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This paper presents three simple mathematical models, all of game-theoretic type, dealing with
an inspector-inspectee relationship. The inspectee always tries to maximize his net gain, which is
the amount he obtains by “cheating” less the amount he is penalized when caught. The first model
assumes a zero-sum payoff and so the inspector tries to minimize the inspectee’s net gain. In the
second model, the inspector tries to deter cheating without concern for the extraction of penalties.
In the third model we assume that the probabilistic pattern of the inspector’s strategy is known to
the inspectee and that the inspector constructs his strategy with this in mind. Each of these models
is analyzed and optimal solutions are obtained. Several simple examples are presented to show the
relation between the level of cheating and the levels of inspection resources and penalty.
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1. Introduction

This paper contains the formulation and analysis of three simple mathematical models, of game-
theoretic type, oriented toward certain important aspects of the inspector-inspectee relationship.
These models were initially designed in the course of a study performed for the NBS Office of
Weights and Measures, while seeking techniques that might be useful to state “W&M™ agencies in
employing their resources to achieve best protection of consumers against loss due to malfunctioning
weighing and measuring devices used in retail trade. However, they also appear relevant to many
other situations involving an inspector-inspectee relationship in which it is meaningful to assign
numerical values to the detection and to the nondetection of malfunction.

For example, food packaging plants (the inspectees) are required to assure through self-policing
that no more than a specified level of foreign matter (in the form either of less expensive substitutes
or of “dirt”) enters into the food they package. An agency of government (the inspector) is charged
with guaranteeing to the public that these levels are not exceeded. If we can assign numerical values
to (1) the benefit accruing to the packager (for examnvle, in reduced operating expenses) for
permitting systematic violation of the maximal level of foreign matter, and, (2) the penalty for being
found in violation, then the models and analysis of this paper might well be pertinent. Similar
comments can be made with “food purity” replaced by “consumer product safety.”

The type of model at which we aim may also prove applicable to situations not customarily
described in terms of inspectors and inspectees. For example, a department store (the inspector)
wishes to combat thievery among its workforce (the inspectees) and establishes an internal security
section with a fixed amount of resources. If numerical values can be specified for successful and for
unsuccessful stealing, then models like those of this paper might be used to minimize the
department store’s loss. Many other scenarios can be formulated for which such models could
describe “optimal strategies™ for both the inspector and the inspectee.

Although the sort of analysis initiated below promises to have broad scope, it should be stated
at the outset that the present models are not detailed and highly realistic ones, capable of giving
“practical answers.” Rather, they are intended both as preliminary explorations of how certain
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issues might be framed for quantitative analysis, and as concrete targets for criticisms and
suggestions leading to superior versions.

The models ignore many features of the inspection process, for the sake of focusing sharply and
clearly on certain other features. Some of the ignored aspects will be explicitly identified later, but
for general perspective it should be noted that our emphasis here is one-sidedly on the “‘consumer
protection” or “deterrence of cheating” element in inspection operations, as distinguished from the
“help the inspectee (merchant) keep his device accurate” theme.

The features of the situation on which the models are intended to focus are the following:

(a) A commercial establishment, containing one or more measuring devices which “meters” its
transactions with customers, has an economic incentive to “cheat” in connection with that device.
The ugly word “cheat” is used as a pithy abbreviation for any of (i) deliberately causing the device to
malfunction in the direction economically advantageous to the establishment (for example, “short
weighing”), or (ii) knowingly permitting such a malfunction (originating through natural causes) to go
uncorrected, or (iii) employing such a malfunctioning device, which though not explicitly recognized
as such, was not properly checked for malfunction. Different establishments, with different dollar-
flows of transactions, will experience economic incentives of different magnitudes. The models
contain a set of parameters (V;) representing these magnitudes.

(b) The inspection agency typically has only a limited quantity of “inspection resources™ at its
disposal, a quantity likely to be too small for frequent coverage of all the devices in its jurisdiction.
The models contain parameters, m and n, representing respectively, the inspection resources and
the number of devices over which they must be spread.

(c) The detection of cheating leads to imposition of a “penalty” on the malefactor. This penalty
might be the sum of (i) a monetary fine, (ii) the dollar-equivalent of interruption of the normal flow of
business, and (iii) the economic loss due to diminished patronage following public disclosure of the
cheating. The models include a parameter (P) representing the size of this penalty.

(d) Our purpose in this paper is to begin the development of additional methodological tools for
designing more effective and efficient responses by society to the existence of cheating. Those
responses include both a punitive element (whose intensity is measured by P) and a “policing”
element (whose intensity is represented by m). By determining how the level of illicit activity
depends on P and m, we hope to contribute to better understanding of the effectiveness of the two-
element response. By exhibiting the tradeoffs between P and m in the above dependence, we hope
to contribute to better understanding of the efficiency with which that response is allocated between
the two elements, though full achievement of that goal will also require models of the “cost™ (as well
as the “performance output™) associated with various combinations of P and m. These particular
objectives, which of course remain relevant in a broad context of regulatory and general criminal-
justice activity, have guided the development of the models to be described.

The mathematical formulation of a first model is given in the next section (sec. 2), and is
accompanied by a discussion of some of that model’s shortcomings in order to indicate directions for
further research. The results from analyzing this Model 1 are presented in section 3, along with two
simple illustrations; the analysis itself appears in section 4 (which the reader may prefer to omit).
This model makes the “zero-sum™ assumption—found in most game-theoretic literature—that the
inspection agency’s objectives are antithetical to those of the “inspectee,” which implies in particular
that the latter’s loss through penalty-payment is the former’s gain.

Section 5, in contrast, takes up a second model which is of nonzero-sum type; it treats the basic
aim of the inspection activity as deterrence of cheating, with no separate value for the extraction of
penalties after its detection. The “solution” of this Model 2 is presented and illustrated, with the
supporting analysis deferred to section 6.

In section 7 we drop the usual game-theoretic assumption that the players select their strategies
simultaneously (or, at least, that the strategy chosen by each player does not depend on the strategy
chosen by his opponent). Since the inspection procedure is an ongoing one, it would be expected
that the inspectee, sooner or later, would be able to discern the probabilistic pattern of the
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inspector’s choices. Thus, in Model 3 we assume that when the inspectee formulates his strategy he
knows what the inspector’s strategy will be. Moreover the inspector is aware of this and so
constructs his strategy with it in mind. The solution of Model 3 was suggested by NBS colleague
L.S. Joel; the results for Model 3 are presented in section 7 while section 8 supplies some of the
longer derivations justifying these results.

2. Formulation of Model 1

This mathematical model takes the form of a 2-player zero-sum game. The “players” are the
inspector (an aggregate representing the inspection agency) and the inspectee (an aggregate
representing the establishments in which the measuring devices are used). There is some loss in
reality through’ regarding these establishments as forming a single player with a single interest, but
for the present model this potential turns out not to be realized.

The inspectee can either cheat, or not, for each of a set of devices DD, ... D, The
inspector selects devices for inspection, up to the limit of his resources. Detection of a cheat, if the
device is inspected, is assumed certain. The data of the model are:

n = number of devices,
Vi = payoff to inspectee from cheating on D,
P

m = number of devices the inspector can examine (m < n).

penalty against inspectee for each detection of cheating,

A strategy for the inspectee is an n-component vector
¢ = (€,Co, . . ., Cp)

in which

..3
|

; = 1 if there is cheating on D;,
¢; = 0 if there is no cheating on D,.

The consideration of inspectee mixed strategies (probabilistic mixtures of ordinary strategies) is not
necessary for the present model, i.e., the model has solutions which do not involve them, but we will
also present those solutions which do include mixed inspectee strategies.

A strategy for the inspector is a specification of a subset M of the set N = {1,2, . . ., n} such
that M has exactly m members (notation: |M| = m). The interpretation is that i € M if and only if D;
is inspected. It turns out that consideration of mixed strategies for the inspector is required in order
to solve the present model. Initially we define such a mixed strategy to be a vector p, with a
component p(M) for each subset M of N such that |M| = m, and the properties that

pM) =0, Y ypM) = 1. (2.1)
The interpretation is given by
p(M) = Prob [{D;: i e M} are the devices inspected].
With each such p can be associated the quantities

pi = Prob [D; is inspected]
(2.2)

S {pM) : M contains i }.
Clearly each p; satisfies 0 < p; = 1. As will be proved in section 4, the relation Y ! p; = m holds.
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Conversely, consider any n-component vector (,ps, - . ., Pp) With
O=p;=1, Yip; =m. (2.3)
As will also be proved in section 4, there is then a mixed strategy p whose components p(M) satisfy
pi = > {pM): M contains i}

for all i € N. Thus we can and will regard a mixed strategy as a vector p = (py,Pa, - - ., Pn) Whose
components p;, interpreted as in (2.2), satisfy (2.3).

The net expected payoff to the inspectee, from device D, is the expected payoff from cheating
minus the expected penalty, i.e.

Vici = P(c;py) = [Vi — Ppilc.

Thus the total net expected payoff to the inspectee, if the two players choose respective mixed
strategies ¢ and p, is

F(C,p) = }_:il (V= PPi)Ci~ (2.4)

From the “zero-sum’ assumption that the interests of the two players are diametrically opposed, it
follows that —F(e,p) is the expected payoff to the inspector.

Before proceeding (in the next section) to present the “solution” given by this model—i.e., the
“optimal strategies” for both players—we note some of the model’s limitations and imperfections:

(a) The zero-sum assumption of diametrically opposed interests is not quite right unless one
thinks of society (whose agent is the inspector) as seeking vengeance rather than deterrence. A
second game-theoretic model, intended to give better expression to the “deterrence” theme, is
formulated and analyzed in section 5.

(b) The “cheat or no-cheat” dichotomy is clearly a severe idealization, ignoring as it does the
possibility of introducing different degrees of bias into the devices (different amounts of cheating). To
consider this dimension of the situation would also require formulating some mathematical
representation of how the probability of detection depends on the degree of cheating, and could raise
interesting questions concerning the role of the establishments’ customers in performing part of the
detection function (that of recognizing gross cheating). For the present we decline to explore these
lines of generalization.

(c) Even with the above restriction, it seems odd to assume that cheating will be detected with
certainty if the offending device is but inspected. This for example seems to rule out use of the
model to examine the relative merits of training, or selecting, or otherwise encouraging inspectors to
work more rapidly (in effect, increasing m), versus stressing the thoroughness or quality of their
work (in effect, increasing he probability of cheat-detection). Fortunately, this limitation is only
formal; a detection probability & can be represented in the model simply by replacing the fixed
penalty P, in (2.4), by the average penalty P’ = P3.

(d) A quite natural extension of the model would be the replacement of P, in (2.4), by device-
specific penalties P. (For example, the presence of site-dependent detection probabilities would lead,
as above, to the use of P§; in place of P. Also, interruption of business or loss of patronage could be
more serious at sites with a greater volume of transactions, suggesting the association of larger F;'s
with larger 7;’s.) This would raise no real problem were we content with solving the model
numerically, but it does interfere with achieving the kind of nearly closed-form solution presented in
the next section, and it definitely contradicts the desire to maintain in the model a simple clear-cut
scalar quantity representing the intensity of society’s sanction against cheating. So, this complication
will be omitted from the present paper.
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(e) If a serious level of cheating is detected, the inspector (government) may react with
measures which are onerous to all inspectees (merchants), even those with properly functioning
devices. Similarly, if detected cheating is publicized, honest as well as dishonest establishments may
suffer from loss of public confidence. These considerations suggest an inadequacy in the way (2.4)
associates penalty specifically to those devices at which cheating is discovered. Perhaps there should
be a penalty P* which is “activated” if cheating is discovered at any device (or at more than some
“threshold” number of devices). This possibility is also left for future investigation; its inclusion
would preclude expressing the payoff function in terms of the n  p/s rather than the much more
numerous p(M)’s.

