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This paper presents three s imple mathematical models, all of game- theoretic type, dealing with 
an inspector-inspectee relationship. The inspectee alw ays tries to max imize hi s ne t gain, whic h is 
the amount he obtain s by "cheatin g" less the amount he is penalized whe n ca ught. The first model 
assumes a zero-sum payoff and so the in spector tries to minimize the in spectee's ne t ga in . [n the 
second model, the ins pec tor tries to deter cheat ing wit hout concern fo r the ex tract ion of pe nalties. 
[n the third mode l we assume that the probabilistic patte rn of the ins pecto r' s stra tegy is know n to 
the in s pectee and that the inspector constructs hi s strategy with thi s in mind. Each of these mode ls 
is analyzed and op timal so lutions are obtained . Seve ral s imple exa mples are prese nt ed to show the 
re lat ion between the level of chea ting and the levels of in s pec tion reso urces and penalty. 

Key words: In spect ion; mathe mati cal model; regulat ion; strategy; theory of games . 

1. Introduction 

This paper contains the formulation and analys is of three simple mathematical models, of game
theore tic type, oriented toward certain important aspects of the in spector-in spec tee relationship. 
These models were initially designed in the co urse of a study performed for the NBS Office of 
Weights and Measures, while seeking tec hniques that might be useful to state " W&M" agenc ies in 
employing their resources to achieve best protection of consume rs against loss d Lte to malfun ctioning 
weighing and measuring devices used in re tail trade. However, they also appear relevant to many 
other situations involving an in spec tor-inspec tee relationship in which it is meaningful to assign 
numerical values to the detection and to the nondetection of malfunction. 

For example, food packaging plants (the inspec tees) are required to assure through self-polic ing 
that no more than a spec ified level of foreign matte r (in the form either of less ex pe nsive substitutes 
or of " dirt") e nters into the food they package . An agency of governme nt (the inspector) is c harged 
with guaranteeing to the public that these levels are not exceeded. If we can assign numerical values 
to (1) the benefit accruing to the packager (for example, in reduced operating expe nses) for 
permitting systematic violation of the maximal level of fore:gn matter, and, (2) the penalty for being 
found in violation, then the models and analysis of thi s paper might well be pertinent. Similar 
comments can be made with "food purity" replaced by "consumer product safe ty ." 

The type of model at which we aim may also prove applicable to situations not customarily 
described in terms of inspectors and inspectees. For example, a de partment store (the in spec tor) 
wishes to combat thievery among its workforce (the inspectees) and establishes an internal security 
section with a fixed amount of resources. If numerical values can be specified for successful and for 
unsuccessful stealing, the n models like those of this paper might be used to minimize the 
department store's loss . Many other scenarios can be formulated for which s uch models could 
describe "optimal strategies" for both the inspector and the inspectee. 

Although the sort of analysis initiated below promises to have b~oad scope, it should be stated 
at the outset that the present models are not detailed and highly realistic ones, capable of giving 
"practical answers." Rather, they are intended both as preliminary explorations of how certain 
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issues might be framed for quantitative analys is, and as concrete targets for c riticisms and 
suggestions leading to superior versions. 

The models ignore many features of the inspec tion process, for the sake of focusing s harply and 
clearly on certain other features. Some of the ignored aspects will be explicitly identified late r, but 
for general perspective it should be noted that our emphasis here is one-side dly on the "consumer 
protection" or " dete rrence of cheating" eleme nt in inspection operations, as di stinguished from the 
"help the inspectee (merchant) keep IU s device acc urate" theme. 

The features of the situation on wlUc h the models are intended to focus are the following: 

(a) A commercial establishment, containing one or more measuring devices whic h " me te rs" its 
transactions with customers, has an economic incentive to "cheat" in connection with that device. 
The ugly word "cheat" is used as a pithy abbreviation for any of (i) deliberately causing the device to 
malfunction in the direc tion economically advantageous to the establishment (for example, "short 
weiglUng"), or (ii) knowingly permitting such a malfunction (originating through natural causes) to go 
uncorrected, or (iii) e mploying such a malfunctioning de vice, which though not explicitly recognized 
as suc h, was not properly checked for malfunction. Diffe rent establi shme nts, with different dollar
flows of transactions, will experience economic incentives of different magnitudes. The models 
contain a set of parameters (V;) representing these magnitudes. 

(b) The inspection agency typically has onl y a limited quantity of " inspection resources" at its 
di sposal , a quantity likely to be too small for frequent coverage of all the devices in its jurisdiction. 
The models contain parameters, Tn and n, re presenting respecti vely, the inspection reso urces and 
the numbe r of devices over wlUch they must be spread. 

(c) The detection of c heating leads to impos ition of a " pe nalty" on the male fac tor. This penalty 
might be the sum of (i) a monetary fine, (ii) the dollar-equivalent of interruption of the normal fl ow of 
business, and (iii) the economic loss due to dimini shed patronage following public disclos ure of the 
cheating. The models include a parameter (P) re presenting the size of thi s penalty. 

(d) Our purpose in this pa per is to begin the development of additional methodological tools for 
designing more effective and effi c ient responses by socie ty to the exi ste nce of cheating. Those 
responses include both a punitive e le ment (whuse intensity is measured by P ) and a " polic ing" 
eleme nt (whose intensity is re presented by Tn ) . By determining how the leve l of illic it activity 
depends on P and Tn , we hope to contribute to be tte r unde rstanding of the effectiveness of the two
eleme nt res ponse. By exhibiting the tradeoffs be tween P and Tn in the above de pendence, we hope 
to contribute to better understanding of the effi ciency with which that response is allocated be tween 
the two elements, though full ac hieve ment of tha t goal will also require models of the "cost" (as well 
as the " perform ance output") associated with various combinations of P and m. These partic ular 
objectives, which of co urse remain relevant in a broad context of regulatory and general c riminal
justice activity, have guided the development of the models to be described. 

