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The problem solved is that of selecting n subsets of the unit interval , each of meas ure ex, so as 
to minimize the maximum of the measures of their p-fold intersec tions . This is ac hie ved by 
minimizing the sum of the meas ures of these p-fold intersections. 
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1 . Introduction 

Some years ago, NBS colleague S. Haber communicated the following proble m: To select n 
subsets of the unit interval, each of mea sw'e 112, so a s to minimize the maximum of the measures of 
the pairwise inte rsections of these subse ts. The problem is suggested by a paper [1]1 of Gilli s which, 
settling "an unpubli shed conjec ture of Erdos," proves that for denumerably infinite collections of 
sets of measure a, the value corresponding to the maximum pairwise-inte rsection meas ure has 
infimum a 2 • (Collections with higher transfinit e cardinality are treated by Gillis in [2].) Here we 
provide an explicit solution for collections of finite cardinalities n. Further, and also corresponding to 
[1], we consider as well the case of p-fold intersections with 2 Sop Son, and provide the corresponding 
explicit solution. (As noted in [2], the argument of [1] easily extend s to show that aT' is the limiting 
value for a denumerably infinite collection.) 

As preliminary, we introduce a second minimization and point out its relationship to our minimax 
problem, to wit: Select n subsets A 10 A2 , • . , A 1/ of the unit inte rval, eac h of measure a, so that the 
sum of the measures of their p-fold inte rsections is minimum. If now X = {Slo . . " SI/}' a solution 
to this minimum proble m, can be chose n so that aU its p-fold intersections have the same measure s, 
and if M is the maximum of the measures of the p-fold intersections of an arbitrary collection A to A 2, 

. , " A n with all fL(A J = a, then 

n A- ) Ip 

n S· ) 'p 

(; )s. 

Thus s :2: M, demonstrating that X solves the mll1Jmax problem. This observation suggested the 
analysis which follows. 

AMS Subject l.'Imsifica tion: Primary O:iAOS: Seco ndary 0.1 8 99. IOE3O. 28A 7;;. 

I Figures in brackets indicate the lite rature references a l the e nd of thi s paper. 
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2. Analysis 

We will use the following notation: N = {I ,2, .. . , n} ; p is a fixed pos itive intege r with 
2 :S P :S n . The underlying space is the unit inte rval/with Lebesgue meas ure /.t (but the a nalys is 
actually carries over to any "atomless" probability space). Set co mple ments of A t:;;; I and R t:;;; N a re 
denoted A t' and RC respectively. Le t, fo r 0 :S r :S n, 

Kr = {R t:;;; N: IRI = r} . 

Gi ve n the real number H with 0 < IX :S 1, let 

F (et) {A t:;;; I : /.t (A) = et} 

and le t F" (et) denote the n-fold Cartesian powe r of F (et) , co nsisting of all n-tuples 

with each Ai E F(et ). For each s uc h X , and each R t:;;; N , set 

X R = {x E/: XEAi iff i E f{} ; 

an eas ily-proved property of these sets, to be used repeatedly below, is that 

XR n ( n A;)= 
i e. P 

Note that the disjoint union 

f XRifP t:;;; R, 

1 1J othe rwise . 

(1) 

consists of those points x E I whic h are members of exactly r sets Ai EX. Finally, for meas urable B 
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<: I, it is convenient to define 

S(X,B) = L /.t[(nA;) n B]. 
PEK p _ IEP 

The "objective fun ction" for the minimax problem is 

M(X) = max /.t [n Ai]' 
PEKp _iEP 

while that for the related minimizati on prob le m introd uced in sec tion 1 is 

S(X) = S(X,f) = L /.t [nA iJ. 
PEK J} _iEP 

An alte rnative formula [or S(X) will firs t be developed (Le mma 1), and the n a necessa ry conditio n 
(Le mm a 2) for so me X E F I/(O') to minimi ze 5 will be prese nt ed. 

L EMMA 1: For each X E FI/(O'), 

S(X) = ~ ( II~) /.t(X r ) . 
r= p 

(2) 

PROOF: Sin ce {X r: r = 0, 1, . .. , n} is a partition of I , 

S(X) = L S(X,X r) 
r = O 

n 

L L S(X,Xn)· 
r = O IR I= r 

Applying (1) to each s ummand , we obtain 

S(X) i I(rj (x) 
r = p IR I = r p / /.t R, 

yielding (2). 
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LEMMA 2. If X minimizes S over Pea), and /4Xr) > 0 for some r ~ p, then p,(X,) = 0 for all t 

< r - 1. 

PROOF: Suppose, to the contrary, that there exist r ~ p and t < r - 1 such that /J-(Xr) > 0 and 
fL(Xt) > o. We will prove the existence of an X' E F"(a) for which SeX') < SeX), thus contradicting 
the hypothesis about X. 

Since p,(XT) > 0 and /J-(Xt ) > 0, Kr and K t must contain respective members Rand T with /J-IX R) 
> 0 and /J-(X T) > o. Choose subsets Y and Z of I with 

/J-(Y) = /J-(Z) > o. 

Also choose a member i of the nonempty set R - T; then 

Z C;;;Aj'. 

Now define X' = {A b A2 , ••• , A;, ... , A n}, where 

A; = (Ai - Y) u Z; 

Since /J-(A ;) = /J-(Ai - Y) + /J-(Z) = /J-(A i) , we have X' E Pea). 

To prove that SeX)') < SeX), observe that I is partitioned into Y, Z, and I - Y - Z. 

