JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematical Sciences
Vol. 80B, No. 2, April-June 1976

Inverting Sparse Matrices by Tree Partitioning*
D. R. Shier

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234
(August 16, 1974)

This paper studies the tree partitioning of a graph whose definition is based on the pattern of
zero elements present in a given matrix. This partitioning then indicates a particularly advantageous
strategy for employing block Gaussian elimination over a certain class of matrices. The strategy is
exploited for matrix inversion, where it is especially appropriate for problems which require finding
only selected submatrices of the inverse. A graph-theoretic algorithm is given for automatically
generating tree partitionings for any matrix. Combinatorial properties of this procedure are also
discussed.

Key words: Block Gaussian elimination: graph: inversion: partitioning; sparse matrix; tree.

1. Introduction

The solution of “sparse” systems of linear equations has received considerable attention in
recent years [13]', [15], [19], and justifiably so, since coefficient matrices having relatively few
nonzero entries arise quite frequently from physical problems [1], [4], [8]. The object of this paper is
to discuss a partitioning method for inverting such sparse matrices which can rather readily adapt to
the given zero-nonzero structure of a particular sparse matrix. This work is motivated by the
observation [12] that the solution of a linear system is particularly simple when the graph underlying
the coefficient matrix is exactly a tree. The present approach shows how a natural tree-like
representation can be obtained for any matrix and how this leads to an especially simple method for
inverting the given matrix. In addition, a straightforward extension of the method allows one to
solve, rather effectively, systems of linear equations.

Henceforth, our attention will be focused on the class K of square matrices all of whose
principal submatrices are nonsingular. Inasmuch as the class K contains all positive definite
symmetric matrices (which do arise quite often in physically meaningful contexts), the method to be
described will be applicable to a number of important situations. It is not necessary that the
coefficient matrix 4 be symmetric; in fact, nonsymmetric matrices for which 4 + A7 is positive
definite also belong to K, as well as the nonsymmetric M-matrices [6] (having nonpositive off-
diagonal elements and all principal minors positive).

2. Tree Partitionings

Let the real n X n matrix 4 be in K. Eventually, a simultaneous permutation of the rows and
columns of 4 will be produced so that the resulting matrix has an especially simple form with
identifiable (and exploitable) blocks of zero entries. To do this, we first associate a finite undirected
graph G4 with the matrix A = (ay). The nodes of G4 correspond to the rows/columns of 4, and an
edge (i, j) will join node i to node j whenever |ay + |a;| > 0.

In any graph G, the sequence of edges (ey, e, . . ., ex) forms a chain whenever k& + 1 nodes i,
i1, . - ., i can be identified so that e; joins nodes i;_; and i; forj = 1, . . ., k; a chain is elementary

AMS Subject Classification: 05C05, 15A09.
*This work was done while the author was a National Research Council-National Academy of Sciences Postdoctoral Research Associate at the National
Bureau of Standards, Washington, D.C. 20234.

! Figures in brackets indicate the literature references at the end of this paper.

245

if it does not meet the same node twice. A chain which consists of at least three distinct edges and
which joins a node to itself is termed a cycle. If every pair of distinct nodes in a graph is joined by a
chain, then the graph is said to be connected. A tree is a connected graph which contains no cycles.

It is now supposed that the nodes N of the graph G, are partitioned into m = 2 distinct sets of
nodes Ny, Ny, ..., N, which exhibit a tree structure when viewed as an undirected graph T,.
Namely, the nodes of T4 are the sets Ny, N,,. . ., N, and an edge joins N; with N; G = j) in T4
whenever an edge exists in G, between some node in NV; and another node in N;. The graph T, so
constructed is assumed then to be a tree. It will be shown in section 4 how to construct for
connected graphs such a tree partitioning. (If the graph G, is not connected then clearly 4 is
decomposable as a block diagonal matrix; in this case the inverse of A is readily computable from
the inverses of the diagonal blocks, each of which corresponds to a connected graph.) As an
example, the “snowflake” graph [14, p. 209] depicted in figure 1 has the tree partitioning given in
figure 2.

FIGURE 1. An illustrative graph.