The mathe matical formulation of a first model is given in the next section (sec . 2), and is 
accompanied by a discuss ion of some of that model' s shortcomin gs in orde r to ind icate directions fo r 
further research. The results from analyzing this Modell are presented in section 3, along with two 
simple ill ustrations; the analysis itself appears in section 4 (wlUch the reader may prefer to omit). 
TlUs model makes the "zero-sum" ass umption-found in most game-theoretic literature-that the 
inspection agency's objecti ves are antithe tical to those of the "inspectee, " wlUc h implies in particul ar 
that the latter's loss through penalty-payment is the former's gain. 

Section 5, in contrast, takes up a second model which is of nonzero-sum type; it treats the basic 
aim of the inspection activity as deterrence of cheating, with no separate value for the extraction of 
penalties after its detection. The "solution" of this Model 2 is presented and illustrated , with the 
supporting analysis defe rred to section 6. 

In section 7 we drop the usual game-theoretic assum ption that the playe rs select their strategies 
simultaneously (or, at least, that the strategy chosen by each player does not depend on the strategy 
chosen by IUs opponent). Since the inspection procedure is an ongoing one, it would be expected 
that the inspectee, sooner or later , would be able to di scern the probabilistic pattern of the 
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inspector's choices. Thus, in Model 3 we assume that when the inspectee formulates his strategy he 
knows what the inspector's strategy will be. Moreover the inspector is aware of this and so 
constructs his strategy with it in mind. The solution of Model 3 was suggested by NBS colleague 
L.S. Joel; the results for Model 3 are presented in section 7 while section 8 supplies some of the 
longe r derivations justifying these results. 

2. Formulation of Model 

Tlus mathematical model takes the form of a 2-player zero-sum game. The "playe rs" are the 
inspector (an aggregate represe nting the ins pec tion agency) and the inspectee (a n aggregate 
representing the establishments in whic h the measuring de vices are used) . There is so me loss in 
reality through'regarding these establi shme nts as forming a single player with a s ingle interest, but 
for the present model this potential turn s out not to be realized. 

The inspectee can eithe r cheat, or not, for each of a se t of devices DbD2' .. . D". The 
inspector selec ts de vices for inspec tion , up to the limit of hi s resources. Detection of a cheat, if the 
device is inspected , is assumed certain. The data of the model are: 

n = numbe r of de vi ces, 
Vi = payoff to in spectee from cheating on D j, 
P = penalty against in spectee for each detec tion of c heating, 
m = number of devices the inspector can examine (m < n). 

A strategy for the in spec tee is an n-compone nt vector 

in whic h 

Cj = ] 

C j = ° 
if the re is c heating on Dj , 

if the re is no c heating on Dj • 

The consideration of in s pec tee mixed st rategies (p robab ili sti c mixtures of ordin ary strategies) is not 
necessary for the prese nt model, i. e ., the mode l has solut ion s whic h do not involve them, but we will 
also present those solutions wluch do incl ude mixed inspectee strategies . 

A strategy for the inspector is a spec ifi cation of a subset M of the se t N = {1 ,2, ... , n} s uch 
that M has exactl y m me mbers (notation: IMI = m). The interpre ta tion is that i EM if and onl y if Dj 

is inspected. It turns out that consideration of mixed strategies for the inspec tor is required in orde r 
to solve the present mode l. Initially we defin e suc h a mixed strategy to be a vec tor p , with a 
component p(M) for each s ubset M of N suc h that IMI = m, and the properties that 

p (M) 2: 0, L M p(M) = 1. (2.1) 

The interpretation is given by 

p (M) = Prob [{D j : i EM} are the devices inspected). 

With each such p ca n be associated the quantities 

Pi = Prob [Di is in spected] 
(2.2) 

= L {p(M ) : M contains i}. 

Clearly each Pi satisfies ° :::::; p j :::::; 1. As will be proved in section 4, the relation L Ii Pi = m holds. 
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Conversely, consider any n-component vector (PhP 2, ... , Pn) with 

Os; Pi :s; 1, I;' Pi = m. (2.3) 

As will al"o be proved in section 4, there is then a mixed strategy p whose components p(M) satisfy 

Pi = I {p(M) : M contains i} 

for all i EN. Thus we can and will regard a mixed strategy as a vector p = (PhP 2, ... , Pn) whose 
components Pi, interpreted as in (2.2), satisfy (2.3). 

The net expected payoff to the inspectee, from device Vi , is the expected payoff from cheating 
minus the expected penalty, i.e. 

ViCi - P(CiP i) = [Vi - Pp;] Ci' 

Thus the total net expected payoff to the inspectee, if the two players choose respective mixed 
strategies c and p , is 

(2.4) 

From the "zero-sum" assumption that the interests of the two players are diametrically opposed, it 
follows that -F(c,p) is the expected payoff to the inspector. 

Before proceeding (in the next section) to present the "solution" given by this model-i.e., the 
"optimal strategies" for both players-we note some of the model's limitations and imperfections: 

(a) The zero-sum assumption of diametrically opposed interests is not quite right unless one 
thinks of socie ty (whose agent is the inspector) as seeking vengeance rathe r than deterrence. A 
second game-theoretic model, intended to give be tter ex pression to the " deterrence" theme, is 
formulated and analyzed in section 5. 

(b) The "cheat or no-cheat" dichotomy is clea rly a severe idealization, ignoring as it does the 
possibility of introducing different degrees of bias into the devices (different amounts of cheating). To 
consider this dimens ion of the situation would also require formulatin g some mathematical 
representation of how the probability of detec tion depends on the degree of cheating, and could raise 
interesting questions concerning the role of the establi shments' customers in performing part of the 
detec tion function (that of recognizing gross cheating) . For the present we decline to explore these 
lines of generalization. 