(f) The inspector must decide which subset of the n devices he will inspect, and the family of
subsets which represent “allowable” outcomes of this decision are limited by the amount of
inspection resources available. In the present model, that limitation is expressed by specifying the
number (m) of inspections which can be undertaken. This is clearly an idealization of the real-world
situation in which some inspections may (predictably) require more time than others, some
inspection sites are remote from the majority so that visiting them substantially reduces the number
of other devices which can be inspected during a given time period, etc. One would like to improve
the model by incorporating a more realistic representation of the family of “allowable” subsets from
which the inspector can choose.

The preceding list suggests a number of directions for further analysis. But Model 1 and the
others in this paper, despite their evident deficiencies, are felt to represent a suitable first step in
focusing on the issues of interest.

3. Results for Model 1

In describing the results for the model formulated above, it is convenient to maintain the
notation N = {1,2, . . ., n}, and also to employ the notations

T=1{:Vi>P}, T=N-T=1{: V=P)} (3.1)

The letter “T” was chosen because the devices {D; ¢ €T} are especially tempting choices for

cheating.
The solution takes different forms according as

m<|T|+ Y{ViP:ie T} (Case I) (3.2)
or its opposite
m=|T|+ Y{Vi/P:ie T} (Case II) (3.3)

holds. If the V; are thought of as fixed, then this division into cases can be construed as partitioning
the first quadrant of (P,m)-space into two regions. The Case I region corresponds (as will be seen) to
situations where the inspectee’s optimal strategy is to cheat on all devices, and so this region may
be interpreted as representing grossly inadequate societal responses to the threat of cheating.

For each of the two cases, we will present a strategy ¢° for the inspectee, a mixed strategy p
for the inspector, and a number F°, such that

o

F(e%p) = F° for all p, (3.4)

F(e,p%) = F° for all c. (3.5)
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These relations of course imply that
F(e%p® = F°. (3.6)

Inequality (3.4) says that if the inspectee chooses strategy ¢° then his payoff will be at least F° no
matter what strategy the inspector picks, while (3.5) says that if the inspector chooses strategy p°
then the inspectee’s payoff (the negative of his own) will be at most F° no matter what strategy the
inspectee picks. On this basis, ¢° and p° are optimal strategies for the two players, and F° is the
value of the game (to the inspectee); we take F° = F(c%p° as the measure of average illicit net
gains “predicted” by the model. This is the customary solution concept for zero-sum two-player
games.

[A technical note to avoid a possible source of confusion: it can be proven from (3.4) and (3.5)
that

190 = maxcmion(c,p) = minpmach(c,p).

Thus the value can be defined without reference to any particular ¢® and p° With this done,
condition (3.4) defines the notion of an optimal strategy ¢® without reference to any p° while (3.5)
defines the notion of an optimal strategy p° without reference to any e°. Such definitions are in
general possible only for zero-sum two-player games.]

For Case I, as already stated, the optimal strategy for the inspectee is to cheat on all devices;
formally, e° is given by

@R = | for all i. (3.7
Any mixed strategy p° for the inspector is optimal if it satisfies the “no overkill” condition

Pp<V, forallieT. (3.8)

The value is given by
F°e = Y1V, — Pm. (3.9)
In Case II, it is convenient to partition T as E U U, where
E = {i: V,=P}, U= {i: V,<P} (3.10)
the symbols were chosen as the first letters of “equal” and “untempting.” If strict inequality holds in

(3.3), then the optimal strategies for the inspectee involve cheating on the tempting devices, but not
on the untempting ones, i.e.,

c; =1 fori eT, (3.11)
& =0 fori e U, (3.12)
c; unspecified fori e E. (3.13)

The phrasing of (3.13) was chosen to be compatible with the admission of mixed strategies for the
inspectee (i.e., “0 < ¢; = 17 rather than “c; = 0 or 17). In the special case that equality holds in
(3.3), there is an additional family of optimal strategies obtained by choosing a number ¢ with 0 < ¢
=< 1 and (with (3.11) retained) replacing (3.12-3.13) with
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c;=c¢ fori e U, (3.12%)
c;i=c fori eE. (3.13")

The optimal strategies for the inspector require always inspecting the tempting devices and avoiding
“underkill” on the others, i.e.,

p¢ =1 fori eT, Pp? =V, forieT (3.14)
which implies p¢ = 1 for ¢ € E. The value (whether (3.12-3.13) or (3.12'-3.13') is used) is
Fo=Y{V,:ieT} -P

T|. (3.15)

EXAMPLE 1: Equal-Sized Firms. This title is a somewhat free translation of the scenario-defining
assumption that all ; have a common value V. Then (3.2) and (3.9) give

F° =nlV — Pm it m < |T

+ (VIP){n — |T|}. (3.16)

while (3.3) and (3.15) give

Fo=W —P\T| ifm=|T| + (VP —|T|}. (3.17)

If P <V then |T| = n, so that (since we assume m < n) the defining condition of (3.16) holds and
hence (3.16) rather than (3.17) is the case. If V' < P then |T| = 0, so that either (3.16) or (3.17) holds
depending on whether or not P < n}/m. Our main interest is not in the optimal strategies but rather
in the dependence of the “net illicit gain” F° a measure of (imperfect) performance by the
inspection system, as a function of P and m. This dependence is summarized in figure 1, in which
F° is continuous across the curve (an equilateral hyperbola) separating the two regions shown. The
notation Vi, = Y1 Vi(=nV) is used.

Iy
m m=n

n - eGn s G D D oG GG ®GEGSEE ee

F°=0

Pm= Vtof

F%= Viot — Pm

v

@
Figure 1. Net illicit gain (equal-sized firms).
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EXAMPLE 2: Big Firms, Small Firms. Here there are n, “big firms” each with V; = ¥}, and n,
“small firms” each with V; = V;, where V, > V;. We have Vio« = nyV, + n,V;. If P <V, so that |T|
=n and T is empty, then (3.2) and (3.9) give (since m < n)

F° =V, — Pm.

If V; < P <V,, so that |T| = n, and |T| = n,, then (3.2) and (3.9) give

Fe =V — Pm if m < ny + Vy/P)ng,
while (3.3) and (3.15) give

Fe =, — Phn, ifm=ny, + V/Phn, (3.18)
If P >V,, so that T is empty and |T| = n, then (3.2) and (3.9) give

F° =V — Pm if m <V,/P,
while (3.3) and (3.15) give
F°e=0 if m=V,,/P.

These results are summarized in figure 2. F° is continuous across each of the three boundary
curves. Note that the region corresponding to (3.18) is “inspection-saturated”; a stiffer penalty,

rather than more inspection activity, is needed to reduce the inspectee’s expected payoff F° from his
optimal strategy (cheat at the big firms, but not at the small ones). (See table 1.)

n

Ve EEEEEER TR R PP

Fo = (Vb— P)nb

F°=Vf0f —Pm #5 =Vf°t
e = >

FIGURE 2. Net illicit gain (big firms, small firms).
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Case II Case |

TABLE 1. Results for Model |

Case Definition Inspectee’s Strategy Inspector’s Strategy Payoff
m <|T|+S{Vyp: i) e} = L for alli Olg’;’;f’ll’g)’:f:; FO =V - Pm
_ ct=1forieT 0 : o s
m = |T|+3{VyP: ileT} ct = 0fori elU pis Lictae T Fo=1{Vi:ieT}
0<ci<1foriek pt=y Ptlorie - P|T|

4. Analysis for Model 1

This section contains the mathematical justification of the results presented in section 3.
Readers preferring to do so can go directly to section 5 without loss of continuity.
A first technical point to be settled is the permissability of passing from the original definition of
a mixed strategy for the inspector, namely that of a vector with components p(M) satisfying (2.1)—
where M ranges over all subsets of N with |M| = m—to the subsequent definition as a vector p with
components p; satisfying (2.3). It will first be shown that each collection {p(M)} obeying (2.1) leads
via (2.2) to a set of p; obeying (2.3); then it will be proved that each such p = (p;) arises from such a
collection {p(M)}.
For the first purpose, consider any collection {p(M)} obeying (2.1), and let a; = 1 for all i € N.
With p; defined by (2.2), we clearly have p; = 0 as well as
pi=>{pM): MwithieM} <= YypM) =1,
and also
E;’ Pi= Ei aiz {p(M): JM Wlth l € ,L[}
= Y{a;pM): pairs (i,M) withi e M}
= XM p(M)X {ai: i € ./‘/I}
= SupM)m (since a; = 1 and |M| = m)

=m,

so that the p; obey (2.3).

For the second purpose define, for each subset () of N for which |Q| = m, a vector m, whose
components are given by

7TQ(M) =0 for M #(), WQ(()) = 1.
Note that the m, are the vertices of the set (hypercube) S* consisting of vectors 7 with components

p(M) satisfying (2.1). Next, for each subset ) of N for which || = m, define a vector pg with
components given by

pai=1 ifi€Q;pai=0 ifieN-Q.
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The set S, of all vectors p with components p; satisfying (2.3), is the intersection of a hypercube with
a hyperplane; its vertices must be the intersections of the hyperplane with the edges or vertices of
the hypercube, from which it readily follows that the vertices of S are precisely the vectors pyq.

Finally, for each i € N and each subset M of N with [M| = m, leta; = 1ifi e M and ayp, = 0
otherwise. Then the relation (2.2) can be written
Pi= XmampM),
or, in linear transformation notation, as

p =Amw

It is readily vertified that p, = A m,. Now any vector p € S can be written as a convex combination
of the vertices of S, i.e.,

P = X NPe M =0, Yoghg=1.

The vector
T = Y AT,
as a convex combination of the vertices of S*, is itself in S*, and from the linearity of 4 we have
Am = YohAmq = YalaPa = P-

This proves, as desired, that every p € S arises via (2.2) from some m € S*.
To prove that the strategies presented in section 3 are indeed optimal, it is convenient to set

v; = ViP (4.1)
and to work, not with the payoff function F of (2.4), but rather with
fle,p) = Fle,p)/P = Y1 (v; —pics (4.2)
Note that
T=1{: v,>1}, T={: v,=1} (4.3)
We turn first to Case I, which according to (3.2) is characterized by
m<|T|+ S{v: ieT} (4.4)
Using (3.9), we set
fo=FYP = Stv;, — m. (4.5)
Following (3.7), let ¢° be defined by ¢? = 1 for all i. Then by (2.3) and (4.2)
flesp) = X1 —py) = Yivi—m=f°

for all mixed strategies p for the inspector.
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Next, consider any mixed strategy p°® such thatp? =< v; for all i € T. Then, since p°® = 1 < v;
for alli €T, it follows that for all ¢,

fle,p®) = X1 (vi — pdc;
= 1@ -ph)=re (4.6)

Such mixed strategies p°® do exist, for if m = ¥ {vz i € T} they can be chosen withp? = 0 for all

i €T, while if
S i eT<m <|T| + 3 {vs: ieT},

then (4.4) assures the existence of some with p® = v, for alli e T.

