive hypothesis can be applied. By (3.5) the above relation 
becomes 

B ijX jj + A i,T(i)X r(i)J = 0, 

whe nce 

using (3.3). Accordingly, the asse rtion (3.8) is establi shed by induction. 
In particula r, choosing} = r(i) in (3.8) yields 

(3.9) X i,r(i) = B i,r(i0 r(i),T(i) if i < m. 
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Furthermore, from (3.2) and (3.6) 

or, applying (3.9), 

L AmkX km + AmmXmm = I 
r(k)=m 

L AmkBkmXmm + AmmXmm = I, 
r(k)=m 

so that from (3.5), B mmX mm = I, where upon 

(3.10) 

Finally, from (3.1) and (3.6) with i 01=- m 

'" AkXko + AX 00 + A 0 ~ ,) X ri O) 0 = I L 1 l 11 U l , n, .. 1 , I 

r(k)=i 

or, using (3.8) and (3.5), 

BijX ii + A i. r(OXrU),i = I . 

By virtue of (3.3), 

(3.11) 

The counterparts to equations (3.8) and (3.9) can be established by usmg the relation X A I 
instead of (3. 6), thus vielding 

(3.12) 
(3.13) 

X jj = X i,ru) B rU),j 

X r(i) ,i = X r(i) ,r(OB r( il ,i 

if i > j 
if i < m. 

Together, eqs (3.8) - (3.13) serve to establi sh the validity of procedure INVERT, provided that the 
submatrices Bu e ncounte red for inversion are nonsingular. This property of the B ii'S will nex t be 
shown to follow from the fact that A E K. First , given any tree partitioning of C A, the matrix A = 
(A u) E K evidently satisfi es the followin g condition: 

Block Principal Submatrix (BPS) Condition. Give n the matrix A partitioned into m2 blocks by 
corresponding sets Nb N2 , ••• , N m of row and column indices, then any s ubmatrix determined by 
deleting corresponding sets N j (possibly none at all) is nonsingular. 

It will now be shown that, under the transformation described by Step 2 of INVERT, thi s 
property is inherited by certain submatrices of the transformed matrix. Let A = (A jj) be written as 

B 11 0 ... Al ,r(1 ) () 

o 
A = M~ = 

o 
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Afte r the transformation with i = 1 in Step 2 of INVERT, the matrix M 1 will be transformed into a 
ne w matrix M; which differs from M 1 only in that the diagonal bloc k 8 ro ),ro ) has been re placed by 

8 ~(l) ,rO) = 8 rO ),rO) + A r(1),l 8 l ,rO) 
(3.14) = 8 rO).rO) - A r(1),1 8 111 A 1,"0 )' 

Now it is easily ve rified that M; = (M'oIB 11 ), the Schur complement [2] of 8 11 in M~, de fin ed by: 

M = [~ ~ ] => (MIA) = D - CA - 18. 

Given that A = M'o is 8P5, it is claimed that M; is also 8P5. In fact , consider any princ ipal 
submatrix 5' d e termined by the blocks of M;. If the diagonal block 8 ~(l) , r(1) does not occur in 5 ', 
then 5' is also a princ ipal block submatrix of M '0 , and hence is nonsingular. If 5' does contain 
B'nl),r(l)' then conside r the corresponding s ubmatrix 5 ofM'o obtained by replac ing8;'(l),rO) by it s pre­
transformation value 8 r(1) . r(1)' Let T be the submatrix of M'o defin ed by 

/3 11 0 A 1 , 1'( 1) 0 
0 

T = 
A"(1 ),1 5 

0 

S ince T a nd /3 11 a re princ ipal bloc k s ubm a tri ces o f 11'0 (whic h IS 8P5) , the n T a nd lJ II a re 
nonsinguJar. Moreover, by the de te rminantal fo rmula of Sc hur [7] 

it fo llows that (T/lJ II ) is nonsingula r as we U. Howe ve r, it is eas il y see n from (3. 14) that (TlIJ II ) = 5 ' 
a nd so 5 ' is nonsingul a r. Thus, M'I is BPS . 

More ge ne rall y, the above a rgument can be re peat ed to s how that if M~'_ I is BPS the n the 
s ubmatrix M k defined by 

o 
M~_ I 

A r(k) ,k 

o 

yields a transform ed M;' (afte r exec uting S te p 2 of INVERT with i = k) whic h is also BPS. Give n, 
then, that eac h Mk is BPS we can conclude that in partic ula r the diago nal block B H l.k+ 1 is 
nonsinguJar. This is prec ise ly what is needed to e ns ure that at eac h ite ration of Ste p 2, the matrix 
B il l is defined. Accordingly, the procedure INVERT is guaranteed to be we ll-de fin ed and will then 
produce the matrix A - I as required . It s hould be noted that if A sati sfi es the BPS condition for the 
give n partition , the n the INVERT procedure will re main valid , e ve n if A is not a me mber of K. 