246

11,12,16

FIGURE 2. A tree partitioning for the graph of figure I (the nodes comprising each node set are also shown).

The concept of a tree partitioning has been previously applied [16] to shortest path calculations
in large sparse networks. This concept can also be applied to the present situation of matrix
inversion. The basic idea is that of decomposing the original problem into smaller subproblems, the
solutions to which can be easily recombined to yield the information required from the original
problem.

The present decomposition approach relies on a fundamental property of trees. This is, in each
tree there always exists a pendant node—a node which is incident with precisely one edge. When
such a pendant node i and its incident edge are deleted from a tree T, then a new tree T' — i is
formed. This process of deleting a pendant node together with its incident edge can then be

repeated anew using the tree ' — i. Therefore, given the tree T,, the node sets can be suitably
relabelled so that N, is a pendant node of T, N, is a pendant node of Ty — N, . . ., and N,,_, is a
pendant node of Ty — Ny — ... — N, Such a labelling of 7; is shown in figure 2. Moreover, for

each index i # m there is associated a unique index r(i) such that N, is the next node set after V;
on the unique elementary chain joining N; and N,, in the tree T,. Because of the assumed labelling
induced by the pendant node sets of T}, it is always the case that r(i) > i. Table 1 displays these
indices for the tree of figure 2.

247

TABLE 1. The indices r(i) for the tree of figure 2.

i 1 2 3 4 5 6 7 8 9
r(i) 3 3 10 6 6 10 9 9 10

3. The Matrix Decomposition Algorithm
In this section, a general decomposition algorithm for inverting matrices A € K will be presented
and justified. This algorithm is based on a tree partitioning N = (N, N2, . . ., N,) of the associated
graph G,. Let the matrix A be partitioned as 4 = (4, where A; is the submatrix composed of
entries a,, where u € N;and v € N;. Let A~! be similarly partitioned as 47! = (X). It is assumed
that the node sets have been suitably relabelled in accordance with the scheme described in section
2. Hence, the ith row of A, i # m, is given by

(3‘1) Ai = (Aih' . '9Aii9 0 LR Oa Ai,r(i)a 0 9 o oy 0),
where the submatrices 45 = 0 (k < i) unless r(k) = i. Also, the mth row of A is given by
(3'2) Am = (Amh' E -»Amm)a

where the submatrices A = 0 (¢ < m) unless r(k) = m. The proposed decomposition algorithm for
obtaining 4! from 4 is embodied in the following procedure.

PROCEDURE INVERT.

1. Set Bii ZAii,i = 1,. . o m.

2. Fori =1,..., m — 1 calculate
3.3 Biroy = — Bi'dizi
(3.9 Brii = — Araa Bi'
and perform the replacement Bﬁi),r(i) S — B,(i),,-(i) + A r(i),i Bi,r(i)-

3. Compute X ,,, =Bphwand fori =m — 1,. . ., 1
Xirw = Birwy Xrarri>
X i = Xrorrir Bron,i
Xi=Bi' + Birr Xre
4. The remaining X ;; blocks can be calculated using
Xi = Biro Xnins i <j
Xi=XirBroi >
It is noted that this procedure requires the inversion of submatrices B;; as well as the

multiplication and addition of appropriate submatrices Bj. Of course, there is no reason why the
submatrices Bj; cannot be inverted (if still sufficiently sparse) by further applying the decomposition

248

algorithm to the subnetworks based on individual node sets N;. Such an approach can be recursively
applied until the sparsity of the B;;'s has been exploited to its fullest.

The validity of the procedure will now be established. First, note that at the end of Step 2 of
INVERT,

(3.5) Bi=Auy+ Y AuwByi

r(k)=i

Since A~' = X = (X) is the solution to

(3.6) AX =1,

then from (3.1) withi #j ,i <m

(3.7 l AuXw + AuXy + Aipiy Xrws = 0.

r(k)=i

It is now claimed that

(3.8) XU:B,‘J(,‘)X,-(,-)J lfl <j

This assertion will be established inductively. Inasmuch as i = r(k) > k, equation (3.5) shows that
By = Aq;. Thus, using (3.7) withj > 1

AuXy + A X vy = 0,
whence from (3.3)