The preceding material shows that (¢°,p°f°) give optimal strategies and the value for the game
with payoff function f, so that (c°p®F° give the corresponding information for the original game.
Moreover, the indicated optimal strategies are the only ones. To see this, note first that the
strictness of the inequality in (4.4) permits a choice of p° in (4.6) for whichp¢ < v; for all i € T, and
then equality will hold in (4.6) only for ¢ = ¢° (A separate but easy argument is needed if T is
empty.) Next, if p is any mixed strategy for which

I, ={i: pi>v,ieT}
is nonempty, then define ¢ by ¢; = 0 fori € I, and ¢; = 1 for all i ¢ N—I,. One obtains
flesp) = S{vi —pi: i eN-I}
= 21 —p) = X{wi —p): ieli}

=f° = S{wip): iel} >/,

and the existence of a ¢ with this property rules out the optimality of p.
Next we present the analysis for Case II, which according to (3.3) is characterized by

m=|+S{v: ieT}=TUE|+ S{vz ieU}. (4.7)
Using (3.12), we put
fo=S{v: ieT}—|T|. (4.8)
With ¢° defined by (3.11-3.13),
fleYp) = Y{wi—p): 1 eTh+ Y{1 —piei: i€k}
=S{v - 1): ieT}=p (4.9)

for all p. On the other hand, for p° satisfying (3.14), i.e.,

=] fori eT;p? = fori eT, (4.10)

we have

fle,p) = DY{wi —1: i eT}=f° (4.11)
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for all e. So (¢ p°f°) form an optimal solution. The existence of mixed strategies p° obeying (4.10)
is assured by (4.7).
Once again, there are no other optimal inspector strategies. To see this, note first that equality
holds in (4.9) only if
p;i=1 foralli eT,
which will therefore be assumed in the balance of this paragraph. If
Izz{i: pi<vi,i€T}
is nonempty then one can define ¢ by
& = 1l fori eT U L, c;=0 fori e T — I,
yielding
fle.p) =f°+ Y{wi—pi): ieh}>f
which shows that p is not optimal.
Next we inquire whether there are other optimal inspectee strategies; mixed strategies (0 < c;
< 1) are admitted in the discussion. Nite first that equality holds in (4.11) only if
@ = 1l foralli eT,
which is therefore assumed in the balance of this paragraph. Suppose that

K= 1{: ¢ >0, keU}

is nonempty; we will attempt to deduce from this that ¢ is not optimal. If strict inequality holds in
(4.7), one can choose p to satisfy (4.10) withp, > v, for all £ € K; thus

Sfle,p) = f° + Yk —pr)ew k e K} <f°

so that ¢ is not optimal. Now assume (4.7) holds with equality. If there exist distinct 4 € K and i € £
U U with ¢; < ¢, then choose any positive § with

8 < min {v;,1 — v}
and define p by
p;=1 forjeTUE — {i},
p;=v; forjeU — {i,k},

Pi=Ui—5,pk=Uk+5.
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Then p is a mixed strategy, and
fle,p) = f° + 8¢ci + (=8)cx <[5,

showing that ¢ is not optimal. The only remaining possibility is that equality holds in (4.7) and, for
some ¢ with 0 <c =1,

@5 = @ fori eU;c;=c fori eE. (4.12)
In this situation, for any p,
fle,p) = Y{wi —p): ieT}+ X{1 —p)e: i€k}
+ > {wi —pi): ieU}
=fo+ X{1—p)ieT}t+ X{1 —pJci: iek}
+c[Y{v: 1eU} = Y ieU}]
=f°+ {1 —py): teT}+cX{1—py): iek}
+cfm —|TUE) —(m — Y{pi: iteT UE}]
=fo+(1—-0c Y {1 —p): ielT}=/f",
showing that ¢ is indeed optimal.

One further technical question is whether the use of mixed strategies for the inspector is really
necessary. Might not the inspector have “unmixed” (or “pure”) strategies which are optimal? Such a
strategy p° besides obeying (2.3), would also satisfy

p2=0orl for all i € V. (4.12)

o

In Case II, we see from (4.10) that this would require all p? = 1, so that (2.3) would be satisfied only

in the uninteresting case m = n. For Case I, assuming no v; exactly equal to 1, (4.12) and the
condition p? < v; for all i € T imply that p¢ = 0 for all i € T, so that (2.3) can be satisfied if and only
if |T| = m, a condition which does not follow from the defining characteristic (4.4) of Case I. So
mixed strategies are indeed needed in Case 1I, and also in Case I when |T] < m.

5. Formulation and Results for Model 2
In what follows, the payoff function for the inspectee is as before in (2.4), namely
Fe,p) = X1 Vi — Ppile;. (5.1)

We now regard the inspector’s aim, however, as that of minimizing the total loss (e.g., to consumers)
as a result of cheating. The payoff function for the inspector is therefore taken initially to be

Gle,p) = — X1 Ve, (5.2)

rather than the previous —F(c,p).
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The solution concept typically employed for such nonzero-sum (and ‘“‘noncooperative”) games is
that of an equilibrium point (EP), namely a pair (¢%p? of strategies such that

F(c,p°® = F(e%p? for all e, (5.3)

G(e’p) = G(e®p°) for all p. (5.4)

Such a pair has the “stability” property that if both players adopt them, then neither has incentive
for a unilateral change in his strategy.

This approach is not helpful in the present situation, since any strategy p° for the inspector is
part of some EP, (c°p°. To show this, one need merely choose ¢° to maximize F(c,p?; then (5.3) is
obeyed, and since G(c,p) depends only on its first argument, (5.4) is also satisfied. Thus, the
formulation provides no guidance for the inspector.

Two methods for escaping this unsatisfactory state of affairs have been considered. One of
them, which involves abandonment of a strictly game-theoretic approach, is discussed in sections 7
and 8. The other (“Model 2”), to be treated in this section and the next one, introduces a slightly
different objective for the inspector, namely to minimize the total loss due to undetected cheating.
Thus (5.2) is replaced by

G(e,p) = — X1 vici(l — py). (5.5)

A rationale for this objective—reasonable, but in the writers’ opinion less than compelling—can be
given in terms of a scenario in which society’s response to cheating is so structured that the penalty
for a second offense is prohibitive to the inspectee. (Thus, P now represents the penalty for a first
(detected) offense.) For such a scenario, it is plausible that future cheating would occur precisely at
the sites of current undetected cheating, so that its extent is measured by (5.5).

We now proceed to describe the equilibrium points (e%p°) of the game with payoff functions
(5.1) and (5.5); the analysis supporting these results is given in section 6. The associated payoff
values, F° = F(e%p° and G° = G(e®%p?), will also be presented.

The devices may be assumed numbered so that

VizV,=...=V, (5.6)
The presence of ties among the Vs can make this numbering somewhat arbitrary, and will lead to
some complications (technical rather than substantive) in describing the solution of the model. In
addition to the sets
T={:V,>P}, T=1{:V,<P}
defined earlier, it is convenient to define the sets

Nm

1,2,..., m} NS,

{i: Vi=Va}
(5.7)
N

{i: Vi>Vuh Np= {2 Vi<Vu}

The three sets N, N, and N §, partition N: either or both of the first two might be empty, but N¢,
contains at least the member m.
The discussion of Model 2, like that of Model 1, splits into cases. First assume

Vi >P (Case I). (5.8
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As in Case I of Model 1, all equilibrium points (e¢%p? for this case involve cheating on all devices,
ie.,

cd =1 for all 7. (5.9

The strategies p° involve always inspecting those devices more tempting than the mth, and never
inspecting those less tempting, i.e.,

pt =1 fori eNy, py=0 forieN,, (5.10)
0<p; <l fori e NG, Y {p%ieN% =m — [N} (5.11)

Substituting (5.9—>5.11) into (5.1) and (5.5), we find that the inspectee’s payoff is

Fo= Ny ._ Pm, (5.12)
the same as for Case I of Model 1, and similarly the inspector’s payoff is
G'= —Vwin — |Nu| —m}+ S{V: ieNa}l (5.13)
Next, assume
.y (Case 1II). (5.14)
There are two subcases. If m is not the last member of N9,, i.e.,
[Nl + |N%| > m, (Case 11A) (5.15)

then the equilibrium points and payoff functions are given by the same formulas (5.9—5.13) as for

Case I. But if
IN&H| + NG| = m, (Case 1IB) (5.16)

then the equilibrium points require always cheating on both the tempting and untempting devices,
e.g.,

c? =1 fori e Ny, =T, (5.17)

&9 = 1 fori eN;, =U, (5.18)

together with a “floor” under the frequency of cheating on the other devices:

c? = VyalP fori e N, = E. (5.19)

The inspection policies are given by
ot =l forieN;, UNS =T U E, (5.20)

p2=20 forieN; = U. (5.21)
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The corresponding values of the payoff functions are
Fo= Y1V, - Pm, (5.22)
as before, and
G°=—S{V: ieNp} (5.23)

which in view of (5.16) “matches” with (5.13).
The remaining case is

Vi < P (Case III). (5.24)

If the condition
m=|TUE|+ Y¥i/P: ieU} (Case IIIA) (5.25)

holds, there is a family of equilibrium points given by

& = 1l forieT, (5.26)
0=ct=1 fori e E, (5.27)
cd =0 fori e U, (5.28)
pd=1 fori eT UE (5.29)
p? =V,/P fori eU. (5.30)

The associated payoff values are
Fo=%Y{: ieT} - P|T| (5.31)
G° = 0. (5.32)
A second and more complicated type of equilibrium point exists when

m=<|TUE|+ Y{Ji/P: ieU}. (Case IIIB). (5.33)

For its description, let

L={i: V,<V, <P}, (5.34)

so that N}, is partitioned as T U E U L and U as L U N% U N;. Furthermore, divide N;, into
blocks; a “‘block” is defined to be a maximal succession of integers i with a common V;-value. Let B,
denote the bth block, and V3§ its associated Vi-value; the blocks are numbered B, through By in
descending order of V}. It will also be convenient to regard N, as an initial block B,, so that}V} =
V. Because T U E U L does not contain m,

A=m—|TUE| - S¥/P: ieL}>0. (5.35)

Choose the smallest integer a for which
A = Y54 |BuVEIP; (5.36)
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by (5.33), such an o must exist. Also, let
A=A — Y%b |BV3/P, (5.37)
so that
0 <\ = |Bq|VE/P.
Next, choose c9, so that
ch =V&lVn if X\ < |Bo| VE/P, (5.38)
[V sinll Ve, € &% = el if A = |Bo| V&P, (5.39)

where in (5.39) we set V%, = 0 if o = B. Then an equilibrium point (¢°p?) is given by

cd=1 fori eT, (5.40)
cli=lo% VP fori e E, (5.41)

c? = chVal Vi forielL, (5.42)
SRTVY S i o

p? =1 fori eT U E, (5.45)
p?=V/P fori €L, (5.46)

p¢ =Vi/P for {ii : [i" iyi;h:()ﬁjl/é /‘;’ (5.47)
ps=V/P fori € Bo if N < |Bo|V/P, (5.49)

p? =10 fori e B, witha <b < g, (5.49)

S{p% ieB. = A (5.50)

The associated payoffs are given by

Fo=3{V: ieT} — PIT| + 3p=a|Bo|lVE — P\ = Vyy — Pm, (5.51)
G = ~[{Zo=alBofV 3 + {n —m — X pua|Bif} iV}l (5.52)

Note that in (5.52), the factor ¢, V,, in the last summand is equal to V% if A < |BJV%/P. But if
X = |Bo|V4IP, i)
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then ¢9 V, has as range of variation the interval (V%,;,/%) determined by (5.39), so that G° as given
by (5.52) has a corresponding range of variation. This illustrates the general theoretical possibility, in
a nonzero sum game, for different equilibrium points (i.e., “solutions™) to have different associated
payoff levels. The present model exhibits this phenomenon only for the particular “coincidence”
described by (5.53).

It should also be observed that Cases IIIA and IIIB may coexist, giving rise to different
equilibrium points. This occurs precisely when

m = |T U E|+ Y{V/P: ielU}, (5.54)
which in the context of Case IIIB implies that
a=8. A= |B4VuP, (5.55)
so that the above-mentioned nonuniqueness of G° occurs.