In effect, procedure INVERT is a statement of bloc k Gauss ian elimination, which becomes 
especially sim pIe and manageable in the context of a tree partitioning. It should be noted that in 
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Steps 2 and 3 the blocks of the inverse matrix (corresponding to nonzero blocks of the original 
matrix A) can be calculated without introducing any new "fill-ins"; this is just to say that the given 
zero blocks are preserved. Moreover, we see that the existence of a tree partitioning allows one to 
solve linear equations in very much the same way as inverting matrices. Rather than needing to 
perform submatrix inversions, we need instead to solve a linear subsystem of equations at each step. 

4. Finding Tree Partitionings 

In this section, an algorithm will be described for obtaining tree partltJons of an undirected 
graph G = (N,E). Without loss of generality, it may be assumed that G is a connected graph having 
at least two nodes. Indeed, any graph which is not connected can be resolved into at least two 
maximally connected subgraphs 2 or connected components. Clearly, then, the tree partitioning 
problem can be studied and solved separately with regard to each of these connected components. 

The basic idea of the algorithm can be most easily explained by means of an example. 
Consider, therefore, the connected graph of figure 1 for which N = {I, ... , I8}. The process is 
begun by selecting a subset NI of nodes from C 1 = N with 1> C NI C C1 ; 3 say, NI = {4, 7, 1O}. It 
is then easy to compute 

the set of all nodes in C1 adjacent with (but not including) nodes in N 1• For this example, f1N 1 ) = 

{2, 3, 6, S, 9, 11, 12, 15, I6}. It is also easy to find the connected components of the subgraph 
based on the nodes C 1 - NI and thus the node sets C k constituting each of these connected 
components. Here, C2 = {S, 9, 13, 14, IS}, C3 = {ll, 12, 16, 17, IS} and C4 = {I, 2, 3, 5, 6}. The 
node sets N2, N3, and N4 are then chosen as N2 = C2 n r(N 1) = {S, 9, IS}, N3 = C3 n IWI) = 
{11, 12, I6}, and N4 = C4 n f1N 1) = {2, 3, 6}. 

The next iteration of the process computes 

r(N2) = {j E C2 - N2: (i, j) E E for some i E N 2} 
= {I3, I4} 

and determines the sets C5 = {I3} and C6 = {I4} associated with the two connected components 
for C2 - N2. The node sets N5 and N6 are given by Ns = C5 n f1N2) = {13}, and N6 = C6 (' IW2) 
= {l4}. In similar fashion, subsequent iterations produce N7 = {I7}, Ns = {IS}, N g = {I}, NIO = 
{5}. The tree partitioning which reflects this disposition of node sets (apart from relabelling) IS 

shown in figure 2. 
A general statement of the tree partitioning procedure for connected graphs G (N,E) IS 

provided by 

PROCEDURE TREE PART. 

1. Let NI satisfy 1> C NI eN. Set C 1 = N, p = 1, q = 1. 
2. Compute f1N p) = {j E Cp - N p : (i, j) E E for some i E N p }. If r(Np) = 1> then go to Step 
3. Otherwise, 

a. Find the node sets C q+\, ... , C q+r constituting the connected co mpone nts of the 
subgraph determined by C p - N po 

b. Form N q+ i = Cq+ i n r(Np) for i = 1, . .. , r . 

c. loin node set N p by an edge to each of the node sets N q+ 1> ••• , N q+ r· 

d. Let q : = q + r. 
3. Let p : = p + 1. If p ::s q then go to Step 2. Otherwise, terminate. 

In the above algorithm, the actual edges of the tree formed from the node sets N k are generated at 

2 A subgroph of a given undirec ted graph G = (N,E) has for it s nod es a subset No c;: N and contains those edges of E which join nodef'. ill No-
3 The notation A C IJ means that A is a proper subse t of IJ . 
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Step 2c. Because N 1 is a nonempty proper subset of N, the resulting tree partitioning has always at 
least two and at most n = INI constituent node sets. Generally speaking, the less the density of 
edges in G, the greater will be the number of node sets in a tree partition for G. (This statement will 
be given a more precise form in the theorem which appears later in this section.) 

The fact that G is connected ensures that each node of G will appear in some node set N k. 