(c) Even with the above restriction, it seems odd to assume that cheating will be de tected with 
certainty if the offending device is but inspected . This for example seems to rule out use of the 
model to examine the relative merits of training, or selecting, or otherwise encouraging inspectors to 
work more rapidly (in effect, increasing m), versus stressing the thoroughness or quality of their 
work (in effect, increasing he probability of cheat-detection). Fortunately, this limitation is only 
formal; a detection probability 0 can be represented in the model simply by replacing the fixed 
penalty P, in (2.4), by the average penalty pi = Po. 

(d) A quite natural extension of the model would be the replacement of P, in (2.4), by device
specific penalties p;. (For example, the presence of site-dependent detection probabilities would lead, 
as above, to the use of POi in place of P. Also, interruption of business or loss of patronage could be 
more serious at sites with a greater volume of transactions, suggesting the association of larger P;' s 
with larger V;'s.) This would raise no real problem were we content with solving the model 
numerically, but it does interfere with achieving the kind of nearly closed-form solution presented in 
the next section, and it definitely contradicts the desire to maintain in the model a simple clear-cut 
scalar quantity representing the intensity of society's sanction against cheating. So, this co mplication 
will be omitted from the present paper. 
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(e) If a serious level of cheating is detected, the inspector (gove rnment) may react with 
measures which are onerous to all inspectees (merchants), even those with properly functioning 
devices. Similarly, if detected cheating is publicized , honest as well as di shonest establishments may 
suffer from loss of public confidence . These considerations suggest an inadequacy in the way (2.4) 
associates penalty specifically to those devices at which cheating is discovered. Perhaps there should 
be a penalty P which is "activated" if cheating is discovered at any de vice (or at more than some 
"threshold" number of de vices). This possibility is also left for future investigation; its inclusion 
would preclude expressing the payoff function in te rms of the n p / s rather than the much more 
numerous p(M)'s. 

(f) The inspector must decide whic h subse t of the n devices he will inspect , and the fa mily of 
subsets which re present "allowable" outcomes of this dec ision are limited by the amo unt of 
inspection resources available . In the present model, that limitation is expressed by specifying the 
number (m) of inspec tions which can be undertake n. This is clearly an idealization of the real-world 
situation in whic h so me inspec tions may (predic tably) require more tim e than other s, so me 
inspection sites are remote from the majority so that vi siting them substantially reduces the num ber 
of other devices whic h can be inspec ted during a gi ve n time period, etc . One would like to improve 
the model by incorporating a more realistic re presentation of the fa mily of "allowable" subsets fro m 
whic h the inspector can choose. 

The preceding li st suggests a numbe r of directions for furthe r analysis. But Modell a nd the 
others in thi s pa per, despite their evident defic ie ncies, are fe lt to re prese nt a suita ble first step in 
focusing on the issues of inte rest. 

3. Results for Model 1 

In describing the results for the model formulated above, it is conve nie nt to maintain the 
nota tion N = {1,2, . . . , n} , and also to employ the notat io ns 

T = {i : Vi > P }" f = N - T = {i: V; ::; P l. (3 .1) 

The le tte r "r ' was chosen because the devices {Di: i E T} are es pecially te mpting choices for 
cheating. 

The solution takes diffe rent forms according as 

(Case 1) (3.2) 

or its opposite 

m 2: ITI + L {V;lP : i E T} (Case II) (3 .3) 

holds. If the Vi are thought of as fixed, then this divi sion into cases can be construed as part itioning 
the first quadrant of (P,m)-space into two regions. The Case I region corresponds (as will be seen) to 
situations where the inspectee's optimal strategy is to c heat on all devices, and so thjs region may 
be interpreted as representing grossly inadequate societal responses to the threat of c heating. 

For each of the two cases, we will present a strategy C O for the inspec tee, a mixed strategy pO 

for the inspector, and a number FO, suc h that 

F(cO,p) 2: P for all p , (3.4) 

for all c. (3.5) 
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These relations of course imply that 

(3.6) 

Inequality (3.4) says that if the inspectee chooses strategy CO then his payoff will be at least FO no 
matter what strategy the inspector picks, while (3.5) says that if the inspector chooses strategy pO 
then the inspectee's payoff (the negative of his own) will be at nwst FO no matter what s trategy the 
inspectee picks. On this basis, CO and pO are optimal strategies for the two players, and FO is the 
value of the game (to the inspectee); we take FO = F(cO,pO) as the measure of average illic it ne t 
gains "predicted" by the model. This is the customary solution concept for zero-sum two-player 
games. 

[A technical note to avoid a possible source of confusion: it can be proven from (3.4) and (3.5) 
that 

Thus the value can be defined without reference to any particular CO and pO. With this done, 
condition (3.4) defines the notion of an optimal strategy CO without reference to any pO, while (3.5) 
defines the notion of an optimal strategy pO without reference to any co. Such definitions are in 
general possible only for zero-sum two-player games.] 

For Case I, as already stated, the optimal strategy for the inspectee is to cheat on all devices; 
formally , CO is given by 

C? = 1 for all i. (3.7) 

Any mixed strategy pO for the inspector is optimal if it satisfie s the " no overkill" condition 

for all i E T. (3.8) 

The value is given by 

P=2:rV;-Pm. (3.9) 

In Case II, it is convenient to partition T as E U U, where 

E = {i: V; = P}, U = {i: V; < P}; (3.10) 

the symbols were chosen as the first letters of "equal" and " untempting." If strict inequality holds in 
(3.3), then the optimal strategies for the inspectee involve cheating on the tempting devices , but not 
on the untempting ones, i.e. , 

Ci = 1 foriET, (3.11) 

Ci = 0 for i E U, (3.12) 

C i unspecified for i E E. (3.13) 

The phrasing of (3.13) was chosen to be compatible with the admission of mixed strategies for the 
inspectee (i.e., "0 :::; Ci :::; 1" rather than "Ci = 0 or I "). In the special case that equality holds in 
(3.3), there is an additional family of optimal strategies obtained by choosing a number C with 0 < C 