The general results presented above will now be illustrated using the same two special scenarios
employed for Model 1, namely the “equal-sized firms” case (all ¥; = V) and the “big firms, small
firms” scenario (V; = Vyfor 1 =i <ny, Vi=V,forn, <i <n, + ng=n, V, >V)).

EXAMPLE 1: Equal-Sized Firms. Here | Nj, U Ny|= 0 and |[N$| = n. Since n > m, comparison
with (5.16) shows that Case IIB is ruled out. If ¥ = P, so that Case I or Case IIA holds, then (5.12)
and (5.13) give

F° =V — Pm, G°= — Vin—m) af vV = P). (5.56)

Now suppose Case Il is in effect, i.e., ¥V < P. Then |T U E U L| = 0. By reference to (5.25), (5.31)
and (5.32), Case IIIA gives rise to

FP=G°=0 (if ¥ < P and Pm =V ). (5.57)

For Case IIIB, one has
a=pB=0, A=\=m, |Bo|VE/P = Vil P,

so that (5.51) and (5.52), together with (5.38) and (5.39), yield

F° =V, — Pm (if ¥ < P and Pm < V), (5.58)
G°=—Vin —m) (if ¥ < P and Pm < V), (5.59)
—Vin —-—m=G6°<0 (if V < P and Pm = V). (5.60)

The dependence of G° on P and m is summarized in figure 3; the dependence of F° is given by the
earlier figure 1. Note, in figure 3, that G° is not continuous across the hyperbola Pm = V,; as shown
by (5.60), it is not single-valued on this curve, and its range of variation at each point of the curve is
precisely the interval between its limits as the curve is approached from within each of the two
regions identified in the figure. In the lower region, G° does not depend on P; this can be interpreted
as a situation of “penalty saturation,” in which stiffer penalties yield no improvement unless
accompanied by greater inspection resources.

EXAMPLE 2: Big Firms, Little Firms. The situation here is more complicated. First suppose V
> V; = P. Then either Case I or Case II applies, so that by (5.12)
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m m=n

3

-G’ =V(n-m)

FIGURE 3. Undetected illicit activity (equal-sized firms).

Fo =V, — Pm if Vy >V, = P). (5.61)

If m < n,, thenV,, =V,

No| = nyand [V, | = ng Case I applies, and (5.13) yields
G = — Vit — Vem) (if ¥y >Vy=P and m < n,). (5.62)
If m > ny, thenV,, =V, [N5| = ny, and |V | = ng Case 1IB is ruled out, and (5.13) yields
G*= - V(n — m) (if Vy > Ve = P and m > n,). (5.63)
Next, suppose V;, = P > V,. If m < n,, then Case I or Case II holds, with V,, = ¥, NG| =
nyand |Nj| = ng formulas (5.61) and (5.62) also apply to this situation. If m > ny, then V,, = V; and
Case III holds, with |[T" U E| = ny, |L| = 0 and |U| = |[N%| = n, Case IlIA is characterized by
P(m — ny) = Vng, in which case (5.31) and (5.32) yield
F° =¥, — P)n,, G° =0 (Case IIIA). (5.64)

Case IlIB is characterized in the present context by Pm — n,) < Ving it hasa = B =0, A = \ =
m — n, and |Bo|VE/P = Ving/P, so that (5.51) yields

Fe =V, — Pm (Case I1IB) (5.65)
and (5.52) yields

G°= -V —m) if Plm — n,) < Vin, (Case IIIB), (5.66)
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—Vin —m=G°<0 if Pm — ny) = Vin, (Case IIIB). (5.67)

Finally, suppose P >V, > V;, so that Case III applies with [T U E| = 0. If m < n,, then |[L| =
0, [IN9,| = np, B = 1 and |By| = n, Case IIIA is characterized by Pm = V,,,, and by (5.31)-(5.32) it
yields F° = G° = 0. Case IIIB is characterized by Pm < V,,, and has A = m. There are two
subcases. First, if Pm < Vyn, then « = 0, A = m, and (5.51)-(5.52) yield F° = V,,, — Pm together
with

G° = — (Vl()l - me) (]f Pm < V,,nb),
= Vit = Vom) = G° = — Vi(n —m) (if Pm = Vyny).

Second, if Vyn, < Pm < Vi, then o = 1, A = m — Vyn,/P, and (5.51)-(5.52) yield F° = Vi, — Pm
together with

(,'o = — s(n - m) (lf Pm < Vlot)a

—Vin—-m=G°<0 (if Pm = V).

Still supposing P >V, > V,, now assume m > n,. Then |L| = n,, |[N%| = nyand « = 8 = 0.
Case IIIA is characterized by Pm = V,,, and as above yields F° = G° = 0. Case IIIB is
characterized by Pm = Vi, has A = X = m — Vyn,/P; (5.51)-(5.52) yield F° = V,,, — Pm together
with

G° = — I/s(n — m) (lf Pm < le)e
- I/;(n —m) < G°<0 (lfpm i V;nt)-

The dependence of F° upon P and m is the same as in Model 1, portrayed in the earlier figure 2.
The dependence of G° is summarized in figure 4. G° is continuous on the horizontal boundary
segment (of the line m = n;), but is neither continuous across nor single-valued along the three
hyperbolic boundary arcs. Note the presence of two distinct regions exhibiting penalty-saturation.
(See table 2.)
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Case |

Case ITA

Case IIIA Case IIB

Case IIIB

TABLE 2. Results for Model 2

Case Definition

Inspectee’s Strategy

Inspector’s Strategy Payoffs
Ve =P c?=1for alli p¢ = 1fori eN} .
p?=0forieNy F® =¥ — Pm

V=P
Vil + [N > m

V=P
Vol + NG| = m
Ve <P
m=|[TUE|+ N{FyP:
ieU}
Vo < B

m=|TUE| + N{ViP:

it e U}

c?=1foralli

ct=1fori eN',=T
c?=1forieN-,=U
c¢=VpulPforieNy =E

c?=1forieT
O0=cf{=<,1lforieFE
c?=0forielU

ct=1forieT
c? =cWVm/P fori e E

c) =ciVa{Piortviel

o o i eBywith0)<b <«
¢t = colmlVi for {i eBoif A = [BVE/P
i €Boif A < |BJJE/P

ol
Si s ion {ieBwitha<bsB

0<p?<1forieNy,
S{pt ieNs} = m - Vi

p?=1forieN}
p?=0fori eN,
0 <p?<1forieNy,

>{p: ieNg} =m — |Nt|

p?=1fori e NNUNL=TUE
p?=0forieN,=U

pt=1forieT UE
p?=V;/P fori eU

p=1forieT UE

pt =Vi/P fori eL
o iEBbwi[hOSb<a
p? = V;/P for i €eBoif A = |BJVE/P

p? < Vi/IP fori e Boif A < |BJVE/IP
p?=0fori e Bowitha <b=p

=G = Vnfn — [Ny = M} +
SV ieNa)

Fe=V, — Pm
~6° = Wadn = Wal - m} +
S{Ve ieNu}

F° =V — Pm
=G°=Y{V: ieNz}l

Foe=Y{V: ieT} - PIT|
o0

F =V = Pm

-G° = §b>u|Bu|VIT +
{n - m — :h>u\BDJ}C$an




—G°=V,°f—vbm Pm=Vbnb
=B & >
Ve Vp P

FIGURE 4. Undetected illicit activity (big firms, small firms).

6. Analysis for Model 2

The aim in this section is to prove the results cited in section 5, i.e., to determine the
equilibrium points (e%p? of the game with payoff functions

Fle,p) = X1V = Ppidcis  Gle,p) = — D1 Viei(1 = py). (6.1)
Mixed strategies for the inspectee (i.e., 0 < c¢; < 1) are permitted. The convention
NW=zblV=....=V, (6.2)
will remain in force, as will the definitions given in section 5 of the sets T, T, E, U, N,,
Ny, N%, and N ;, and L. Of the two conditions defining an equilibrium point, (5.3) is equivalent to
the pair of requirements
c? =1 if V; > Pp?, (6.3)

=0 if V; < Pp?, (6.4)

while satisfying (5.4) is equivalent to choosing p° so as to achieve
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max, > (Vic?)pi subject to (2.3). (6.5)

An immediate consequence of (6.3) is that

cf =1 forieT. (6.6)
Another preliminary observation is that
NGl + N2 = m, (6.7)

since N;, U N, contains V,,.

We begin with the situation

Ve > P (Case I). (6.8

Here N}, U N9, is a subset of T, so that (6.6) yields
@& = fori e Ni, U N9, (6.9)
and since N}, contains the |N | largest V;’s and [N | < m, it follows from (6.5) that
Y = fori e Nj,. (6.10)

Combining (6.7), (6.9) and (6.5), it follows that

S{p i eNQ} =m — |Nj (6.11)
9 =0 fori € Ny, (6.12)

By (6.3) and (6.12),
@ = 1l fori e Ny,. (6.13)

Conversely, any (e%p°® which satisfies (6.9-6.13) also satisfies (6.3) through (6.5), and so is an
equilibrium point. This completes the analysis of Case 1.
Next assume

Vip =P (Case II), (6.14)
so that N}, N9, N, coincide with T, E, U respectively. By (6.6),

@)= 1l fori e N}, (6.15)
so that (6.5) implies

ol =il fori e Nj,. (6.16)
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Define the set
Noyw={i: ieNp c} =1}

we note that fori e Ny — NSy, (6.3) implies 0 =P — Pp ie.,

pe=1 fori e NS, — N%,.
First assume that !
[N + |Ngu| > m (Case IIA).
Then (6.5) implies
p?=0 fori e NS, — N%,,
D= fori e N;,.

Comparison of (6.18) and (6.20) shows that N9, — N9, is empty, i.e.,
c? =1 fori e N9,
while (6.21) and (6.3) imply
c? = fori e N,
and (6.16) and (6.20) imply

S{p: T eNQ} =m — |N;.

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

Conversely, such a (¢%p?, which has the same structure as in Case I, satisfies (6.3-6.5) and so is an

equilibrium point. The defining condition (6.19) takes the form
IN&| + IN%| > m,

i.e., m is not the last member of N§,.
Next assume that

NG| + |Nou| = m (Case IIB).
Then (6.5) together with (6.18) imply
pe=1 for i € N§,.
From this and (6.16) it follows that
m = 31p? = |Ny| + [N,
and comparison with (6.7) shows that

INGl + [Nl = m

(6.25)

(6.26)

(6.27)

(6.28)

! The analysis which follows will show that this kind of correspondence coincides with Case IIA as defined in section 5 (5.15). The same situation will recur

in later subcases.
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(hence there is no overlap with Case IIA’s range) and that

p?=20 fori € Nqp. (6.29)

By (6.29) and (6.3)

cd="1 fori e N, (6.30)

From (6.5) it follows, in view of (6.27) and (6.29), that

Vie; = Vic; fori e N andj € Ny,

which by (6.28) and (6.30) is equivalent to

¢y = Va1l P for i € N§,. (6.31)

Conversely, if (6.28) holds, then any (ep9 satisfying (6.15-6.16), (6.27) and (6.29-6.31) obeys (6.3~
6.5) and so is an equilibrium point. This completes the analysis for Case 11.
We turn now to the situation

Vipn < P (Case III). (6.32)

By (6.5) and (6.6),

=l fori eT. (6.33)
Fori € E, if p? < 1 then (6.3) would imply c¢¢ = 1, which by (6.5) would imply p ¢ = 1; hence

p? =1 fori e E. (6.34)
According to (5.34), U has been partitioned as L. U N$ U N;,, where

L={i: Vo<V,<P}): (6.35)