Moreover, the connectivity of G is al so e nough to guarantee that each of the node sets generated in 
Step 2b is none mpty. Indeed, s uppose that N p 1= 1> and, say, N q+1 = 1>. This means that no edges 
exist between nodes in C q + l and nodes in N p . Since the nodes of C q +l form a connected component 
relative to the nodes of C p - N", the n it follows that C q + l forms a connected component of C p. 

Because N p 1= cp, then Cq+1 C Cp and thus one connected co mponent properly contains another. 
This is a manifest contradiction, and so Np 1= 1> must imply that N q+1 1= 1>, .. . , N q+ r 1= cp. In view 
of the fact that N 1 1= cp, this observation can be repeatedly applied to demonstrate that all node sets 
N k are nonempty. Since the N q + h ••• , N q + r defined in Step 2b are nonempty, the edges generated 
in Step 2c correctly reflect the adjacency relations between the node sets in G. In addition, the fact 
that no two distinct node sets N q + ;, N q+j formed in Step 2b are connected by a chain in C I) - N" 
(else Cq+ i and Cq+j would be connected in Cp - N p ) is enough to guarantee that the procedure 
always generates a tree graph for the node sets N k. Accordingly, it has been verifi ed that 
TREEPART does indeed produce a tree partitioning for every (nontrivial) connected graph G. 

It is interesting to note that when applied to a graph which is itself a tree thi s procedure yields 
the original tree back again whenever N 1 is chosen to consist of a single node . In general, diffe rent 
choices for the initial node set Nl will lead to different tree partitionings. Thus, TREEPART allows 
one to obtain a whole range of different tree partition structures for the same graph G. In order to 
obtain a "good" decomposition of the original ne twork (e.g., one containing a large number of node 
sets), a reasonable heuristic might be to choose an NI which consists of relatively few nodes and 
which itself forms a highly connected subgraph. It often seems desirable to choose N I so that N -
Nl has several connected components. 

As noted above, the number m of node sets in a tree partitioning is at least 2 and at most n . A 
more precise upper bound on the number of node sets is given by the following result. 

THEOREM: If G = (N,E) where INI = n, lEI = k then the number m of node sets ut a tree 
partitioning of G satisfies 

m :s [3 + vi 4n 2 - 2 4n - 8k + 1 ] , 

where [ ] is the greatest integer function . Moreover, this upper bound is actually tight; that is, there 
exist graphs with n nodes and k edges for which equality obtains. 

First, it will be convenient to prove the following lemma 4. 

LEMMA: For a given tree structure T with node sets N" N2 , ••. , Nm, the maximum number of 
edges possible in any underlying graph G is achieved when INil = 1 for i 1= p and IN"I = n - m + 
1, where N p is a node set of maximal degree in T. 

PROOF: Given the tree structure T, regard the quantities n; 

constrained by 

11/ 

( 4.1) n,· _> 1, \:' L ni = n. 
;=1 

IN;I as integer variables 

4 A referee has pointed oul a simplified proof of the theorem which does nul use this lemma. Huwever. bet'ause the lemma refe r!' ttl a mure general problem 
and is o f independe nt interes t. we include it s statement and proof. 
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For given n/s, the maximum number of edges in the underlying graph C occurs when each Ni 
corresponds to a complete subgraph, and when for each (N h N j) E T all of the possible ninj edges 
between the corresponding subgraphs of C are actually present in C. This maximum number is given 
by 

We therefore address the problem of maximizing F(n) subject to (4.1). Let n be an arbitrary 
assignment of weights to the nodes satisfying (4.1). It will be shown that there exists an assignment 
to the nodes of weights nO having the form 

(4.2) ni = 1, i t- p 
np = n - m + I, 

with N p a node set in T of maximal degree, such that F(nl ~ F(nO). 
In order to show this, consider the following procedure which performs a reassignment for some 

current assignment n relative to the edge (N;, N j ) E T. 

PROCEDURE REASSIGN (i, j). 
1. Let Wi be the s urn of weights ns for all node sets N s adjacent to node set N i (5 t- j) and let 
Wj be the sum of weights ns for all node sets Ns adjacent to node set N j (5 t- i). Define r = ni + 
nj. 
2. If Wi > Wj then set n; = r ~ I, n; = 1. Otherwise, set ni = I, nj = r - 1. 