— -1 -
le - _A11A1.r(1)Xr(1JJ - Bl,r(l)Xr(l)J'

Therefore, the assertion (3.8) holds for i = 1. Suppose the assertion is true for indices & < i, where
i < m. Then from (3.7) withi <

E AuBiiX 5 + AuXi; + AivyXrag = 0,

r(k)=i

since k < r(k) = i <j and so the inductive hypothesis can be applied. By (3.5) the above relation
becomes

BiXy + AivixX riyg = 0,
whence

- -1 —
XLi - _Bii Ai,r(i)Xr(i)J - Bi.r(i)Xr(i)Js

using (3.3). Accordingly, the assertion (3.8) is established by induction.
In particular, choosing j = (1) in (3.8) yields

(3.9) Xiri = BiroX vy ifi <m.

249

Furthermore, from (3.2) and (3.6)

E Akakm+ ApmXmm =1

r(k)=m
or, applying (3.9),

E Akakamm + Ammem = Ia

r(k)y=m

so that from (3.5), B umX mm = I, whereupon
(3.10) Mo = B0
Finally, from (3.1) and (3.6) with i + m

E ApXpi + AiXii + A iy X wini =1

ro=i
or, using (3.8) and (3.5),
BiXi + AiviyX rir,i = 1.
By virtue of (3.3),
Xii=Bi' = Bi'di X ran,i
(3.11) = Bi' + BirioX i

The counterparts to equations (3.8) and (3.9) can be established by using the relation X 4 = [
instead of (3.6), thus vielding

(3.12) Xi = XiriBri.i ifi >j
(3.13) Xrini = XewrraBrai if i <m.

Together, eqs (3.8) — (3.13) serve to establish the validity of procedure INVERT, provided that the
submatrices Bj; encountered for inversion are nonsingular. This property of the B;’s will next be
shown to follow from the fact that 4 € K. First, given any tree partitioning of G ,, the matrix 4 =
(4 € K evidently satisfies the following condition:

Block Principal Submatrix (BPS) Condition. Given the matrix 4 partitioned into m? blocks by
corresponding sets Ny, N,, . . ., N,, of row and column indices, then any submatrix determined by
deleting corresponding sets N; (possibly none at all) is nonsingular.

It will now be shown that, under the transformation described by Step 2 of INVERT, this
property is inherited by certain submatrices of the transformed matrix. Let 4 = (4 be written as

By IO ces Ay o0 0
0

A:M0: Ar;l),l Ml
0

250

After the transformation with i = 1 in Step 2 of INVERT, the matrix M, will be transformed into a
new matrix M | which differs from M only in that the diagonal block B, i, has been replaced by

(4 —
Hr(]).r(l) - Br(l),r(l) + Ar(l),l Bl.r(l)
— -1
(3.14) - Br(l),r(l) - Arm,an Al.r(l)-

Now it is easily verified that M| =(M')/B ,,), the Schur complement [2] of By, in MY, defined by:

M= [(A ﬁ] = (M/4) =D — CAB.

Given that 4 = M| is BPS, it is claimed that M| is also BPS. In fact, consider any principal
submatrix S’ determined by the blocks of M{. If the diagonal block B)i, does not occur in S,
then S’ is also a principal block submatrix of M{, and hence is nonsingular. If S’ does contain
B'.1).ray» then consider the corresponding submatrix S of M|, obtained by replacing B},..q, by its pre-
transformation value B ,,.,q) Let T be the submatrix of M| defined by

I;Il I() /41.:11) e 0

Since T and B,, are principal block submatrices of W (which is BPS), then T and B,, are
nonsingular. Moreover, by the determinantal formula of Schur [7]

det T = det By, - det (T/By,).

it follows that (7/B,,) is nonsingular as well. However, it is easily seen from (3.14) that (7/B,,) = S’
and so S’ is nonsingular. Thus, M is BPS.