Thus 

SeX) = S(X,Y) + S(X,Z) + sex'! - Y - Z), 

SeX') = sex' ,y) + SIX',z) + SIX',! - Y - Z). 

Since X and X' differ only on Y u Z, it follows that 

SeX) - SeX') = [S(X,Y) - S(X',Y)] - [SIX',Z) - S(X,Z)]. 

Since Y C;;; X T and Y C;;; X' r - b application of (1) to the summands of SIX,y) and Sex' ,y) yields 
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Similarly, it follows from Z ~ X 1 and Z ~ X' 1+1 that 

Since r - 1 > t and p,(Y) = p,(Z) > 0, 

completing the proof. 

We will subsequently show that if p,(X r) > ° for some r > p then p, (X /) = ° for t < r - 1 is a 
sufficient condition for X to minimize S over F"(a). 

LEMMA 3: For all X E F'\a), 

PROOF: Let C j denote the characteri stic function of Aj • Then 

2:~=o J [2:;'=1 Cj(X) ] dp,(x) = 2:~=o rp,(X r ). 

X,. 
It is now possible to prove: 
LEMMA 4: If nO' $ p - 1, then Sillin = min {S(y): Y EF"(a)} = 0. 
PROOF: It suffices to exhibit an X E F"(a) for which 

for r ~ p. 

To this end, let 

Ai = [(i - 1)0', ia) (mod 1) for 1 $ i $ n. 

(3) 

(4) 

Each point of [0,1) corresponds (mod 1) to exactly p - 1 points of the interval [0, p - 1), and thus to 
at most p - 1 points of the subinterval [0, na); thus X r n [0, 1) = cP for r ~ p, verifying (4). 

LEMMA 5: If for given X E P(a) , the largest r such that p,(X .. ) > ° satisfies r ~ p and further for 
t < r - 1, p,(x t) = 0, then 

S(X) = Sillin. 

PROOF. It suffices to show that S(X) has the same value for all X E F "(0') satisfying the 
conditions of the lemma. Consider suc h an X, and the greatest r for which p,(X r) > 0. Since 

/I 

(5) 

such an r must exist. By the above condition p,(X J = ° for t i= r, r - 1, and so by (5), 
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Let na = m + (3 with m integral and ° :s (3 < 1. It follows from (3) that 

m + (3 = rfli'xr) + (r - 1) p.(X r - 1) = (r - 1) + /-L(X r), (6) 

and from (2) that 

If (3 = 0, then since m is integral and ° < /-L(Xr) :s 1, it follows from (6) that p.(X r) = and r = 

m, and then it follows from (7) that 

(8) 

If (3 > 0, then it follows from (6) that /-L(X r) = (3 and m = r - 1, and then it follows from (7) that 

(9) 

Thus Sex) is uniquely determined by the pair (m, (3), i.e., by na. Note that (8) and (9) are consistent 
with Lemma 4, since both yield S(X) = ° if fLa :s p - 1. 

We are now able to provide the solutions, both to the problem of minimizing sex) over F"(a) 

and to the original problem of minimizing 

M(X) = max /-L (r Ai) 
P€Kp iEP 

over F I/(a). Let M min denote the value of this latter minimum. Then the solution takes the following 
form. 

THEOREM. Let na = m + (3 with m integral and ° :s (3 < 1. Then 

SOlin = Millin = ° if nC1' :s p I , 

if na > p - 1. 

Thus, in particular, for the problem as originally posed where p= 2 and a = 112, 

Slllin = (" k(k - 1)/2 

(k - 1)2/2 

and MOlin = (k - 1)/2(2k - 1). 

if n = 2k 

if n =2k - 1, 

PROOF: First suppose na :s p - 1. Then Slllill = ° follows from Lemma 4, whose proof 
constructed an X E FI/(a) for which /-L ( u ~=JJXI") = 0. Since every p-fold intersection of the members 
of X lies in this union, it follows that M(X) = 0, im plying Millin = 0. 
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Now suppose na > p - 1. The formula for Smin follows from (8) and (9). We will prove the 
result for M min by constructing an X E FI/(a) which satisfies the condition of Lemma 2, and which 
furthermore (see the end of sec. 1) has equal measures for each of its p-fold intersections. For this 

purpose, partition the inte rval [0 , (3) into ( m': 1) equal subintervals and the interval LB, 1] into 

(:) equal s ubinte rvals . Labe l the second famil y of s ubinte rvals as {X M: M E Kilt} and the first 

family as {X Q: Q E K m+d. Define 

Ai = [u {X M : i E M}]u [u {X Q: i EOn 

Then each A i consists of ( : -=-11) inte rvals X M and (,\:1 ) inte rvals X Q, aU di sjoint, so all A i have 

equal meas ure. If Ci denotes the characteri s ti c function of A;, then 

i~; fL(A i) = J (~ Ci) dfL = r (~ Ci) dfL + l' (~ Ci) dfL 

= (m + 1),8 + mO - ,B) = m + ,8 = na. 

Thus each fL(A i) = a, i.e., X E F I/(a). For r 2: P, fL(X ,.) > 0 holds onl y fo r r = m and r = Tn + 1, so 
the condition of Le mma 2 is sa ti s fi ed. The symmetry of the construction ass ures that aU p -fold 
int e rsections of the membe rs of X have equal meas ure; exp li citl y, fo r P E K p , we have 

( Ai = [u {X M: P e M}] L [u {X Q: P con 
i EP 

impl ying 

fL[n A] - (n -p) (l _ (3) / (n) + ( n-p )f3/( n ) 
i<l> i - Tn - P m m + l - p m + l ' 

inde pe ndentl y of P. 
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