Also, N}, is partitioned as T U E U L. Fori e L, if ¢ = 1 then (6.5) implies p¢ = 1, which by (6.4)
implies ¢ = 0. Hence

cf <1 fori e, (6.36)
which by (6.3) implies
p? = VP fori elL. (6.37)
For each of ¢°, let
M = max {Vic?: ieU}, (6.38)
S ={i: iel, Vet =M} (6.39)
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Then (6.34) and (6.5) imply
c? = M/P fori eE. (6.40)
If |S| =m — |T U E|, then (6.5) would imply p? = 1 for i €S, in which case (6.4) implies c? = 0 for

i €S, sothat M = 0 and S = U, which (since m < n) would contradict the supposition IS|=m —
IT U E|. Hence

T UE|+ S| >m. (6.41)

By (6.5) followed by (6.3),
p?=0 fori eU — S, (6.42)
c?=1 fori e U — S. (6.43)

It follows from (6.43) and the definition of M that
M >max {V;: ieU - S}; (6.44)
in particular, for each s € S, V; exceeds that maximum. An immediate consequence is that
L is contained in S. (6.45)
By (6.41), S cannot consist just of L, and then (6.44) implies

N, is contained in S. (6.46)

In particular m € S, so that
M = V,uch. (6.47)

At this point it is convenient to consider separately the situation

M =0, (Case II1A) (6.48)
or equivalently
c?=0 fori e U, (6.49)
which by (6.3) requires
p=V/P fori e U, (6.50)
implying
m=|T UE|+ Y{V/P: 1eU}. (6.51)

Conversely, under Case 111, if (6.51) holds, then there exist pairs (¢°,p° satisfying (6.6), (6.49), (6.33—
6.34) and (6.50); since any such pair obeys (6.3-6.5), it is an equilibrium point.
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From now on, assume
M >0 (Case IIIB). (6.52)

Then it follows from (6.45) that c¢ > 0 for i € L, so that (6.4) implies p¢ =< Vi/P, which together with
(6.37) yields

p? =V,/P fori e L. (6.53)

A similar argument using (6.46) yields

p? < VP fori € Ny,. (6.54)
Also, (6.45) implies
cd = V,colV; fori elL, (6.55)
while (6.46) gives
cd =chy for i € N§,. (6.56)
Combining (6.3) with (6.54) yields
p? =VylP fori e Ng, if ¢ < 1. (6.57)

Now partition N, into 3 blocks B,, as described following (5.34). Then by (6.44), S N N,
consists of the first « of these blocks, for some integer @ with 0 = « = B. For each block B in S,
{c% i €B,} consists of a single number ¢, and

cy =cSValVE forl =b = . (6.58)
Since ¢} = 1, (6.58) yields
Ve = coVm (6.59)
On the other hand, if « < 3, then (6.44) and (6.47) imply
ch >V, /P (if « < P). (6.60)
If ¢9 = 1, this implies « = 0, and requires
T UE|+ Y{Vi/lP: ie€L} + |[Ny|Vu/P =m. (6.61)
If ¢9 < 1, then (6.58) implies 0 < ¢§< 1 for 1 =b < «, and thus by (6.3) and (6.4)
pd =V§IP fori eByand 1 = b < . (6.62)
Since c* = 1, (6.4) yields

p? =V¥E/P fori e B (6.63)
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It follows from these results that
%0 |BolVs/P=zm — [T UE| - S{)/P: iel} = Y% |B |[Vs*/P. (6.64)

Equality in the second relation is equivalent to equality in (6.63); this situation corresponds in the
notation of (5.37) to A = |B/"&/P. If on the other hand X < |B,J%/P, then since

S{p¥: ieBd} =\ (6.65)

by virtue of (6.33-6.34), (6.42), (6.52), (6.57) and (6.60), it follows that p? < V%/P must hold for some
1 € By, and so by (6.3) we have ¢k = 1, which by (6.48) fixes the value of ¢$, at V%,

Finally, observe that (6.51) and (6.64) will hold simultaneously if and only if the former holds as
an equality while the latter’s second part holds as an equality with « = .

7. Formulation and Results for Model 3
Recall that section 5 originally set out to analyze the consequences of the payoff functions
Fle,p) = X1 Vi = Ppiles, (7.1
Gle,p) = — X1 ey (7.2)

for inspectee and inspector respectively, but that this was found unfruitful within the framework of
“equilibrium point” solutions to nonzero-sum games. The response in section 5 was to replace (7.2)
with an alternative function (5.5) representing the loss (e.g., to consumers) due to undetected
cheating (rather than all cheating). In this section we explore a different approach, in which (7.2) is
retained but the customary game-theoretic framework is altered.

Specifically, the critical assumption here is that no matter what strategy p is selected by the
inspector, the inspectee learns of it in advance (or can estimate it through experience), and so is able
to select a strategy ¢(p) which maximizes his payoff, i.e.,

Fle(p),p] = max, Fle,p). (7.3)

(In general p is a mixed strategy, so that the inspectee need not know exactly which devices will be
inspected but only the associated probabilities.) The inspector’s problem, therefore, is to choose p so
as to maximize the function

H(p) = Gle(p),pl- (7.4)

To discuss this approach further, it is convenient to make the further hypothesis that each
component of ¢(p) depends only on the corresponding component of p, so that we can write ci(p;)
rather than ¢(p). This hypothesis is reasonable per se (since the inspectee’s c¢;’s are not linked by
any constraints), and also is consistent with the consequences

ci(pi) =0 if p; > Vy/P, (7.5)
cipy) =1 if p; <Vi/P (7.6)
of (7.1) and (7.3).
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In terms of the set?

E(p) = {i: pi=Vi/P}, (7.7

we can identify a set of components of ¢(p), namely

{Ci(pi): i eE(p)}a

which are not determined by the criterion (7.3). That is, ¢(p) is not single-valued, and so the same is
true of the inspector’s objective function

Hp) = — S1Vici(py). (7.9)

Some further assumption is needed to resolve this ambiguity. For example, since our critical
assumption (that the inspectee knows p) is “pessimistic” from the inspector’s viewpoint, one might
wish to be consistently pessimistic and thus to replace the right-hand side of (7.4) by its minimum
over all ¢(p) consistent with (7.3). This is equivalent to setting

cip) =1 all i € E(p).

At the opposite extreme, one might want to introduce a countervailing bias in the optimistic
direction, and so would set

cipy) =0 all i € E(p). (7.9)
This is the choice that will for the present be made. It involves a notion of “no cheating without a
positive expectation of gain,” which is not implausible but certainly involves appeal to considerations
that are external to the model (and that, in particular, go beyond the penalty P and its deterrent
effect). After the consequences of hypothesis (7.9) have been analyzed, we will consider the more
general situation in which this assumption is not imposed.
Retaining the notation
th: E ,llVis
define
VI = S iel)
for subsets I of N, and set

I(p) = {i: p;=V/P). (7.10)

Then H(p) depends on p only via I(p), since by (7.5), (7.6), (7.8) and (7.9),

Il

Hip) = - X{V: i eN - Ip)} (7.11)

- Vlul +V [I(P)]

2 The following notation should not be confused with the usage of symbol “E™" in (3.10) or with the expected value function.
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Note that I(p) corresponds to the set of devices-on which cheating will not occur, according to
(7.5) and (7.9). From (7.11) it follows that the inspector’s problem can be written

choose p to maximize V[I(p)]. (7.12)

In this context, it is natural to ask which subsets I of N can arise in the form I(p) for some p. i.e.,
as the “non-cheating” set for some strategy of the inspector. As will be shown in section 8, a set of
conditions on a subset I which are both necessary and sufficient that /=I(p) for some p, are

V) < Pm, (7.13)
IcT=N-T, (7.14)
Pm —|I|—|T)) <V(N —1-T). (7.15)

For a subset I of N which obeys these three conditions, there may be many choices of p for which
I(p) = I. If |I| + |T| < m, one such p is given by

p;=1 fori el UT
(7.16)
pi=Wm —|I| = |TDWVIN -1 —-T) forieN—-1-T.
If |I| =m < |I| + |T|, then such a p is given by
Dy =1 fori e,
pi=[m — |[I|J|T] fori eT, (7.17)
pi=20 fori eN -1 —T.
If |[I| > m then such a p is given by
pi =V/P + (1 = VJ/P)[Pm — V(DV[P|I| — V(I)] fori e, (7.18)
pi=0 fort e N — 1. (7.19)

(When P|I| — V() = 0 then V; = P for all ¢ € I and we interpret (7.18) as p; = 1.) This will be
proved in section 8.
The inspector’s problem can now be rephrased as that of choosing a subset I of N, subject to

(7.13) through (7.15), to

maximize V(I). (7.20)
When such an I has been found, an optimal p can be calculated through (7.16), (7.17) or (7.18-7.19).
For the maximization problem, (7.15) and (7.16) are, in fact, unnecessary, that is, if / maximizes V()
subject to (7.13) and (7.14) then |I| + |T| = m, so that (7.16) does not arise, and [ satisfies (7.15).

For a proof, suppose that |I| + |T| < m. Since |T| + |T| =n >m,it follows that I is a proper
subset of T. Letj e T, j ¢ 1, and set

J =1L
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Since |I| < [I| + |T| < m, we have |[I| =m — 1 and so
(JJ=|J|+|T| = +|T| +1=m.

Clearly J satisfies (7.13) and (7.14) and the left-hand side of (7.15) is nonpositive. The left-hand side
of (7.15) is equal to zero only when |/| + |T| = m and, in this case, J is a proper subset of T, so
that the right-hand side of (7.15) is positive. Hence J satisfies (7.15) as well. This contradicts the
assumption that I maximizes V(I) subject to (7.13—7.15).

For yet another formulation of the inspector’s problem, introduce a vector x = (xy, Xa, . . . , X,)
of discrete variables

o 1fori el
i |oforieN — I

Then the problem is to choose x to

n

maximize 2 Vx (7.21)
T
subject to the analogs of (7.13) and (7.14):
N1 Va; < Pm, (7.22)
x5 =0 for i€T. (7.23)

Problem (7.21)-(7.23) cannot in general be solved in closed form. As a (binary) integer program,
it can (if n is not too large) be solved by any of the methods developed for such problems. More
specifically, it is a “knapsack problem,” for which special algorithms are available.? Its peculiarity as
a knapsack problem, namely the presence of the same coefficients (V;) in both (7.21) and (7.22),
suggest the possibility of more efficient “tailored”” methods, but this will not be pursued here.

EXAMPLE 1: Equal-Sized Firms. As before, we assume in this scenario that all V; = V. If P <
V, then T is all of N, so that (7.14) implies I is empty. Thus (7.17) applies, giving

pi =min for all ,

and the associated payoffs are
F° =V, — Pm, (7.24)
G° = — Vi (7.25)

This case corresponds to weak social sanctions, resulting in cheating on every device.
If P =V, then T is empty and the problem is that of choosing I to maximize |/| subject to

| < Pm/V. (7.26)

To describe the solution in this case, let & be the largest integer not exceeding either Pm/V or n, and
let I be any subset of N with [I| = k. Since n > m and P =V, it follows that & = m, so (7.18-7.19)

? See, e.g., A.V. Cabot, “An Enumeration Algorithm for Knapsack Problems,” Operations Research 18 (1970), 306-311.
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applies to yield
p; = mlk fori el,

p;i=0 fort e N — I.

The associated inspectee strategy is

c;=0 fori el,
c; =1 fori e N — I,
and the resultant payoffs are
Fo=—-G"=Vin —k) =V —Vk. (7.27)

See figure 5 for a depiction of the payoffs a functions of P and m. F° is continuous along the
line P = V, whereas G° has a discontinuity across that line. To the right of this line, F° and G° are
both discontinuous across each hyperbola Pm = tV for integers t < n, since the integer parameter k&
changes value there.

m &
m=n
n ¢ —memecccc s crc e cc e - --
F® = Vy g4~ Pm ° i
tat | FF=-G =0
0 Pm=Vf t
=G = Viot 3
Fo'—'-G°=V1-of‘Vk

<

ol 4

FIGURE 5. Net illicit gain (F°) and total illicit-activity level (—G).