:::; 1 and (with (3.11) retained) re placing (3. 12-3.13) with 
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Ci = C foriEV, (3.12') 

C i ~ C for i E E. (3.13') 

The optimal strategies for the inspec tor req uire always inspecting the tempting de vices and avoiding 
" underkill" on the othe rs, i.e., 

p? = 1 fo r i E T, for i E f (3. 14) 

which implies p? = 1 for i E E. The value (whethe r (3. 12-3.13) or (3. ] 2'-3.13') is used) is 

po = I {Vi : i E T} - PITI· (3. 15) 

EXAMPLE 1: Equal-Sized Firms . This title is a so mewhat free translation of the scena rio-definin g 
assumption that all V; have a common value V. The n (3.2) and (3.9) give 

FO = nV - Pm if m < ITI + (V/ P){n - ITI}, (3. 16) 

while (3 .3) a nd (3. ] 5) give 

P = (V - P)I TI if m ~ ITI + (V/ P){n - ITI}. (3.17) 

If P < V the n I TI = n , so tha t (s ince we ass ume m < n ) the de finin g condition of (3.16) holds and 
he nce (3. 16) rathe r than (3. 17) is t he case. II V :s P the n I TI = 0, so tha t e ithe r (3. ]6) o r (3.17) holds 
de pend ing on whe ther or not P < nV/ m. O ur ma in interest is not in the optimal strategies bu t rathe r 
in the depende nce of the "ne t illi c it ga in" FO, a measure o f (impe rfect) perfo rmance by the 
inspecti on syste m, as a fun c tion of P and m. T his depe nde nce is s umma ri zed in fi gure 1, in whic h 
FO is continuo ll s across the c urve (an eq ujlatera l hype rbo la) separa ting the two regions s how n. T he 
notation V;"t = I ;' 11;( = nV) is used . 

m 
n 

m =n 
..... ------------ - --------------------

Pm = Vtot 

o 
F = Vtot - Pm 

v p 

FIGURE 1. Net illicit gain (equal -sized /inns). 
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EXAMPLE 2: Big Firms, Small Firms. Here there are nb "big firms" each with 11; = ~, and n. 
"small firms" each with 11; = V., where ~ > v.. We have 11;01 = nbVb + n.v.. If P < v., so that ITI 
= nand T is empty, then (3.2) and (3.9) give (since m < n) 

If V. ::; P < ~, so that ITI = nb and ITI = n., then (3.2) and (3.9) give 

while (3.3) and (3.15) give 

(3.18) 

If P > Vb, so that T is empty and ITI = n, then (3.2) and (3.9) give 

jf m < ~"I!P, 

while (3.3) and (3.15) give 

p= 0 

These results are summarized in figure 2. FO is continuous across each of the three boundary 
curves. Note that the region corresponding to (3 .18) is " inspection-saturated"; a stiffer penalty, 
rather than more inspection activity, is needed to reduce the inspectee's expected payoff FO from his 
optimal strategy (cheat at the big firms, but not at the small ones). (See table 1.) 

m 
n 

m =n 

FIGURE 2. Net illicit gain (big firms, small firms). 
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TABLE 1. Results for Model I 

Case Definition Inspectee's Strategy Inspector's Strategy Payoff 

m < ITI+I{v,IP: i ET} cy = 1 for all i p1 s V /p for i E T FO = V'o' - Pm o s p? s 1 for i E T 

ilE T} 
cp = 1 for i E T p ? = 1 for i ge T fO = ~ {V; : i E T} 

m 2: ITI+I{v,IP: c1 = 0 Jor i E U 
o s c1 s I for i E E p r 2: V ;lP for i E T - P ITI 

4. Analysis for Model 1 

This section contains the mathematical justification of the results presented in section 3. 
Readers preferring to do so can go directly to section 5 without loss of continuity . 

A first technical point to be settled is the permissability of passing from the original definition of 
a mixed strategy for the inspector, namely that of a vector with co mpone nts p(M) satisfying (2.1)
where M ranges over all subsets of N with IMI = m-to the subsequent de finition as a vector p with 
components Pi satisfying (2 .3). It will first be shown that each collection {P(M)} obeying (2.1) leads 
via (2.2) to a set of Pi obeying (2.3); the n it will be prove d that each such p = (Pi) arises from suc h a 
collection {P(M)}. 

For the first purpose, conside r any collec tion {P (M) } obeying (2.1), and le t ai = 1 [or all i EN. 
With Pi defined by (2.2), we clearly have Pi ~ 0 as well as 

Pi = 2 {P(M ): M with i E M} ~ 2M p (M) = 1, 

and also 

2 {a i p (M ): pairs (i ,M) with i EM} 

2M p(M) 'm (since ai = 1 and IMI = m) 

= m , 

so that the Pi obey (2.3). 

For the second purpose define, for each subset Q of N for which IQI = m , a vector 1TQ whose 
components are given by 

7TQ(M) = 0 for M 1= Q; 

Note that the 1TQ are the veltices of the set (hypercube) 5* consisting of vec tors 1T with components 
p(M) satisfying (2 .1). Next, for each subset Q of N for which IQ I = m, define a vector pQ with 
components given by 

PQi = 1 ifi EQ;PQ i = 0 if i E N-Q. 
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The set 5, of all vectors p with components Pi satisfying (2.3), is the intersection of a hypercube with 
a hyperplane; its vertices must be the intersections of the hyperplane with the edges or vertices of 
the hypercube, from which it readily follows that the vertices of 5 are precisely the vectors Pa. 

Finally, for each i EN and each subset M of N with IMI = m, let aiM = 1 if i EM and aiM = ° 
otherwise. Then the relation (2.2) can be written 

or, in linear transformation notation, as 

p=A7T. 

It is readily vertified that Pu = A 7TQ. Now any vector PES can be written as a convex combination 
of the vertices of 5, i.e., 

(Aa :2: 0, LQ Aa = 1). 

