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The problem solved is that of selecting n subsets of the unit interval, each of measure a, so as
to minimize the maximum of the measures of their p-fold intersections. This is achieved by
minimizing the sum of the measures of these p-fold intersections.
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1. Introduction

Some years ago, NBS colleague S. Haber communicated the following problem: To select n
subsets of the unit interval, each of measure /2, so as to minimize the maximum of the measures of
the pairwise intersections of these subsets. The problem is suggested by a paper [1]' of Gillis which,
settling “an unpublished conjecture of Erdos,” proves that for denumerably infinite collections of
sets of measure «, the value corresponding to the maximum pairwise-intersection measure has
infimum a2 (Collections with higher transfinite cardinality are treated by Gillis in [2].) Here we
provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to
[1], we consider as well the case of p-fold intersections with 2 <p=n, and provide the corresponding
explicit solution. (As noted in [2], the argument of [1] easily extends to show that «” is the limiting
value for a denumerably infinite collection.)

As preliminary, we introduce a second minimization and point out its relationship to our minimax
problem, to wit: Select n subsets 4, Ay, . ., A, of the unit interval, each of measure «, so that the
sum of the measures of their p-fold intersections is minimum. If now X = {S;, . . ., S,}, a solution
to this minimum problem, can be chosen so that all its p-fold intersections have the same measure s,
and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection 4,, A5,
.+, An with all w(4) = «, then

M
p M2i1<i2<,__<i"ﬂ AilﬂAizﬂ...ﬁAip

\
Zil<;ﬂ. .. <i‘,l[.,t<s,-1 N Siz Moo M Sip>

Thus s = M, demonstrating that X solves the minimax problem. This observation suggested the
analysis which follows.
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! Figures in brackets indicate the literature references at the end of this paper.
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2. Analysis

We will use the following notation: N = {1,2,. .., n}: p is a fixed positive integer with
2 = p = n. The underlying space is the unit interval I with Lebesgue measure w (but the analysis
actually carries over to any “atomless” probability space). Set complements of 4 C I and R C N are
denoted A¢ and R¢ respectively. Let, for 0 = r < n,

K,={RCN: |R|=r}.

Given the real number « with 0 < « = 1, let

Flo)={4Cl: pnA = o}

and let F"(«) denote the n-fold Cartesian power of F(«), consisting of all n-tuples

X ={A4,, Ay, .. ., A}

with each 4; € F(«). For each such X, and each R C N, set

Xp={xel: xeA ifi eR};

an easily-proved property of these sets, to be used repeatedly below, is that

X if P CR,
Xre N (N4) = (1)

il
¢ otherwise.

Note that the disjoint union

Xr:U XR

ReK,.

consists of those points x € [ which are members of exactly r sets 4; € X. Finally, for measurable B
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C 1, it is convenient to define

SX.B)= Y M[(mA,-) N B}
PeK, | \ieP

The “objective function” for the minimax problem is

M(X) = max u

PeK,,

A Ai b
Nier

while that for the related minimization problem introduced in section 1 is

1)
iep

An alternative formula for S(X) will first be developed (Lemma 1), and then a necessary condition
(Lemma 2) for some X € F"(«) to minimize S will be presented.

S(X) =S(X,]) =

\
VAN
€K,

e

LEMMA 1: For each X € F"(«),

sSX) =N (')u(\) (2)
r=p \ P

ProOF: Since {X,: r =20, 1, ..., n}is a partition of I,

n

SX) = Y SX.X,)
r=0
=> > SK,Xp.
r=0

IRI=r

Applying (1) to each summand, we obtain

yielding (2).
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LEMMA 2. If X minimizes S over F™«), and w(X,) > 0 for some r = p, then w(X,) = 0 for all t
<r-1.

PROOF: Suppose, to the contrary, that there exist r = p and t < r — 1 such that w(X,) > 0 and
Xy > 0. We will prove the existence of an X' € F ) for which S(X’) < S(X), thus contradicting
the hypothesis about X.

Since w(X;) > 0 and w(X,) > 0, K, and K, must contain respective members R and T with (X g)
> 0 and w(X7) > 0. Choose subsets Y and Z of I with

Y C Xpg ZCXp w@®) = uZ) > 0.

Also choose a member i of the nonempty set R — T'; then

Now define X' = {4, Ay, . . ., A}, . . ., A,}, where

Ai=A-Y) U Z

Since w(4}) = w(A; = Y) + w(Z) = w(A4;), we have X' € F"(w).

To prove that S(X)’) < S(X), observe that [ is partitioned into ¥, Z, and I — Y — Z.

Thus

S(X) = S(X.,Y) + S(X,Z) + S(X,] - Y - Z),

SX') =SX".Y)+ SX'.Z2) + SX', I -Y - Z).

Since X and X’ differ only on Y U Z, it follows that

SX) - SX") =[SKX,Y) - SX",Y)] - [SX",Z) — SX,2)].

Since Y C X, and Y C X',_,, application of (1) to the summands of SKX,Y) and SXX",Y) yields

S(X,Y) — S(X',Y)

r r—1 r—1
<p>“(Y)_< p )“m: (p—1>“m'
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Similarly, it follows from Z C X,and Z C X', that
t+1 t t
'\2) - SX,2) = 2 - (! uz =( ) 2).
SX',Z) - SX,Z) ( » ),u() <p>u() p —1)HMD

Sincer — 1>t and w(Y) = wZ) > 0,

A r_l _ t
S(X)—S(X)—(p_l)w) (p_l)mz»o,

completing the proof.