(Equal-sized firms) (k is greatest integer < Pm/V).

EXAMPLE 2: Big Firms, Little Firms. As before, N is partitioned into nonempty subsets, N =
B U S, with

Vi=V1, fori e B
Vi =V, fori e S,

and ¥, > V. The notations n,, = |B| and n, = |S| will again be used.
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IfVy,>V,>P then T is all of N, so that (7.14) implies I is empty (hence all ¢; = 1). Thus

(7.17) applies, giving
pi = min fori e V.

(7.28)

The corresponding payoffs are
G = — I/tol-

FO = I/lnl - Pm,
IfV,>P =V, then T = B and, by (7.6), ¢; = 1 for all i € B. Thus by (7.14), I must be a

subset of S, and the inspector’s problem is to choose such a subset to maximize |/|, subject to
(7.29)

1| = PmlV,

Two cases arise:
In case ng < m, we take I = S. This is clearly the largest possible subset of S, and it satisfies

= m and V; = P. From (7.17)

(7.29) since ng <
for alli € S,

pi=1

pi = (m —nyin, for all i € B,

and by (7.5) and (7.9), ¢; = 0 for all i € S. The resultant payoffs are
(7.30)

Fe = — ;OIVbnb.

In the remaining case m < ng, let k& be the largest integer not exceeding either Pm/V; or n,, and
let I be any subset of S with || = k. (Thus & = ngand I = S when Pm = V;n,.) Since P = ¥, (and

hence Pm/Vy = m), and ng > m, it follows that £ = m, and so (7.18-7.19) applies to yield

p; = mlk fori e 1,

pi=0 fori e N—I.

Since m/k = V/P, it then follows from (7.5) and (7.9) that ¢; = 0 for i € I, while by (7.6), ¢; = 1 for

t €S — I. The corresponding payoffs are
(7.31)

FO:_COZVIM—V;I{-

Finally, if P = V,, > V,, then T is empty. Let x, = |l N B and x; = |[I N S|. The inspector’s

problem is to choose integers x;, and x,, which
(7.32)

maximize z = Vyx, + Ve,

(7.33)

subject to
0=x, <ng

O = Xp = ng,
Vexy + Vixy < Pm. (7.34)
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If Pm = V,, then the optimal / is all of N (i.e., x, = n, and x;, = ny), so that all ¢; = 0, implying F°
= G° = 0, while (7.18) gives, for all i,

pi=ViP + (1 = Vi/P)[(Pm — Vie(Pn — Vie)].

Now assume Pm < Vi, No closed-form answer to (7.32-7.34) seems possible, but trial-and-
error solution methods should suffice. The maximum value z,,,, in (7.32) can be estimated by

Pm — Vb <Zpax = Pm; (7.35)

here the right-hand inequality follows from (7.34), while the left-hand one follows by observing that if
z < Pm — V), then either x, can be increased by 1 (thus increasing z by V}) without violating (7.33) or
(7.34), or else x, = n, so that (since z = Pm < V,,) x4 < ng, implying x, can be increased by 1
without violating the constraints. (If Pm < Vn,, similar logic shows the left-hand side of (7.35) can
be sharpened—i.e., increased—to Pm — V,.) Furthermore, any optimal solution must satisfy x, + x;
= m, since otherwise

Zmax = Voxp + Vs = Volxy +x) = Vym — 1) = Pm — 1) = Pm — P < Pm -V,

contradicting (7.35). Thus |I| = m, so that (7.18-7.19) applies to yield

pi =Vi/P + (1 = Vi/P) [Pm — zyax]/ [Py + x5) — Zmax] (7.36)
for I €l, and p; = 0 otherwise. Thus ¢; = 0 for i el and ¢; = 1 otherwise, and the associated
payoffs are

9= = (Y = Vb(nb - X[)) ar Vs(ns - xs) = Vlul — Zmax» (7~37)

so that (7.35) yields the estimates
Viie — Pm <F°= —G° <V — Pm +V, (7.38)

(In accordance with a parenthetical remark above, the term ¥}, in (7.38) can be reduced to V; if Pm
= Ving.)

Figure 6 shows the payoffs F° and G° as functions of P and m. This concludes the discussion of
Example 2 in the context of Model 3.

It remains to discuss the consequences of dropping assumption (7.9). For this purpose, we
introduce the numbers

cf = c;(ViP), (7.39)
which necessarily satisfy 0 = ¢§ < 1, and also set
N,={ieN: cf >0} (7.40)

In practice, it is unlikely that the c¢}’s (i.e., the probabilities of cheating at the various devices in a
context of zero expected gain) would be known accurately. They might be assigned nominal high,
medium or low values (such as 0.90, 0.50, and 0.10) in accordance with the insight or degree of
optimism applicable to a specific application. They might well be assumed equal over all devices, or
over each group of devices in a classification into a very few groups; these common values could
then be varied in a parametric sensitivity analysis. At any rate, these numbers are treated as
“given” in what follows.
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m=n

=

"

FO= D F°= -G°=Vbnb

o °= — 0
—G" = Viot F €

Vs Vb

FIGURE 6. Net illicit gain (F°) and total illicit-activity level (—G°).
(Big firms. small firms) (& is greatest integer = Pm/Vy (D =V, — Pm).
In addition to the set E(p) defined in (7.7), it is convenient to define further sets
Up) = {i: p;>V,/P}, (7.41)
Lp) = {i: P, <V,;/P}, (7.42)

so that M(p), E(p) and L(p) form a partition of N. By (7.5) and (7.6),

¢;=0 for i € M(p),
@y = |l fori e L(p). (7.43)
while by (7.39)
ci = cf fori e E(p). (7.44)
It follows that
—H(p) = Y {Vict: i eEp) N N} + V[Lp). (7.45)

The members of the set E(p) M N, constitute the “violations” of the previous assumption (7.9).
At this point, we temporarily restrict attention to the special case in which the set £ of (3.10) is
empty, ie., no Vi is exactly equal to P. Then for i € E(p), we have pi < 1. In this case, as will be
shown in section 8, such violations cannot occur for an optimal p unless the two conditions

M(p) is empty, (7.46)
pi=0 for all i € L(p) (7.47)
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both hold. If they do hold, then
m = Yip;i= XY{pi: ieE(p)}
= Y{Vi/P: ieE(p)} =V[EP)]P.
Thus violations of (7.9) can only occur for an optimal p if the problem’s data present the
“coincidence” that some subset of the V;’s, specifically {V;: i € E(p)}, sums exactly to Pm. In all
other cases, the assumption (7.9) does not alter the problem of finding an optimal p.
To describe how the exceptional cases just defined can be treated (and identified), define an
inspector’s strategy p to be exceptional if it satisfies (7.46) and (7.47), which as already seen, implies
VIE(p)] = Pm. (7.48)

Since i € E(p) implies Vi/P = p; < 1, it also follows that

Ep CcT=N-T. (7.49)

Conversely, if E* is any subset of N such that

V(E*) = Pm, E*CT, (7.50)

then E* = E(p) for one (in fact, precisely one) exceptional p, namely the one defined by p; = Vi/P
for i € E* and all other p; = 0. For exceptional p’s, (7.45) becomes

—H(p) =Y Vick*: i€eEp} +V[n—Ep)]

= > (Vie*: ieE(p)} + VW) - V[E(p)]

E {I/;'Ci*: 1} EE(p)} it l/lnl - Pms

so that the problem of selecting a “best” exceptional p is equivalent to that of choosing a subset E*
of N to

minimize Y {Vic*: i e E*} (7.51)
subject to (7.50). This can be written as a binary integer program in terms of variables

{lifieE*,
Yi=

0 otherwise,

namely
minimize Y { Vic*y; (7.52)
subject to
Y 1 Vyi = Pm, (7.53)
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As noted already, the preceding analysis leads (in particular) to those optimal p’s which exhibit
violations, i.e., for which E(p) M N, is nonempty. But it may be that no optimal p is of this type,
and in any case the restriction to this type may unduly limit the variety of alternate optima found.
Therefore, still assuming that E is empty, we consider how to find optimal p which are violation-
free.

For any such p, the first summand on the right side of (7.45) is zero, and since L(p) and I(p)
are complementary subsets of N, the problem becomes that of choosing violation-free p to maximize
V[I(p)]. This leads, as below (7.12), to the problem of choosing a subset I of N so as to maximize
V() subject to (7.13) through (7.15). As noted below (7.20), (7.15) is superfluous for this purpose and
(7.16) does not arise.

Suppose that |[I| = m < |I| + |T|. Then, by (7.17), no i €1 can lie in E(p). Also,no i € T can lie
in E(p) since p; = 1 is required. If some i e N — 1 — T lay in E(p) then }; = 0, since p; = 0 by
(7.17). Thus p is violation-free.

Next, suppose such an optimizing / satisfies |I| > m. Since the emptiness of E implies 1 — Vi/P
# 0, the p given by (7.18-7.19) has E(p) empty and hence is violation-free, except if V(I) = Pm
(i.e., if equality holds in (7.13)). So if ¥(I) < Pm, then a comparison of H(p) as given by (7.11) with
the “exceptional-strategy maximum” of H will identify the optimum.

Finally, suppose the maximum value of V() is Pm. (A higher value is forbidden by (7.13).) For
any I achieving this value, and any p for which I(p) = I, we have (since V; = Pp; for all i € I(p))

Vip) = SV i elip)}
(7.55)
=P S{p: ielp} =P Sip, =Pn,

]

and since the end terms in (7.55) are equal, equality must hold throughout, implying that p is given

by

p; =Vi/P fori el, (7.56)

p;i=0 fori e N — 1. (7.57)

This p is exceptional, and will exhibit violations unless I M N, is empty (for example, violations will
occur if all ¢f > 0). If I N N, is nonempty for all I obeying (7.13-7.15) and yielding V(I) = Pm,
then finding a best violation-free p is not constrained by sharpening (7.13) to

Vi) < Pm. (7.13")

In this case, for any / maximizing V(I), it follows as before that the p given by (7.16), (7.17) or (7.18-
7.19) is violation-free and hence is a best violation-free strategy for the inspector.

In the context of the last paragraph, it is necessary to check whether the constraint (7.15) can
still be omitted in maximizing ¥(I). If Pm < V(T) then the justifying argument given below (7.20)
remains valid. The same is true when Pm = V(T), except if ¥(T) = V(U) = Pm. In this case (7.13)
will be replaced by (7.13') and the solutions will be all sets I = T — {j}, where j is such that }; =
min {V;: i eT}. Since Pm = V(T), (7.15) is equivalent to V(I) < P|I| + P|T|, which is true when |/|
# 0 (since I C T) and is also true when |I] = 0 (since |T| > 0).

ExAMPLE 1': Equal-Sized Firms. Here we illustrate the preceding material. The scenario (all V;
= V) treated in Example 1 of this section is retained. However, the assumption (7.9) is no longer
retained. It is assumed that £ is empty, i.e., ¥ # P. “Violations” of (7.9) can occur only if Pm = kV
for some integer £ with & = n. When no such k exists, the analysis of Example 1 remains valid.

For the present example, we therefore assume that Pm = kV where k is an integer with k < n.
It is also necessary to specify the numbers ¢ of (7.39). Without loss of generality, the devices may
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be supposed numbered so that

* * *
O0=c*=c*=...=c¢c,

=1 (7.58)

If P<V,then T is all of N, so (7.54) implies that E* is empty. Thus no exceptions to (7.9)
arise, so that the analysis in Example 1 is applicable.