More generally, the above argument can be repeated to show that if M}, is BPS then the
submatrix M, defined by

Bie | 0. .. Agpir- .. 0
0

.Wk—1 = Ar('k),k _’”k
0

yields a transformed M, (after executing Step 2 of INVERT with i = k) which is also BPS. Given,
then, that each M} is BPS we can conclude that in particular the diagonal block By i1 is
nonsingular. This is precisely what is needed to ensure that at each iteration of Step 2, the matrix
B! is defined. Accordingly, the procedure INVERT is guaranteed to be well-defined and will then
produce the matrix 4! as required. It should be noted that if A4 satisfies the BPS condition for the
given partition, then the INVERT procedure will remain valid, even if 4 is not a member of K.

In effect, procedure INVERT is a statement of block Gaussian elimination, which becomes
especially simple and manageable in the context of a tree partitioning. It should be noted that in

251

Steps 2 and 3 the blocks of the inverse matrix (corresponding to nonzero blocks of the original
matrix 4) can be calculated without introducing any new “fill-ins”; this is just to say that the given
zero blocks are preserved. Moreover, we see that the existence of a tree partitioning allows one to
solve linear equations in very much the same way as inverting matrices. Rather than needing to
perform submatrix inversions, we need instead to solve a linear subsystem of equations at each step.

4. Finding Tree Partitionings

In this section, an algorithm will be described for obtaining tree partitions of an undirected
graph G = (V,E). Without loss of generality, it may be assumed that G is a connected graph having
at least two nodes. Indeed, any graph which is not connected can be resolved into at least two
maximally connected subgraphs? or connected components. Clearly, then, the tree partitioning
problem can be studied and solved separately with regard to each of these connected components.

The basic idea of the algorithm can be most easily explained by means of an example.
Consider, therefore, the connected graph of figure 1 for which N = {1, ..., 18}. The process is
begun by selecting a subset N; of nodes from C; = N with ¢ C N; C C,;®say, Ny = {4, 7, 10}. It
is then easy to compute

I'Vy) = {j eC, — Ny: (i,) € E for some i e Ny},

the set of all nodes in C, adjacent with (but not including) nodes in N,. For this example, I'%V,) =
{2, 3, 6, 8, 9, 11, 12, 15, 16}. It is also easy to find the connected components of the subgraph
based on the nodes C; — N, and thus the node sets Cj constituting each of these connected
components. Here, C, = {8, 9, 13, 14, 15}, C; = {11, 12, 16, 17, 18} and C, = {1, 2, 3, 5, 6}. The
node sets N,, N3, and N, are then chosen as N, = C, 0 I'(Vy) = {8, 9, 15}, N; = C3 N IV, =
{11, 12, 16}, and N, = C, N T(V,y) = {2, 3, 6}.

The next iteration of the process computes

I'Ny) = {j eCy — Nao: (i, j) € E for some i € Ny}
= {13, 14}

and determines the sets C5 = {13} and C¢ = {14} associated with the two connected components
for C, — N,. The node sets N5 and Ng are given by Ny = C5 10 [(V,) = {13}, and Ng = C4 " T(N)
= {14}. In similar fashion, subsequent iterations produce N; = {17}, Ng = {18}, Ng = {1}, Ny =
{5}. The tree partitioning which reflects this disposition of node sets (apart from relabelling) is
shown in figure 2.

A general statement of the tree partitioning procedure for connected graphs G = (V,E) is
provided by

PROCEDURE TREEPART.

1. Let N, satisfy ¢ CN, CN.SetC; =N,p =1,q = 1.
2. Compute IV,) = {j €C, — N,: (i, j) € E for some i e N,}. If I(V,) = ¢ then go to Step
3. Otherwise,
a. Find the node sets Cg4y, ..., Cqy, constituting the connected components of the
subgraph determined by C, — N,.
b. FormNg,;=Cqei N TW,) fori =1,...,r.
c. Join node set V,, by an edge to each of the node sets Ngyq, . . ., Ngyr
d. Letg:= q +r.
3. Letp:= p + 1. If p < q then go to Step 2. Otherwise, terminate.

In the above algorithm, the actual edges of the tree formed from the node sets Ny are generated at

2 A subgraph of a given undirected graph G = (V,E) has for its nodes a subset Ny C N and contains those edges of E which join nodes in N,.
3 The notation A C B means that 4 is a proper subset of B.