We will subsequently show that if u(X,) > 0 for some r > p then u (X,) = 0 fort <r — lisa
sufficient condition for X to minimize S over F*(«).

LEMMA 3: For all X € Fw),
na = Yo X ). (3)

PRroOF: Let ¢; denote the characteristic function of 4;. Then

na= Y| cix)dux) = | [Yici(x)] dulx)
I By

_: 7=0 j [Z?’:l ci(x)] dulx) = ,_‘,'r!=0 X ;).
Xr
It is now possible to prove:

LEMMA 4: If na = p — 1, then S\iy = min {S(Y): Y eFYa)} = 0.
Proor: It suffices to exhibit an X € F"(«) for which

wX,) =0 forr = p. (4)
To this end, let

A;=[C — D, i) (mod 1) forl =i <n.

Each point of [0,1) corresponds (mod 1) to exactly p — 1 points of the interval [0, p — 1), and thus to
at most p — 1 points of the subinterval [0, na); thus X, " [0, 1) = ¢ for r = p, verifying (4).

LEMMA 5: If for given X € F™«), the largest r such that w(X,) > 0 satisfies v = p and further for
t<r—1, u(x) =0, then

S(X) = Smin .

Proor. It suffices to show that S(X) has the same value for all X e F"(«) satisfying the
conditions of the lemma. Consider such an X, and the greatest r for which w(X,) > 0. Since

> uXy =) =1, 5)
t=0

such an r must exist. By the above condition w(X) = 0 fort #r, r — 1, and so by (5),
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/-‘(Xr—-l) =1- ,LL(X,-)
Let na = m + 3 with m integral and 0 = 8 < 1. It follows from (3) that
m+B=ruX,) + —-—DwX,—)=0—-1+ wX,), (6)

and from (2) that

(gl (5o
S(X) <p)l£( J) = p M 1

If B = 0, then since m is integral and 0 < wX,) < 1, it follows from (6) that wX,) = 1 and r =
m, and then it follows from (7) that

S(X):(m-—l)_}_(nz—l):(m). 8
p p—1 P

If B > 0, then it follows from (6) that w(X,) = B8 and m = r — 1, and then it follows from (7) that

S (77 m )
SKX) = (,))+ (])_1’)/3 )

Thus S(X) is uniquely determined by the pair (m, B). i.e., by na. Note that (8) and (9) are consistent
with Lemma 4, since both yield SX) = 0 if na < p — 1.

We are now able to provide the solutions, both to the problem of minimizing S(X) over F"(«)
and to the original problem of minimizing

(’;1)+ (;:11 | w(X ). (7

M(X) = max p.(w’ A,-)

PeK), iep

over F"(a). Let M, denote the value of this latter minimum. Then the solution takes the following
form.

THEOREM. Let na = m + Bwith m integral and 0 = 3 < 1. Then

Smin = Mpin =0 ifn(v =p =

~ m m ~ n .
o= in = Omin > g
b"11]] ( p ) + (p_l )B' ]\'Imm S / (p ) lf nc }) ]

Thus, in particular, for the problem as originally posed where p=2 and o = 1/2,

k(k — 1)/2 if n=2k
Smin = (
(k — 12 if n =2k — 1,
and Mmin = (k = l)/2(2k —1).
Proor: First suppose nae < p — 1. Then S,,;, = 0 follows from Lemma 4, whose proof
constructed an X € F"(@) for which u (U?_,X,) = 0. Since every p-fold intersection of the members

of X lies in this union, it follows that M(X) = 0, implying M .;, = 0.
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Now suppose na > p — 1. The formula for S, follows from (8) and (9). We will prove the
result for M i, by constructing an X € F"(«) which satisfies the condition of Lemma 2, and which
furthermore (see the end of sec. 1) has equal measures for each of its p-fold intersections. For this

equal subintervals and the interval [B3, 1] into

. . . n
purpose, partition the interval [0, ) into e

<Zl) equal subintervals. Label the second family of subintervals as {X,; M € K,,} and the first

family as {Xq¢: () € K,1}. Define

Av=[o{Xa i eMYU [UiXe i €O}

Then each A; consists of ( :l_] ) intervals X, and (n;l ) intervals X ¢, all disjoint, so all 4; have

=1

equal measure. If ¢; denotes the characteristic function of 4, then

n n B n 1 n
D oAy = [(l Ci)dl"j [ (). Ci)(lli+ { (E('i)dli
i JI = / Jo i 7B i

i=1 i=1 i=1 i=1
=m+ DB+ m(l —pB)=m + B =na
Thus each wA4;) = a, i.e., X € F"(®). Forr = p, wX,) > 0 holds only for r = m and r = m + 1, so
the condition of Lemma 2 is satisfied. The symmetry of the construction assures that all p-fold

intersections of the members of X have equal measure; explicitly, for P € K,, we have

N Ay =[ufXw: PC MY [ufXe: P C O}

implying
_(n—p B n n—p n )
#[L;‘Ai] - (mﬂ)) (1 -p <m> " <m+11)>'8/<m+1 |

independently of P.
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