The vector 

as a convex combination of the vertices of 5*, is itself in 5*, and from the linearity of A we have 

This proves, as desired, that every PES arises via (2.2) from some 7T E 5* . 
To prove that the strategies presented in section 3 are indeed optimal, it is convenient to set 

Vi = V/P (4.1) 

and to work, not with the payoff function F of (2.4), but rather with 

f(c,p) = F(c,p)/P = II' (Vi - P;)Ci· (4.2) 

Note that 

T = {i: Vi > I}, T = {i: Vi:::; I}. (4.3) 

We turn first to Case I, which according to (3.2) is characterized by 

(4.4) 

Using (3.9), we set 

fO = PIP = L;' Vi - m. (4.5) 

Following (3.7), let CO be defined by c? = I for all i. Then by (2.3) and (4.2) 

ilc°,p) = I I' (Vi - Pi) = L;' Vi - m = fO 

for all mixed strategies p for the inspector. 
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Next, consider any mixed strategy pO such thatp? :5 Vi for all i E T. Then, since pO :5 1 < Vi 
for all i E T, it follows that for all c, 

( 4.6) 

Such mixed strategies po do ex ist, for if m :5 I {Vi: i E f} they can be chosen with p? = 0 for all 
i E T, while if 

I {Vi: i E f} < m < ITI + I {Vi: i E f}, 

then (4.4) assures the existence of some with p? = Vi for all i E f. 
The preceding material shows that (cO,pO,fO) give optimal strategies and the value for the game 

with payoff function f, so that (cO,po,F,,) give the corresponding information for the original game. 
Moreover, the indicated optimal strategies are the only ones. To see thi s, note first th~t the 
strictness of the inequality in (4.4) permits a choice of po in (4.6) for which p? < Vi for all i E T, and 
then equality will hold in (4.6) only for c = cO. (A se parate but easy argument is needed if f is 
e mpty.) Next, if p is any mixed strategy fo r which 

I, = {i: Pi > V;,i E f} 

is nonempty, then define c by Ci = 0 for i E I, and Ci = 1 for all i EN-I,. One obtains 

fic,p) = L{Vi - Pi: iEN - /,} 
= LI'(V; -Pi) - L{(Vi -P i) : i E/,} 
= fO - L {(v; - p i) : i E I,} > j'O, 

and the ex istence of a c with this property ruJes out the optimality of p. 
Next we present the analys is for Case II , which according to (3.3) is c haracte rized by 

m :2: ITI + L {Vi: i E f} = IT U E I + L {Vi: i E U}. 

Using (3.12), we put 

With CO defined by (3.11-3.13), 

f(cO,p) = L {(Vi - Pi): i E T} + L {(l - p;)c;: i E E} 

:2: I {(Vi - 1): i E T} = r 
for all p. On the other hand, for pO satisfying (3.14), i.e. , 

p? = I for i E T ; p? :2: Vi for i E f, 

we have 
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(4.7) 

(4.8) 

(4.9) 

(4.10) 

( 4.11) 



for all c. So (CO,p0,f0) form an optimal solution. The existence of mixed strategies pO obeying (4.10) 
is assured by (4.7). 

Once again, there are no other optimal inspector strategies. To see this, note first that equality 
holds in (4.9) only if 

Pi = 1 for all i E T, 

which will therefore be assumed in the balance of this paragraph. If 

12 = {i: Pi < Vi, i E f} 

is nonempty then one can define c by 

Ci = 1 for i E T U 12 , Ci = 0 

yielding 

which shows that p is not optimal. 
Next we inquire whether there are other optimal inspectee strategies; mixed strategies (0 ::s; Ci 

::s; 1) are admitted in the discussion. Nite first that equality holds in (4.11) only if 

Ci = 1 for all i E T, 

which is therefore assumed in the balance of this paragraph. Suppose that 

K =~: Ck > 0, k E U} 

is nonempty; we will attempt to deduce from this that c is not optimal. If strict inequality holds in 
(4.7), one can choose p to satisfy (4.10) with P k > Vk for all k E K; thus 

so that c is not optimal. Now assume (4.7) holds with equality. If there exist distinct k E K and i E E 
U U with Ci < Ck> then choose any positive 0 with 

and define p by 

P j = 1 for JET U E - {i}, 

Pj = Vj forj E U - {i,k}, 

Pi = Vi - 0, P k = Vk + o. 
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Then p is a mixed strategy, and 

/(c,p) = r + OCi + (-O)Ck </0, 

showing that c is not optimal. The only remaining possibility is that equality holds in (4.7) and, for 
some C with 0 < c :5 1, 

Ci = C foriEU;ci2=C fori EE. 

In this situation, for any p, 

/(c,p) = I {(Vi - p;): i E T} + I {(l - Pi)Ci: i E E} 

+ c[I {Vi: i E U} - I {fJ;: i E U }] 

2= 1° + I{(l - Pi ): i E T} + cI{(l - p .J: i EE} 

+ c [(m - IT u Ell - (m - I {fJ;: i E T u E })] 

= 1° + (1 - c) I {(l - Pi ): i E T} 2= 1°, 

s howing that c is indeed o ptimal. 

( 4. 12) 

One furthe r technical questi on is whe ther the use of mixed s tra tegies for the ins pector is really 
necessary. Might not the inspector have " unmixe d" (or " pure") s tra tegies whic h a re optimaJ? S uc h a 
s trategy pO, besides obeying (2.3), would also sa ti sfy 

p? = 0 o r 1 fo r a ll i EN. ( 4 .1 2) 

In Case II, we see fro m (4. 10) that thi s wo uld require all p? = 1, so that (2.3) would be sati s fI ed only 
in the uninte resting case m = n. Fo r Case I, assuming no Vi exactl y equaJ to 1, (4. 12) a nd the 
condition p? :5 Vi for all i E f imply that p? = 0 for all i E f , so that (2.3) can be sati sfi ed if a nd only 
if I TI 2= m , a condition whic h does not follow from the definin g c haracteri sti c (4.4) of Case 1. So 
mixed strategies are indeed needed in Case II, and also in Case I whe n ITI < m. 