252

Step 2c. Because NV, is a nonempty proper subset of /V, the resulting tree partitioning has always at
least two and at most n = |N| constituent node sets. Generally speaking, the less the density of
edges in G, the greater will be the number of node sets in a tree partition for G. (This statement will
be given a more precise form in the theorem which appears later in this section.)

The fact that G is connected ensures that each node of G will appear in some node set V.
Moreover, the connectivity of G is also enough to guarantee that each of the node sets generated in
Step 2b is nonempty. Indeed, suppose that N, # ¢ and, say, N,y; = ¢. This means that no edges
exist between nodes in C,4; and nodes in N,,. Since the nodes of C,,; form a connected component
relative to the nodes of C, — N,, then it follows that C,;; forms a connected component of C,.
Because N, # ¢, then C,; C C, and thus one connected component properly contains another.
This is a manifest contradiction, and so N, # ¢ must imply that Ny # ¢, . . ., Ny # . In view
of the fact that N, # ¢, this observation can be repeatedly applied to demonstrate that all node sets
Ny are nonempty. Since the N gy, . . ., N g, defined in Step 2b are nonempty, the edges generated
in Step 2c correctly reflect the adjacency relations between the node sets in G. In addition, the fact
that no two distinct node sets N g1, N 44; formed in Step 2b are connected by a chain in C, — N,
(else C,y; and C4yj would be connected in C, — N,) is enough to guarantee that the procedure
always generates a tree graph for the node sets Nj Accordingly, it has been verified that
TREEPART does indeed produce a tree partitioning for every (nontrivial) connected graph G.

It is interesting to note that when applied to a graph which is itself a tree this procedure yields
the original tree back again whenever N, is chosen to consist of a single node. In general, different
choices for the initial node set NV; will lead to different tree partitionings. Thus, TREEPART allows
one to obtain a whole range of different tree partition structures for the same graph G. In order to
obtain a “good” decomposition of the original network (e.g., one containing a large number of node
sets), a reasonable heuristic might be to choose an N; which consists of relatively few nodes and
which itself forms a highly connected subgraph. It often seems desirable to choose N; so that N —
N, has several connected components.

As noted above, the number m of node sets in a tree partitioning is at least 2 and at most n. A
more precise upper bound on the number of node sets is given by the following result.

THEOREM: If G = (N,E) where [N| = n,
partitioning of G satisfies

E| = k then the number m of node sets in a tree

m =

[3+\/4-n2—4n—8k+1j|
2 .

where [] is the greatest integer function. Moreover, this upper bound is actually tight; that is, there
exist graphs with n nodes and k edges for which equality obtains.

First, it will be convenient to prove the following lemma*.
LEMMA: For a given tree structure T with node sets Ny, Ny, . . ., Ny, the maximum number of
edges possible in any underlying graph G is achieved when |Ni| = 1 for i # p and [N)) =n — m +

1, where N, is a node set of maximal degree in T.

PrROOF: Given the tree structure T', regard the quantities n; = |Nj| as integer variables
constrained by

m

~
. =>) —
(4.1) n; =1, >_, n; =n.
i=1
* A referee has pointed out a simplified proof of the theorem which does not use this lemma. However. because the lemma refers to a more general problem

and is of independent interest, we include its statement and proof.

253

For given n;s, the maximum number of edges in the underlying graph G occurs when each N;
corresponds to a complete subgraph, and when for each (V;, N;) € T all of the possible n;n; edges
between the corresponding subgraphs of G are actually present in G. This maximum number is given
by

F(n)=F(n1,..., m = >_n,~(n,~——l)+X{n,-n,-: (N,‘,Nj)GT}.

1
2 i
We therefore address the problem of maximizing F(n) subject to (4.1). Let m be an arbitrary

assignment of weights to the nodes satisfying (4.1). It will be shown that there exists an assignment
to the nodes of weights n® having the form

(4.2) n;=1,i#p

n,=n-—-m+ 1,

with V, a node set in T of maximal degree, such that F(n) = F(n°).
In order to show this, consider the following procedure which performs a reassignment for some
current assignment n relative to the edge (V;, N;) e T

PROCEDURE REASSIGN (, j).