It is clear that for this new assignment n', where only ni and nj have been changed, equation (4.1) is 
satisfied. Moreover, it will now be shown that F(n) ~ F(n'). Indeed, if 1 = ni and J = nj then 

I 
F(nl = a + "2{/(1 - 1) + JU - In + l] + 1Wi + JWh 

where a is independent of 1 and J. Or, setting 1 + J = r, 

F(n) 
1 

a + "2 r(r - 1) + [Wi + (r - I)wj = f3 + [(Wi - Wj), 

where f3 is independent of I, J. Thus, if Wi > Wj it is clearly advantageous, in the sense of increasing 
F(n) , to make 1 as large as is feasible; namely, I = r - 1. Similarly, if W i ~ Wj then setting J = r -

1 will increase F(n) as much as possible. Since this is precisely what is being done in REASSIGN, 
one has F(n) ~ F(n'). 

Suppose that procedure REASSIGN is performed so long as there are adjacent nodes Ni and N j 

for which ni > I, nj > 1. Consider then the set P of node sets N; for which ni > 1. Note that the 
lemma certainly holds when P = cpo If !PI ~ 2, it will be demonstrated that a further reassignment 
of node weights ni can be made which does not decrease F(n) but which will reduce !PI. 

Assume, t!-ten, that Ni and N j are in P. Thus (N;, N j ) f. T since otherwise procedure REASSIGN 
could have been employed. In fact, each node set N k adjacent with Ni must have weight nk = 1, and 
similarly for N j • Let d i be the degree of node set N;, and d j the degree of N j • Also, set 1 = ni, J 
nj and r = 1 + J. It is claimed that F(n) cannot be decreased by performing the reassignment 

( 4.3) ni = I, nj = r - I 
nj = 1, ni = r - 1 
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Indeed, 

1 
F(n) = a + 2 r(r - 1) - l} + Id; + Jdj 

1 
= a + 2 r(r - 1) - I(r - I) + Id i + (r - l)dj 

= f3 + 12 + (d; - dj - r)/, 

where a, f3 are independent of I, J. Because g(l) = J2 + (d; - d j - r)I is a convex function of I , it 
is maximized over the interval [1, r - l] at one of the endpoints. It is easy to verify that 

g(l) ~ g(r - 1) <=> (dj - d i)(r - 2) ~ 0 <=> d j ~ d;, 

since r = I + J > 2. Therefore, the reassignment given in (4.3) cannot decrease the value of F(n) . 
In other words, given node sets N;, N j E P, one of the two sets can be made to have weight 1 
without decreasing F, and so can be removed from P. By continuing thi s procedure, P eventually 
reduces to a single node set with weight w > 1. Finally, by using REASS IGN and (4.3) as necessary 
with respect to the node set N p of weight w > 1 and each node set of weight 1, it will be assured 
that the resulting N p is in fact a node of maximal degree d/) in T. Thus, the assignment which is 
ultimately produced is of the form (4.2). Since the value F(n) is never decreased throughout the 
process, we indeed have F (n) :s F(nO). Since the original assignment n was arbitrary and since aU 
assignments nO in (4. 2) have the same value F(nO) , the lemma is proved . 

By virtue of thi s le mma, the number k of edges in an undirected graph G with a tree 
partitioning of n nodes into m node sets sati sfies 

1 
k :s F(nO) = - (n - m + 1)(n - m) + d p (n - m + 1) + (m - 1 - d p ), 

2 

since a tree on q nodes has precisely q - 1 edges. Thus, 

1 
k :s 2 (n - m + 1)(n - m) + d p (n - m) + (m - 1) 

= a (n , m) + d p (n - m), 

with (\' (n, m) independent of dp- Accordingly, the quantity {Lr (n, m) + d p (n - m)} is maximized by 
choosing d p as large as possible for fixed n, m: namely, d p = m - 1 (all other d; = 1). In any event, 
then, 

whence 

1 
k :s 2 (n - m + 1)(n - m) + (m - l )(n - m + 1) 

1 
= - (n 2 - n - 2 + 3m - m 2 ), 

2 

h(m) == m2 - 3m - (n 2 - n - 2k - 2) :s o. 
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1 1 
Now the roots ml and m2 of h(m) = 0 are ml = - (3 - VD) and m2 = - (3 + VD), where D = 9 + 

2 2 
1 

4(n2 - n - 2k - 2). Because k :s 2 n(n - 1) then D ~ 1 whence ml :S 1 and m2 ~ 2. It follows 

that h (m ) :s 0 for all m with 1 :S m :S m2. Inasmuch as m must be a positive integer, then 

[3 + V4n 2 - 4n - 8k + 1 J 
m. :S [m2] = . 