5. Formulation and Results for Model 2 

In what follows, the payoff function for the inspectee is as before in (2.4), name ly 

F(c,p) = I;' [V; - Pp;]c ;. (5.1) 

We now regard the inspector's aim, however, a s that of minimizing the totaJ loss (e .g. , to cons umers) 
as a result of c heating. The payoff function for the inspector is therefore take n initially to be 

G(c,p) = - I;' V;c;, (5.2) 

rather than the previous -F(c,p). 
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The solution concept typically employed for such nonzero-sum (and "noncooperative") games is 
that of an equilibrium point (EP), namely a pair (CO,pOj of strategies such that 

for all c, (5.3) 

for all p. (5.4) 

Such a pair has the "stability" property that if both players adopt them, then neither has incentive 
for a unilateral change in his strategy. 

This approach is not helpful in the present situation, since any strategy pO for the inspector is 
part of some EP, (CO,pO). To show this, one need merely choose CO to maximize F(c,p,,); then (5.3) is 
obeyed, and since G(c,p) depends only on its first argument, (5.4) is also satisfied . Thus, the 
formulation provides no guidance for the inspector. 

Two methods for escaping this unsatisfactory state of affairs have been considered. One of 
them, which involves abandonment of a strictly game-theoretic approach, is discussed in sections_7 
and 8. The other ("Model 2"), to be treated in this section and the next one, introduces a slightly 
different objective for the inspector, namely to minimize the total loss due to undetected c heating. 
Thus (5.2) is replaced by 

G(c,p) = - 2:;' ViCj(l - p;). -. (5.5) 

A rationale for this objective-reasonable, but in the writers' opinion less than compelling----can be 
given in terms of a scenario in whic h society's response to cheating is so structured that the penalty 
for a second offense is prohibitive to the inspectee. (Thus, P now represents the penalty for a first 
(detected) offense.) For such a scenario, it is plausible that future cheating would occur precisely at 
the sites of current undetected cheating, so that its extent is measured by (5.5). 

We now proceed to describe the equilibrium points (CO,pO) of the game with payoff functions 
(5.1) and (5.5); the analysis supporting these results is given in section 6. The associated payoff 
values, FO = F(cO,p") and GO = G(CO,pO), will also be presented. 

The devices may be assumed numbered so that 

(5.6) 

The presence of ties among the Vi'S can make this numbering somewhat arbitrary, and will lead to 
some complications (technical rather than substantive) in describing the solution of the model. In 
addition to the sets 

T = {i: Vj > P}, 

defined earlier, it is convenient to define the sets 

N m = {I, 2, . .. , m}, 
(5.7) 

The three sets Ni", N-;;. and N'/n partition N; either or both of the first two might be empty, but N'/n 
contains at least the member m . 

The discussion of Model 2, like that of Modell, splits into cases. First assume 

(Case l). (5. 8) 
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-- ----- ._----

As in Case I of Model 1, all equilibrium points (CO,p,,) for this case involve cheating on all devices, 
I.e., 

c? = 1 for all i. (5 .9) 

The strategie pO involve alway in pec ting ' those devices more te mpting than the mth, and never 
inspec ting those less te mpting, i. e ., 

p? = 1 for i E N~" p? = 0 for i E N-;;." (5.10) 

o < Pi < 1 C • N0 "{po.' Nol - - IN+I LOf £ E m, L i. £ E mf - m 111 ' (5 .11) 

Substituting (5.9- 5.11) into (5.1) and (5.5), we find that the inspectee's payoff is 

(5 .12) 

the same as for Case I of Modell , and similarly the inspector's payoff is 

co = - [V,,, {n - IN;;;I - m} + L {V;: i EN;;;}]. (5. 13) 

Next, assume 

(Case II). (5.14) 

The re are two subcases. If m is not the last membe r of N ~" i.e . , 

IN~,1 + IN~,1 > m, (Case HA) (5. 15) 

then the eq uilibrium points and payoff functions are given by t.he same formulas (5.9- 5. 13) as for 
Case 1. But if 

IN~,1 + IN ~,1 = m , (Case lIB) (5.16) 

then the equilibrium points require always c heating on both the lempting and untempting devices, 
e.g., 

c? = I for i E N~, = T, (5.17) 

c? = 1 for i EN ;;, = U, (5.18) 

together with a " floor" under the frequency of cheating on the other devices: 

for i EN';, = E. (5. 19) 

The inspection policies are give n by 

p? = 1 for iEN t" U N~n = T U E, (5.20) 

PY = 0 for iEN-;;., = U. (5.21) 
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The corresponding values of the payoff functions are 

P = Lf V; - Pm, 

as before, and 

GO = - L {T';: i EN;;,}, 

which in view of (5.16) "matches" with (5.13). 
The remaining case is 

(Case UD. 

If the condition 

m ~ IT U EI + L {v;IP: i E U} 

holds, there is a family of equilibrium points given by 

c~ = 1 
o ::s c? ::s 1 
c? = 0 
p? = 1 
p~ ~ V;IP 

The associated payoff values are 

for i E T, 
fori EE, 
for i E U, 
for i E T U E 
for i E U. 

P = L {v;: i E T} - PITI, 

GO = o. 

(Case IlIA) 

A second and more complicated type of equilibrium point exists when 

m ::s IT U EI + L {V;IP: i E U}. (Case I1IB). 