1. Let w; be the sum of weights ng for all node sets N, adjacent to node set N; (s # j) and let
w; be the sum of weights n for all node sets N, adjacent to node set N; (s # i). Define r = n; +
n;.

2. Ifw; > wjthen set nj = r — 1, nj = 1. Otherwise, setn; = 1,nj=r — 1.

It is clear that for this new assignment n’, where only n; and n; have been changed, equation (4.1) is
satisfied. Moreover, it will now be shown that F(n) < F(n’'). Indeed, if I = n; and / = n; then

1
Fn) = a + 5{1(1 -D+JJ - D} +1] + Tw; + Jw;,
where « is independent of I and J. Or, setting I + J = r,
1
Fmn) = a+§r(r— D+Iwi+ (r—DHw;=B+ lw; — w,),

where g is independent of I, J. Thus, if w; > w; it is clearly advantageous, in the sense of increasing
F(n), to make I as large as is feasible; namely, I = r — 1. Similarly, if w; = w; then setting /] = r —
1 will increase F(n) as much as possible. Since this is precisely what is being done in REASSIGN,
one has F(n) = F(n').

Suppose that procedure REASSIGN is performed so long as there are adjacent nodes N; and N;
for which n; > 1, n; > 1. Consider then the set P of node sets N; for which n; > 1. Note that the
lemma certainly holds when P = ¢. If |P| = 2, it will be demonstrated that a further reassignment
of node weights n; can be made which does not decrease F(n) but which will reduce |P|.

Assume, then, that N; and N; are in P. Thus (V;, N;) ¢ T since otherwise procedure REASSIGN
could have been employed. In fact, each node set N, adjacent with NV; must have weight n;,, = 1, and
similarly for N;. Let d; be the degree of node set N;, and d; the degree of N;. Also, set I = n;, J =
njand r =1 + J. It is claimed that F(n) cannot be decreased by performing the reassignment

(4.3) g = 1,nj= r—1 lfdJZdl
n_,~=1,ni=r—] lfd]<dl.

254

Indeed,

Fn) = « +%r(r — D=1 +1di+Jd;

1
a+§r(r—1)—I(r—1)+ldi+(r—1)d,-

Il

'B +12 +(d,~—d,~—r)1,

where «, 8 are independent of I, J. Because g(I) = I> + (d; — d; — r)l is a convex function of 1, it
is maximized over the interval [1, r—1] at one of the endpoints. It is easy to verify that

gl =gr—1) <= d;j—d)r—2=0 <= d;=d,

since r = I + J > 2. Therefore, the reassignment given in (4.3) cannot decrease the value of F(n).
In other words, given node sets N;, N; € P, one of the two sets can be made to have weight 1
without decreasing F, and so can be removed from P. By continuing this procedure, P eventually
reduces to a single node set with weight w > 1. Finally, by using REASSIGN and (4.3) as necessary
with respect to the node set N, of weight w > 1 and each node set of weight 1, it will be assured
that the resulting V,, is in fact a node of maximal degree d, in T. Thus, the assignment which is
ultimately produced is of the form (4.2). Since the value F(n) is never decreased throughout the
process, we indeed have F(n) = F(n°. Since the original assignment n was arbitrary and since all
assignments n° in (4.2) have the same value F(n°), the lemma is proved.

By virtue of this lemma, the number £ of edges in an undirected graph G with a tree
partitioning of n nodes into m node sets satisfies

1
kSF(n")=§(n—m+ In —m)+d,(n —m + 1)+ (m —1—4d,),

since a tree on g nodes has precisely ¢ — 1 edges. Thus,
1
kSE(n —m+ ln—m+d,(n —m) +(m — 1)
=an, m +d,n —m),

with « (n, m) independent of d,. Accordingly, the quantity {« (n, m) + d, (n — m)} is maximized by
choosing d,, as large as possible for fixed n, m: namely, d, = m — 1 (all other d; = 1). In any event,
then,

1
ksi(n—m+1)(n—m)+(m—1)(n—m+1)
:i(nzwn*2+3m—m2),

whence
" hm)=m?2—3m —(n2 —n — 2k — 2) < 0.