2 

Therefore, the first part of the theorem is established. To prove the second half, consider the graph 
C = C (n, m) whic h consists of n - m + 1 "central" nodes, every two of whic h are joined by an 
edge, and m - 1 "satellite " nodes, each of which is joined by an edge to every central node . 
The number of edges in C is thu s 

1 
k = - (n - m + 1)(n - m) + (m - 1)(n - m + 1) 

2 

1 
and the resulting m2 = - (3 + V(2m - 3) 2 ) = m. Moreover, thi s graph on n nodes does admit of a 

2 
tree pal1itioning with m node sets: namely, choose m - 1 node sets each containing a single satellite 
node, and an mth node set containing all ce ntral nodes. Accordingly , the second pal1 of the theorem 
is verified. 

It is worthwhile to note that when the underlying graph is a tree (k = n - 1), the upper bound 
provided by the theorem is exactly n. Here again the upper bound is tight since a tree on n nodes 
admits of a tree pal1itioning into n node sets (just let each N; contain a single node). When the 
underlying graph is complete (that is, every pair of distinct nodes is joined by an edge) the n a tree 
partitioning can have at most two node sets. In fact , the upper bound provided in the theorem for 

1 
the situation k = "2 n(n - 1) is seen to be 2 also. As a final illustration , the upper bound on m is 

calculated to be 17 for the graph depicted in figure 1 (n = 18, k = 33); the tree partitioning of this 
graph shown in fi gure 2 contains 10 node sets. 

5. Computational Remarks 

The principal virtue of the tree decomposition algorithm given in section 3 is that computations 
need only be performed on arrays which are significantly smaller than the original matrix. 
Accordingly, much larger matrices than could normally be accommodated in core ca n be inverted. 
Moreover, the form of partitioning e mployed seems to readily adapt it self to the particular zero­
nonzero structure of the matrix being studied. Of course, the tree partitioning concept is even more 
appropriate when repeated matrix inversions are to be made for a sequence of matrices differing 
only in that nonzero entries are reestimated or varied parametrically [4], [9] . Indeed, for a fixed 
structure of sparseness the underlying graph remains the same and so the tree partitioning can be 
found once and for all. In addition , it should be pointed out that TREEPART is at worst an O(mk) 

algorithm since no edge of the graph need be scanned more than m times. In practice, the amount 
of computational labor required to find a tree partitioning is really quite modest. For example, when 
the underlying graph has k = O(n), as would often be the case for sparse matrices (e. g., resulting 
from the rectangular and triangular lattices which arise in numerical solution of partial differential 
equations), the theorem of section 4 shows that mk :S O(n 2); accordingly, TREEPART is at worst an 
O(n2) algorithm for these sparse graphs. 

Moreover, the tree decomposition approach is able to exploit effectively the sparsity of the 
original matrix and thus reduce the amount of computation required for matrix inversion. Suppose, 
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for example, that each of the node sets N i has IN il = r. Then the use of INVERT to find the inverse 
n 

of A requires O(m 2r 3) = O(n 2 • - ) ope ration s; thus for a given number of nodes, the computational 
m 

effort decreases as the number of node sets inc reases. Without exploiting sparsity, standard methods 
for finding A - I necess itate O(mar 3 ) operation s. Furthermore, the decomposition procedure allows the 
use r se lectivity in calculating the s ubmatrices X ij of A - I . Indeed, INVERT only requires the 
calculation of the 3m - 2 submatrices X ij which co rrespond to nonze ro A ij in the original matrix A. 
The remaining (m - 1)(m - 2) s ubmatri ces can be calculated , if desired, during Step 4 of the 
algorithm. Thus, the prese nt decomposition approach wouJd be es pec ially appropriate for problems 
which require finding only certain submatrices of A - I; s uc h a situation arises when one is inte rested 
in finding the variances of estimated coeffic ie nts in multiple linear regression, since the required 
variances are derived from the diagonal entri es of a ma trix (XTX) - I. 

Several procedures have been desc ribed fo r transformin g a given matrix iflto one with a 
particular partitioned block structure [3], [10], [11], [1 7], [18, Ch. 3]. The use of a tree pa rtitioning 
seems s ufficiently flexible to deal with a wide range of possible partitions . F iedle r [5] di scusses a 
type of paltitioning more ge ne ral than that given here ; however, the solution me thod indicated in [5] 
appea rs to involve too many s ubm atrix inve rsions to be practicall y adva ntageo us. Anothe r a pproach 
to in verting matri ces using graph-theo re tic co nce pts has been described by Harary [10]. Such a 
method unfortunately is of little use whe n the ma trix A is irreduc ible . A generalization of Harary's 
method is prese nted in [3]. In addition, Mayoh [11] and Steward [17] have di scussed techniques for 
pe rmuting the rows and columns of A so that the resulting ma trix has a partic ula rly simple fo rm. 
The computational require me nts of s uc h tec hniques are, howeve r, difficult to assess. 
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