For its description, let 

L = {i: Vm <V; <P}, 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 
(5.27) 
(5.28) 
(5.29) 
(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

so that Ni;, is partitioned as T U E ULand U as L U N'i" UN;;,. Furthermore, divide N;;, into 
blocks; a "block" is defined to be a maximal succession of integers i with a common Vcvalue. Let Bb 
denote the bth block, and Vb its associated V;-value; the blocks are numbered B 1 through B {J in 
descending order of Vb. It will also be convenient to regard N?n as an initial block B,,, so that V~ 
Vm• Because T U E U L does not contain m, 

L\ = m - IT U EI - L {v;IP: i E L} > O. (5.35) 

Choose the smallest integer a for which 

(5.36) 
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by (5.33), such an a must exist. Also, let 

so that 

Next, choose c::' so that 

if 'A. < IB"I V~I P, 

if 'A. = IB"I V~/P, 

where in (5.39) we set Pc,+l = 0 if a = j3. Then an equilibrium point (CO,p,,) is given by 

c? = 1 

c? = 1 

p? = 1 

p? =V;IP 

p? = V;IP 

2: {p?: i E B ,,} = ". 

The associated payoffs are given by 

for i E T, 

for i E E, 

for i E L, 

f {iEBb withO s; b < a 
or i E B" if 'A. = IB " IV~/P, 

for{iEB " if" < IB " IV~/P 
i E Bb with a < b S; j3. 

for i E T u E, 

for i E L, 

for {i E Bb with 0 S; b < a 
i E B" if" = IB"iV ~/ P, 

for i E Ber if 'A. < IB"IV~/P, 

for i EBb with a < b S; j3 , 

P = 2: {V;: i E T} - PITI + 2:b", ,,IBblVt - P'A. = V.O! - Pm, 

GO = -[{2:b>"IB blVJ; + {n - m - 2:b>"IB bl} C::'Vm }]. 

(5.37) 

(5.38) 

(5 .39) 

(5.4.0) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5 .47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

Note that in (5.52), the factor c::, Vm in the last summand is equal to Pc, if 'A. < IB~ Pc,IP. But if 

A = IB"IV~/P, 
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then c::' \In has as range of variation the interval (n,+l ,V~) determined by (5.39), so that GO as given 
by (5.52) has a corresponding range of variation. This illustrates the general theoretical possibility, in 
a nonzero sum game, for different equilibrium points (i.e., "solutions") to have different associated 
payoff levels. The present model exhibits this phenomenon only for the particular "coincidence" 
described by (5.53). 

It should also· be observed that Cases lIlA and IIlB may coexist, giving rise to different 
equilibrium points. This occurs precisely when 

m = IT u EI + L {ViIP: i E U}, (5.54) 

which in the context of Case IIIB implies that 

a = {3, (5.55) 

so that the above-mentioned non uniqueness of GO occurs. 
The general results presented above will now be illustrated using the same two special scenarios 

employed for Model 1, namely the "equal-sized firms" case (all Vi = V) and the "big firms, small 
firms" scenario (Vi = Vb for 1 :::; i :::; nO. Vi = V. for nb < i :::; nb + ns = n, Vb > V s). 

EXAMPLE 1: Equal-Sized Firms. Here IN:;' u N;;I = 0 and IN~nl = n. Since n > m, comparison 
with (5.16) shows that Case lIB is ruled out. If V ;?: P, so that Case I or Case IIA holds, then (5.12) 
and (5.13) give 

FO = V;ot - Pm, GO = - V(n-m) (if V ;?: Pl. (5.56) 

Now suppose Case III is in effect, i.e., V < P. Then IT U E u LI = o. By reference to (5.25), (5.31) 
and (5.32), Case IlIA gives rise to 

p = Co = 0 (if V < P and Pm ;?: Vtot)· (5.57) 

For Case IIIB, one has 

a = {3 = 0, ~ = A = m, 

so that (5.51) and (5.52), together with (5.38) and (5.39), yield 

(if V < P and Pm :::; v.ot), (5.58) 

CO = - V(n - m) (if V < P and Pm < v.ot), (5.59) 

-V(n - m) :::; GO :::; 0 (if V < P and Pm = V;ot). (5.60) 

The dependence of GO on P and m is summarized in figure 3; the dependence of FO is given by the 
earlier figure 1. Note, in figure 3, that GO is not continuous across the hyperbola Pm = V;ot; as shown 
by (5.60), it is not single-valued on this curve, and its range of variation at each point of the curve is 
precisely the interval between its limits as the curve is approached from within each of the two 
regions identified in the figure. In the lower region, GO does not depend on P; this can be interpreted 
a.s a situation of "penalty saturation," in which stiffer penalties yield no improvement unless 
accompanied by greater inspection resources. 

EXAMPLE 2: Big Firms, Little Firms. The situation here is more complicated. First suppose Vb 
> V. ;?: P. Then either Case I or Case II applies, so that by (5.12) 
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m 
n 

m=n 
1-------""'- - - .. - _ .... - _ .. _ .. _ .. - - - - - - .. -

Pm = Vtot 

- GO = V(n-m) 

F IGU HE 3. Undetected iLLicit a.ctivity (equal -sized firms). 

FO = ~"t - Pm (if Vb > Vs 2:: Pl. (5.61) 

If m :::::; nb, then Vm = Vb, IN ~n I = nb and IN;;; 1= ns; Case I applies, and (5.13) yields 

(5.62) 

If m > nb, then Vm = V", IN~,1 = nb, and IN::. I = ns; Case IlB is ruled out, and (5.13) yields 

co = - V,(n - m) (5.63) 

Next, suppose Vb 2:: P > Vs. If m :::::; nb, then Case I or Case II holds, with Vm = VIJ, IN~nl = 

nb and INb"1 = ns; formulas (5_61) and (5.62) also apply to this situation. If m > nb, then V", = Vs and 
Case 1lI holds, with IT U EI = nb, ILl = 0 and lUI = IN::.I = ns. Case lLlA is c haracterized by 
P(m - nb) 2:: Vsns, in which case (5.31) and (5.32) yield 

GO = O· (Case IlIA). (5 .64) 