255

1
Now the roots m; and m, of h(m) = 0 are m, = 3 3—=~/D)and my == (3 + /D), where D = 9 +

N | —

4(n* — n — 2k — 2). Because £k < = n(n — 1) then D = 1 whence m; =< 1 and m, = 2. It follows

N

that A(m) < 0 for all m with 1 < m < m,. Inasmuch as m must be a positive integer, then

m < [m,] =

[3+\/1n2—4n—8k+1
5 .
Therefore, the first part of the theorem is established. To prove the second half, consider the graph
G = G(n, m) which consists of n — m + 1 “central” nodes, every two of which are joined by an
edge, and m — 1 “‘satellite” nodes, each of which is joined by an edge to every central node.
The number of edges in G is thus

1
k=§(n—m+l)(n—m)+(m—1)(n—m+l)

1
and the resulting m, = 3 3 + \V(@2m — 3)2) = m. Moreover, this graph on n nodes does admit of a

tree partitioning with m node sets: namely, choose m — 1 node sets each containing a single satellite
node, and an mth node set containing all central nodes. Accordingly, the second part of the theorem
is verified.

It is worthwhile to note that when the underlying graph is a tree (¢t = n — 1), the upper bound
provided by the theorem is exactly n. Here again the upper bound is tight since a tree on n nodes
admits of a tree partitioning into n node sets (just let each N; contain a single node). When the
underlying graph is complete (that is, every pair of distinct nodes is joined by an edge) then a tree
partitioning can have at most two node sets. In fact, the upper bound provided in the theorem for

. 1
the situation k£ = 5 n(n — 1) is seen to be 2 also. As a final illustration, the upper bound on m is

calculated to be 17 for the graph depicted in figure 1 (n = 18, k& = 33); the tree partitioning of this
graph shown in figure 2 contains 10 node sets.

5. Computational Remarks

The principal virtue of the tree decomposition algorithm given in section 3 is that computations
need only be performed on arrays which are significantly smaller than the original matrix.
Accordingly, much larger matrices than could normally be accommodated in core can be inverted.
Moreover, the form of partitioning employed seems to readily adapt itself to the particular zero-
nonzero structure of the matrix being studied. Of course, the tree partitioning concept is even more
appropriate when repeated matrix inversions are to be made for a sequence of matrices differing
only in that nonzero entries are reestimated or varied parametrically [4], [9]. Indeed, for a fixed
structure of sparseness the underlying graph remains the same and so the tree partitioning can be
found once and for all. In addition, it should be pointed out that TREEPART is at worst an 0(mk)
algorithm since no edge of the graph need be scanned more than m times. In practice, the amount
of computational labor required to find a tree partitioning is really quite modest. For example, when
the underlying graph has & = 0(n), as would often be the case for sparse matrices (e.g., resulting
from the rectangular and triangular lattices which arise in numerical solution of partial differential
equations), the theorem of section 4 shows that mk <= ((n?: accordingly, TREEPART is at worst an
0(n? algorithm for these sparse graphs.

Moreover, the tree decomposition approach is able to exploit effectively the sparsity of the
original matrix and thus reduce the amount of computation required for matrix inversion. Suppose,

256

for example, that each of the node sets N; has |[N;| = r. Then the use of INVERT to find the inverse
n

of A requires 0(m?r®) = 0(n? - —) operations; thus for a given number of nodes, the computational
m

effort decreases as the number of node sets increases. Without exploiting sparsity, standard methods
for finding 4 ! necessitate 0(m??®) operations. Furthermore, the decomposition procedure allows the
user selectivity in calculating the submatrices X;; of 47! Indeed, INVERT only requires the
calculation of the 3m — 2 submatrices X ;; which correspond to nonzero A;; in the original matrix 4.
The remaining (m — 1)(m — 2) submatrices can be calculated, if desired, during Step 4 of the
algorithm. Thus, the present decomposition approach would be especially appropriate for problems
which require finding only certain submatrices of 4 ~'; such a situation arises when one is interested
in finding the variances of estimated coefficients in multiple linear regression, since the required
variances are derived from the diagonal entries of a matrix (X7X)" .