Now suppose P > V. First a best exceptional strategy, p® will be determined. Since T is
empty, (7.54) is vacuous. Since Pm/V = k, problem (7.52-7.53) becomes that of choosing a subset
E* of N to minimize Y {c¥: i e E*} subject to |E*| = k. Clearly a solution is given by E* = {1,2,
. . ., k}, and by the remark following (7.50), p” is given by

pE=VIP fori e E*, pf = 0 otherwise.

Use of the formula preceding (7.51) gives

H(Pi) = - Knl + Pﬂl - V Ell‘ C>ik- {759)

Now a best violation-free strategy, p*, will be determined. The problem of maximizing V(I),
subject to (7.13-7.14), has as solutions all subsets I of N with |I| = &, implying V(I) = kV' = Pm.
There are two subcases. If I can be chosen disjoint from N, which is true if and only if ¢ = 0 in
(7.58), then in particular I/ can be taken as the set E* given above; here pF is violation-free, can be
taken as pF, and so is optimal. But if ¢ > 0, then (7.13) must be replaced by (7.13") in the
maximization of ¥ (I). This problem has as solution any subset I of N with |[I| = k — 1 (note that
P >V and Pm = kV imply k > m = 1), in particular I = {1,2, . . ., k —1}, yielding

pf=mlk — 1) fori e 1, pf = 0 otherwise.

Equation (7.11) yields

Hp") = Vi +Vk = 1) = = Vi + Pm = V. (7.60)

When ¢ > 0, (7.59) and (7.60) must be compared to determine the optimum. If Y4 ef = 1,
then H(p®) <= H(p") and so p* is optimal. If Y§ ¥ =< 1, then H(pf) = H(p") and p” is optimal.
This concludes the discussion of Example 1'.

To complete this discussion of Model 3, we must consider the consequences of removing the
restriction, introduced shortly below (7.45), that E is empty. Denote by P* the problem of choosing
an inspector’s strategy p to minimize the expression (7.45). For each integer & in the range 0 < k <
min {|E|, m}, let P, be the problem obtained from P* by adjoining the constraints

pi=1 for exactly £ members ¢ € E. (7.61)

If p* denotes an optimal solution to P, and K is such that

H(p®) = max {H(p*): 0 <k =< min (|E|, m)}, (7.62)

then clearly p¥ is an optimal solution to P*. Thus it suffices to be able to solve the problems P,.

For each £, let £, be a subset of E such that |E| = k and Y {c¢¥: [ €E,} is minimum. In other
words, this sum consists of the & smallest members of {¢¥: i€ E}; ties can be broken arbitrarily. It
will be shown in section 8 that P, has an optimal solution for which
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D= 1 for i GEk, (7.()3)

pi=max {0,m —k —(n — |E

)}/(|E| — k) fori e E — Ey. (7.64)

Thus the analysis of P, can be confined to such strategies. Because m < n, (7.64) gives ¢ € L(p), and
50 (7.45) yields

~Hp) = S{Vief: i eEw) N, —E} + Vilp) - E]
(7.65)
+ P[Y{ct: ieEy} + |E — Egl.

Therefore the problem P, becomes that of choosing the nonnegative quantities {p;:; i e N — E},

which by (7.63) and (7.64) must sum to min {m — k, n — |E|}, so as to minimize the sum of the first
two summands in (7.65). This problem, however, is of the type treated earlier (no V; = P), with N
replaced by N — E and m by min {m — k, n — |[E|}, and in that sense? can be regarded as “already

solved.”
It will also be shown in section 8 that the range of k&, for problems P, to be treated as indicated
above, can be contracted. To define the reduced range, let U = {i: V; < P} as before, and set

E

min {

p ,m — | = V(U)/P},

a

max {—1, m — V(U)/P}.

Let r be the greatest integer not exceeding p, and s the smallest integer greater than o. If s = min
{|E

min {

. m}, set [ equal to this minimum; otherwise, set [ equal to the greatest integer between s and
E|, m} inclusive for which Y {ct: i eE, — E;} < 1, with tie-breakings in the choices of £, —
E performed so that the latter is a subset of the former. Then the problems P; need be solved only
over the range

max {0, r} =k = [. (7.66)

No loss of alternative optima is incurred by imposing the upper limit; the same is true of the lower
limit, when {c¥: i € E'} has as many as r members < 1.

ExampLE 1”1 Equal-Sized Firms. We can now complete the discussion of this scenario, for
Model 3 without assumption (7.9), by covering the case excluded in the previous Example 1': that of
all V; = P. As before, we assume the numbering is such that

* * *
0=ci =cj = =cy =1,

and can therefore take E;, = {1, 2, . . ., k}. Since £ = N, the first two terms on the right-hand side
of (7.65) are zero, yielding

Hp) = — P[Ykct + (n — k)]
as the optimal value (call it H,) for problem P,. Because
Hyy — Hy = P(1 = cfyy) =0,

the value K in (7.62) can be taken here to be K = m. Thus an optimal strategy for the inspector is

* Except for the possibility of equality in min (m —k,n — |E|) =m’' =n’ = n — |E|, when the solution of the reduced problem is trivial.
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given, by (7.63) and (7.64), as

pi=1 forl =i =m,
pi=0 form <i <n,

and the optimum inspector’s payoff is
Hm=_P[>:;nCT +(n—m)]= —I/I<)I+Pm _VX;IIC;#
consistent with the result (7.59) for Example 1'.
In order to illustrate the various types of optimal strategies which can occur, we will close this
section with a numerical example.

EXAMPLE 3: Letn =5, m =2, P =1, and

V1:V2=1,V3=O.3,V4=VE,=O.5.

Thus T is empty, £ = {1,2}, and V(U) = 1.3. Also, p = —0.3 and r = —1, so that the lower limit in
(7.66) does not ease the analysis. Without loss of generality, we can assume c¢¥ < ¢} and ¢% = c¥.
We have ¢ = 0.7 and s = 1, so that if ¢§ = 1 then [ = 1 and so (7.66) would excuse us from

analyzing problem P,. The problems P, (¢ = 0,1,2) will be considered separately.
For P, we have E, = {1,2}. By (7.63),

P1=p: =1,

and, in the reduction of P, to devices {Ds, D,, D}, we have n’ = 3 and m’ = 0. Clearly this has the
sole solution

P3 =Ps=p5; = 0.
Combining these, we get the unique optimal solution to P,. By (7.65),
— Hy, = 1.3 +cf + c3. (7.67)

For P, we can take E; = {1}. By (7.63-7.64),

and, in the reduction of P; to {D3, D,, D5} we have n’ = 3 and m’ = 1. According to (7.51) through
(7.54), finding a best exceptional strategy p® for this reduced problem is equivalent to finding {ys,
¥4 ¥s}. each either O or 1, to
minimize 0.3 c¢¥ y3 + 0.5¢f y4 + 0.5¢¥ y5
subject to
0.3 ys + 0.5 Wa ar 0.5 Vi = I
The only solution of the constraint in (0,1)-valued variables is y; = 0, 4 = y5 = 1, yielding
p§ =0, pf=p§=102,
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and corresponding via (7.65) to an H-value given by
— HE =13 4+ c¥F +0.5c¢f +0.5ck. (7.68)

According to (7.21) through (7.23) finding a best violation-free strategy p for the reduced problem
begins by finding {x3, x4, x5}, all 0 or 1, to

maximize 0.3x3 + 0.5x4 + 0.5x5

subject to

0.3x5 + 0.5x4 + 0.5x5 < 1. (7.69)

Since the maximum achieves equality in (7.69), if ¢ > 0 then (7.13) is to be replaced by (7.13'), i.e.,
(7.69) is to be replaced by

0.3x3 + 0.5x4 + 0.525 < 1.

This yields alternate solutions I = {3,4} and I = {3,5}; the first of them gives, by (7.18-7.19),
pi=5/12, pt=7/12, pt=0.

By (7.65),

— HF = 1.5 + c*. (7.70)

Comparison of (7.68) and (7.69) yields

Ht

max {HY, H{} if e + c¥ = 0.41

HY

Il

max {HY, H{} if ¢k + ¢ = 0.41.
Finally, corresponding to problem P, we have the empty set E,. By (7.64),
p1=p2 = 0.
The reduction of Py to {Ds, Dy, D5} has n’ = 3 and m’ = 2. Since no subset of {Vs, V,, V;5} sums to

Pm', we need only find the best violation-free strategy for this reduced problem. This leads to [ =
{3, 4, 5}, and by (7.18-7.19),

ps = 10/17, Ps =ps = 12/17.
By (7.65),
—H, = 2. (7.71)
The maximum value H . of H, corresponding to the optimal inspector’s strategy, is given by

—Hmax = min {_H2’ —H{:’ _HI{7 —HO}
(7.72)

min {1.3 + ¢f + ¢, 1.3 + ¢¥ + 0.5(ck+c¥), 1.5 + ¥, 2}.
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Note that the value of c¥ is irrelevant. In table 3, it is shown that each of the four possible optimal
strategies described above, and correspondingly each of the four candidate expressions for the
minimum in (7.72), can yield the optimum for some choices of {c%, c%, c*, c¢*%}. In each row of the
table, the optimal value of H is marked with an asterisk.

TABLE 3. Alternative forms of the optimum for Example 3

Problem P, Problem P, Problem P,
p1=p2 =1 pi =1 p2 =0 p1=p2 =0
. . . 1 o o ) ps = 10/17,
ps=ps=p; =0 |p§f=0pf= >§:§ p§ =5/12,pf = 112, pf =0 | /= p. = 1217
ct=cf =01 —1.5% =28 -1.6 —3
& =@ = 09
@i = L1, @y = 0.9, -2 —1.5% — 1.6 =0
e =@ = 01
c¥=0.1,¢ =0.9, =Dod) —2.3 —1.6* =
¢k =c¥=09
@ = @F = @ -3.1 -3.1 -2.4 —2%
=c¥ =09

8. \Verifications for Model 3
In this section we present proofs of several assertions made during the analysis of Model 3 in
section 7.
For the first of these, recall from (7.10) the definition

Ip) = {i: p;=V,/P}. (8.1

We are to show that a subset I of N has the form I(p), for at least one p, if and only if / satisfies the
three conditions

Vi) = Pm, (8.2)
ICT=N-T, (8.3)
Pm —|I| - |T))<V(N -1 -T). (8.4)
For the proof of sufficiency, suppose I obeys (8.2-8.4). If |I| + |T| < m then, following (7.16),
set
pi=1, fori e [UT, (8.5)
pi=m —|I| = |TPI/VN -1-T) fori e N -1 -T (8.6)

Since m < n and all ¥; > 0, the denominator in (8.6) is strictly positive. It is clear that all p; = 0,
and it follows from (8.4) and (8.6) that p; < 1 fori e N — I — T, so that all p; = 1. From (8.6) we
have

S{pi ieN—-I-T}=m —|I| - |T|,
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so that N % p; = m. Thus (8.5-8.6) indeed define a proper p. It follows from (8.3) and (8.5) that i € /
implies i € I(p). It follows from (8.6) and (8.4) that i e N — I implies i e N — I(p). So I = I(p), as
desired.

If |I| = m < |I| + |T|, then following (7.17), set

oy =1 fori e l, (8.7)
pi=I[m — |I]I/|T] fori eT, (8.8)
p; =0 fori e N -1 -T. (8.9

The denominator of (8.8) can be nonpositive only when 7" is empty. Clearly 0 < p; = 1 for all i.
Also, N1 p; = m. Thus, (8.7-8.9) define a proper p. Clearly (8.7) implies that i € I(p) for all i € I
and, if i € N — I, then (8.8-8.9) imply that i e N — I(p). So I = I(p), as desired.

If |[I| > m then, following (7.18-7.19), set

pi =Vi/P + (1 = VJ/P) [Pm — VID]/[P|I| = V)] fori e 1, (8.10)

pi= () “()I‘l‘ € /\( = 1 (81])

In view of (8.2), the denominator of (8.10) could be nonpositive only if P|I| = Pm, contradicting |/|
> m. It follows, using (8.10), (8.2), and (8.3), that all p; = 0. Using |I| > m, it follows from (8.10)
that p; = 1 for i € I, and thus for all i. Also

Nip,=VI)/P + [|I| = VI)/PIPm — VD[P — V)]
= V)P + (1/P)[Pm — V(I)] = m.

Thus (8.10-8.11) define a proper p. Clearly (8.11) implies that i e N — I(p) for all i e N = I. And if
i €I, then (8.10) together with the previous reasoning, implies that p; = Vi/P, assuring i € I(p). Thus
again I = I(p), as desired.

For the necessity proof, we show that each set I(p) satisfies (8.2-8.4). First,

Vilip)]l = Y {Vi: ielip)} N {Ppi: tellp)}

=
=P Yip;=Pm,

verifying (8.2). Second, by (8.1), ¢ € I(p) implies 1 = V;/P, verifying (8.3). Third,

Nipe i eT —Ip}+ X {ps ielp}+ X {ps (€T}

m = Ellll)i

S (Vyp: ieT —Ip} + |[Ip) + |T]

I\

(VT = VIl(pI}/P + |L(p)| + |T],

with strict inequality when 7 — I(p) is nonempty. This verifies (8.4) unless I(p) = T in which case
(8.4) follows from n > m.

Next suppose p is an optimal strategy for the inspector, that £ = {i: V; = P} is empty, and
that

Ep) "N, ={i: p;=VJ/P and ¢ > 0} (8.12)
is nonempty. We are to prove that

M(p) = {j: p; > V;P} is empty. (8.13)
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and that
pr < V,/P implies p, = 0. (8.14)

For the proof, first observe that p; < 1 (i.e., ¥; < P) for each i e E(p) N N,. If there existed
J € M(p), then one could choose a number 8 with

0 <6 <min {1 - V/P, p; — VyP}
and then define an inspector’s strategy q by
gi=pi+398 q;=p;j—95 q,=pfort #ij.
Since M(q) = M(p) u {i}, E(q) = E(p) — {i} and L(q) = L(p), it follows from (7.45) that
— H(g) = — H(p) — Vie} < — H(p),

contradicting the optimality of p. Hence (8.10) holds. If there existed an index k for which (8.14) was
contradicted, i.e., k € L(p) and p; > 0, then one could choose a number 7 with

0 <mn<min {1 = Vy/P, pi}
and then define an inspector’s strategy r by

ri=pi+m re=pr—m r.=pdort ¥i,k.

As above, this would lead to a contradiction of the optimality of p, so (8.14) must hold.

It remains to verify the assertions made in the final part of section 7, that following the
discussion of Example 1’. Recall that P* is the problem of choosing an inspector’s strategy p to
minimize

~H(p) = > {VicF: ieE(p)} + V[L(p)]
= > {Vick: ieE(p) —E} +V[L(p —E] (8.15)

+ P[Y {c}: ieE(p) NE} + |L(p) " E[].

For 0 = k = min {|E|, m}, Py is the problem of minimizing H subject to the further restriction that
|E(p) NE| = k.

The first of these assertions is that P, has an optimal solution in which E(p) " E = E, where
E) is any particular solution to the problem of finding a subset E’ of E which minimizes )
{cf: i €E'} subject to |[E'| = k. In fact, the following argument will show that every optimal
solution p of Py is such that E(p) M E is a solution of the last-mentioned problem, which we denote
k-

For the proof, assume p is an optimal solution of P, for which E(p) M E # E,. Since these two
sets each have & members, it follows that 0 < k < |E| and that there exist indices

tek, —E(p) NE, jeE(p NE —E,.
By the definition of E, we have cf = c¥, with strict inequality if E(p) N E is not a solution of (),

(i.e., does not correspond to k smallest members of the indexed set {c¥: r eE}). Define an
inspector’s strategy q by setting

¢G=pi<l, q=p;=1 q=p  fort #ij.

232



Then E(q) — E =E(p) — E, L(q) — E = L(p) — E, and
E@ NE =[Ep NE - {jHu{i}
L@ NE =[Lip) NE - {i}Ju {j}
Thus q satisfies the condition defining Py, and it follows from (8.15) that

—H(p) — [-H(@)] =Pc; —c) =0,

where the inequality is strict if E(p) M E is not a solution of (), contradicting the optimality of p for
P,. Thus equality must hold, and so q is also optimal for Py; repetition of this step will clearly lead
to an optimal strategy  for P, such that E(m) N E = E,, as desired.

We are now assured that P), has an optimal strategy p such that

pi=1 fori € £y, (8.16)

pi<l1 fori e £ — E,. (8.17)

By (8.15), for such a strategy H(p) does not depend on the specific values of {p;: i €E — E;} =
{pi: i elL(p) N E}. To see how these values might be chosen, note that by (8.16), the devices

{D;: i € E)} receive an amount k£ from the total N ¥ p; = m of “inspection resources.” For an
optimal solution to Py, since H(p) does not depend on {p;: i € E — E,} so long as they are < 1, it
can certainly do no harm to make available to the remaining n — |E| devices {D;: i eN — E} as

much of the remaining subtotal m — k of inspection resources as they can absorb. This amount

E

} =max {O,m —k — (n — |E])}

m —k — min {m — k, n —

is to be realized as Y {pi: ieE — E;}, subject to (8.17). The simplest such allocation of this
residual is the uniform one, leading to (7.63) and (7.64); alternative allocations lead to alternative
optimal solutions to P,.

For the verification of (7.66), first observe that problem P, has been reduced to that of choosing
the probabilities {p;: i e N — E = U U T}, summing to min {m — k, |U U T|}, so as to minimize
the function given by (7.65), namely

—Hp) = Y {(Ve¥f: ieE(p) —E} +V[L(p) — E]
(8.18)
+ P[Y {c¥: ieEy} + |E — Eg|l

Let H, denote the corresponding maximum value of H. The solution of the original problem, P *,
has been reduced to determining an index & for which max {H;: 0 < k =< m} occurs, and solving
the associated problem P,.

The set-inclusions

E(p) —ECU, T'cLp —E

are easily verified. Their use shows that (8.18) can be written

—H(p) =Y {Vick: ieE(p) NnU} +V[L(p) N U]
(8.19)
+V(T) + P[Y {c}: ieEy} + ]E - Ek|].
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Thus solving P, is equivalent to choosing the probabilities {p;: i € U}, summing to min {m — k,
|U|}, so as to minimize the sum of the first two summands on the right-hand side in (8.19). The
probabilities {p;: i € T} can be chosen arbitrarily, except that they must sum to min {m — &,
U U T|} — min {m — k, |U|}, which can be achieved since the difference lies between 0 and |T|
inclusive.

Let r be the largest integer not greater than

p =min {|E|, m — 1 = V({U)/P}, (8.20)
and assume for this and the next paragraph that p > 0, so that r = 0. Let © = min (|E|, m). We
will next show that

max {Hy:r =k = pu} =max {Hy: 0=k = u}. 8.21)

In other words, the search for the maximum in (7.62) can be confined to the subrange {k: r =k =
u} of {k: 0 <k = u}. Note that this is precisely the assertion made by the first equality in (7.66).
The argument will also show that if r members of {c¥: i€ E} are < 1, then no optima exist outside
this subrange, i.e.,

max {H,: 0=k <r} <max {H,:r =k = u}. (8.22)

For the proof, assume k& < r. Since r < p, it follows that &£ < m — V(U)/P. Moreover, since V;
< P fori e U, it follows that V(U)/P < |U| if U is nonempty. Thus, if U is nonempty, then

VU)P < min {m — k,

Uly = |U|.

This implies that the probabilities {p;: i € U}, summing to min {m — k, |U|}, can be chosen so
that p; > Vi/P. Such a choice (vacuously possible if U is empty) makes the first two summands on
the right-hand side of (8.19) vanish, and therefore achieves the optimum in problem P;. It follows
that

He= —V(T) = P[Sx + |[E-Ex|]]  fork <r, (8.23)

where S denotes the sum of £ smallest members of {c¥: i€ E}. Thus, for k < r.

Hk+l - Hl\‘ = [)[l - (Sl\'-H_Sk)] = (),

where the inequality holds because S,,;—S; is equal to some cf. Moreover, if each summand of S,
is < 1, then for & = r—1 this inequality must be strict. The results (8.21) and (8.22) follow
immediately from these observations.

Next let s be the smallest integer greater than

o =max {—1, m — V(U)/P}, (8.24)
and consider any £ with £ = u and

> {ct: i€eEy—E} = 1. (8.25)

It will be shown below that H, < H,. This implies the second inequality of (7.66), completing the
verification of the assertions in section 7. In (8.25), it is assumed that tie-breaking in the formation of
Ey and E is performed so that the latter is a subset of the former; that is, the sum in (8.25) consists
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of k — s largest among k£ smallest members of {c} : i € E}, and is equal to S; — S, in the notation
of the preceding paragraph. If s = 0, E; is the empty set.
The proof that H;, < H will consist of showing that
~H,=VU) — Pim — k) + V(T + P[S; +

151 = A}, (8.26)

and that

-H, <V{U) — Pim —s — 1) + V(T) + P[S; + |E|-s]. (8.27)

These inequalities together imply
(=Hy) — (=Hyp) < Ps +1 —k) + P[S; — S, — (s — k)]
=P[1 —Sx — Syl =0,
where the last inequality follows from (8.25); this yields H; > H,.
To prove (8.26), let p* be an optimal strategy for P, so that (8.19) yields

—H,. = V[L(p" " U] + V(T) + P[Sy + |E| — k]

=V{U) - V[{M(p" U E(pH} 0 U] (8.28)
+ V(T) + PISy + |E| — k).
Since
VI{M(p*) U E(p*)} N Ul = P Y {pk: ie {M(p*) 0 E(p*)} v U}

=P Y{pt: ieU} =Pm — k),

—

(8.26) follows from (8.28).

We finally turn to the proof of (8.27). The definition of s [see (8.24)] implies s = 0. Since (8.25)
implies & > s, we have s <k = u; thus 0 =5 < w, and so P, and H are well-defined. Note that s
< p = m; also, the definition of s gives s > m — V(U)/P. It follows that

0<m-—s <VWU))P. (8.29)

Since V;/P < 1 fori € U, (8.29) impties that there exists a subset # of U such that

m—s—1<VW/IP <m —s. (8.30)

Since integer m — s > 0, the first inequality implies that # is nonempty; since V;/P for i € W', it
follows that

VIW)/P < min {m — s,

W}, (8.31)

Thus there exist probabilities {p§: i € #'}, summing to the right-hand side of (8.31), for which pi>
Vi/P fori e W. Since

0 < min {m — s, |[U|} — min {m — s,

Wiy =|U-W| (8.32)
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there exist probabilities {p§: i €U — W} summing to the middle term in (8.32). Thus the
probabilities {p$: ¢ € U} sum to min {m — s, |U|}, and so can be entered in (8.19) for the problem
P,, yielding
—H(p*) = S{Vict: i eE(p*) N U} + V[L(pH N U]

+ V(T) + P[Ss + |E| — s].

Thus
—H, = -H(p*) =V[{E(p®*) U L(p*)} N U]

+ V() + P[S; + |E| — s]

=V(U) - V[IM(p) N U] + V(T) + P[S, + |E| — s].
Since the choice of {p%: i € W'} assures W' C M(p) N U, it follows that

-H,=V{U) -VW) + V(T) + P[S; + |E| = s],

and this together with the first inequality in (8.30) imply (8.27), completing the proof.
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