Several procedures have been described for transforming a given matrix into one with a
particular partitioned block structure [3], [10], [11], [17], [18, Ch. 3]. The use of a tree partitioning
seems sufficiently flexible to deal with a wide range of possible partitions. Fiedler [5] discusses a
type of partitioning more general than that given here; however, the solution method indicated in [5]
appears to involve too many submatrix inversions to be practically advantageous. Another approach
to inverting matrices using graph-theoretic concepts has been described by Harary [10]. Such a
method unfortunately is of little use when the matrix A is irreducible. A generalization of Harary’s
method is presented in [3]. In addition, Mayoh [11] and Steward [17] have discussed techniques for
permuting the rows and columns of A so that the resulting matrix has a particularly simple form.
The computational requirements of such techniques are, however, difficult to assess.

6. References

[1] Churchill, M. E. A sparse matrix procedure for power systems analysis programs, in Large Sparse Sets of Linear
Equations, J. K. Reid, Ed., (Academic Press. London. 1971), pp. 127-138.

[2] Cottle, R. W. Manifestations of the Schur complement. Linear Algebra and Appl. 8 (1974), pp. 189-211.
[3] Dulmage. A. L. and Mendelsohn. N. S. On the inversion of sparse matrices, Math. Comp. 16 (1962), pp. 494-496.
[4] Erisman, A. M. Decomposition methods using sparse matrix techniques with application to certain electrical

network problems, in Decomposition of Large-Scale Problems, D. M. Himmelblau, Ed.. (North-Holland
Publishing Co., Amsterdam, 1973). pp. 69-80.

5] Fiedler. M. On inverting partitioned matrices. Czechoslovak Math. J. 13 (1963), pp. 574-586.

6] Fiedler, M. and Ptiak, V.. On matrices with non-positive off-diagonal elements and positive principal minors,
Czechoslovak Math. J. 12 (1962), pp. 382-400.

7] Gantmacher, F. R., The Theory of Matrices, Vol. I, (Chelsea Publishing Co., New York, 1960).

8] George, A., Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973). pp. 345-363.

[9] Gustavson, F. G.. Liniger, W. and Willoughby. R., Symbolic generation of an optimal Crout algorithm for sparse

systems of linear equations, J. Assoc. Comput. Mach. 17 (1970), pp. 87-109.

[10] Harary, F.. A graph theoretic approach to matrix inversion by partitioning, Numer. Math. 4 (1962), pp. 128-135.

[11] Mayoh, B. H., A graph technique for inverting certain matrices, Math. Comp. 19 (1965), pp. 644—646.

[12] Parter. S., The use of linear graphs in Gauss elimination, SIAM Rev. 3 (1961). pp. 119-130.

[13] Reid, J. K., Ed., Large Sparse Sets of Linear Equations, (Academic Press, London, 1971).

——

— r—

[14] Rose, D. J., A graph-theoretic study of the numerical solution of sparse positive definite systems of linear
equations, in Graph Theory and Computing, R. C. Read, Ed., (Academic Press, New York, 1972), pp. 183-217.

[15] Rose. D. J. and- Willoughby, R. A.. Eds.. Sparse Matrices and Their Applications, (Plenum Press, New York,
1972).

[16] Shier, D. R., A decomposition algorithm for optimality problems in tree-structured networks, Discrete Math. 6
(1973), pp. 175-189.

[17] Steward, D. V., Partitioning and tearing systems of equations, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2
(1965), pp. 345-365.

[18] Tewarson, R. P., Sparse Matrices, (Academic Press, New York, 1973).

[19] Willoughby, R. A., Ed., Sparse Matrix Proceedings, IBM Research Report RA1, Yorktown Heights, New York,
1969.

(Paper 80B2—439)

257

	jresv80Bn2p_245
	jresv80Bn2p_246
	jresv80Bn2p_247
	jresv80Bn2p_248
	jresv80Bn2p_249
	jresv80Bn2p_250
	jresv80Bn2p_251
	jresv80Bn2p_252
	jresv80Bn2p_253
	jresv80Bn2p_254
	jresv80Bn2p_255
	jresv80Bn2p_256
	jresv80Bn2p_257
	jresv80Bn2p_258