Case lIIB is characterized in the present context by P(m - nb) :::::; Vsns; it has a = {3 = 0, ~ = A = 
m - nb and IB"jV'f, IP = v"nsIP, so that (5 .51) yields 

FO = J!;ot - Pm (Case IIIB) (5.65) 

and (5.52) yields 

GO = - Vs(n - m) (Case IIIB), (5.66) 
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- V.(n - m) :::; GO :::; 0 (Case IIlB). (5.67) 

Finally, suppose P > Vb > v., so that Case III applies with IT u EI = O. If m :::; nih then ILl = 
0, IN::.I = nb, f3 = 1 and IB11 = ns. Case IlIA is characterized by Pm ~ Vtot, and by (5.31H5.32) it' 
yields FO = GO = O. Case IIIB is characterized by Pm :::; Vtut. and has A = m. There are two 
subcases. First, if Pm :::; Vbnb then a = 0, A = m, and (5.51H5.52) yield FO = Vtot - Pm together 
with 

GO = - (Vtot - Vbm) 

- (T';ot - Vbm) :::; GO :::; - V.(n - m) 

Second, if Vbnv < Pm :::; T';ot. then a = 1, A = m - VbnblP, and (5.51H5.52) yield P = Vtot - Pm 
together with 

GO = - V.(n - m) (if Pm < V;ot), 

- V.(n - m) :::; GO :::; 0 (if Pm = V;ot). 

Still supposing P > Vb > v., now assume m > nb. Then ILl = n/), IN~n l = ns and (l' = f3 = o. 
Case IlIA is characterized by Pm ~ Vtot , and as above yields FO = GO = O. Case IIIB is 
characterized by Pm :::; T';ot. has A = A = m - VbnblP; (5.51H5.52) yield FO = Vtot - Pm together 
with 

GO = - V.(n - m) 

- V.(n - m) :::; GO :::; 0 (if Pm = V;ot). 

The dependence of FO upon P and m is the same as in Model 1, portrayed in the earlier figure 2. 
The dependence of GO is summarized in figure 4. GO is continuous on the horizontal boundary 
segment (of the line m = nb), but is neither continuous across nor single-valued along the three 
hyperbolic boundary arcs. Note the presence of two distinct regions exhibiting penalty-saturation. 
(See table 2.) 
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TABLE 2. R esults for Model 2 

Case Definition Inspectee 's Strategy In spector's Strategy Payoffs 

<1.l 

'" '" u 

Vm > P d = 1 for all i p? = 1 for i EN;;' 
FO = V"", - Pm p? = 0 for i EN;. 

-Go = [Vm{n -INOiI - '11} + o < p? < 1 for i E N~n , 

I {p?: i E N~} = m - IN;;'I I {Vi: i E N;.}l 

~ 
~ 

'" U 

p? = 1 for i EN;;' FO = v,,,, - Pm 
Vm = P c? = 1 for all i p? = 0 for i EN;. 

-Go = [Vm{n - IN;.I- m} + 
IN;;.I + IN~I > m o < p? < 1 for i E N~" I{Vi: i E N;.}l IM: i E N~n} = m - I N~~ I 

t-.:l El 0 
'-0 ~ 

'" u 

Vm = P c?= 1 fori EN +m= T p? = 1 for i E N~, u N~ = T u E FO = v,,,, - Pm 
IN;;.I + IN~ I = m c? = 1 for i E N - m= U p? = 0 for i EN ;. = U -Go = I {Vi: i E N;.}l 

C? 2: V m+l lP for i E N~ = E 

a 
<1.l 

'" '" u 

Vm < P c? = 1 for i E T p? = 1 for i E T u E P=L{V,: i E T} - PITI 
m 2: IT u E I + ~ {V / P : o :S c? :s, 1 for i E E p? 2: ViIP for i E U GO = 0 
i E U} c? = 0 for i E U 

Vm < P d = 1 for i E T 

~ 

m :s IT U E I + ~ {V ilP : c? 2: c~Vm lP for i E E p? = 1 for i E T u E FO = /1;", - Pm 
i E U} p? = ViIP for i E L 

...... 
<1.l 

'" '" u 

c? = c~,v,nIP for i E L {i E Sb with 0 :s b < ex -Go = ~ b>olSolVt + {i E S b with 0 :s b < a p? = ViIP for i E S o if A = I S oI V~ /P {n - m - ~ b>olS ~ }c::'Vm 
c? = C~Vm/Vi for i E S o if A = IS o I V~IP 

p?:s V,IP fo r i E So if A < I S olV~1P 
0_ fESoifA <IS oIV~1P p? = 0 for i E So with ex < b :5 f3 

Ci - 1 for i E S with ex < b :5 f3 



m 
n 

(.\ 

o - G = Vs (n- m) 

FIGURE 4. Undetected illicit activity (big finns , small firms). 

6. Analysis for Model 2 

P 

Pm =Vtot 

Pm = Vbnb 

The aim in this section is to prove the results cited In section 5, I.e., to determine the 
equilibrium points (CO,p,,) of the game with payoff functions 

F(c,p) = :n [V; - Pp;]c;, C(c,p) = - L;' V;c;(l - p;). (6. 1) 

Mixed strategies for the inspectee (i.e., 0 :S Ci :S 1) are permitted. The convention 

(6.2) 

will remain in force, as will the definitions given in section 5 of the se ts T, f , E, U, N m, 

N in, N'tn, and N ;. and L. Of the two conditions defining an equilibrium point, (5.3) is equivalent to 
the pair of requirements 

C? = 1 if V; > ppp, (6.3) 

c? = 0 if V; < Pp?, (6.4) 

while satisfying (5.4) is equivalent to choosing pO so as to achieve 
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subject to (2.3). (6.5) 

An immediate consequence of (6.3) is that 

c? = 1 for i E T. (6.6) 

Another preliminary observation is that 

IN,t.1 + IN::.I ~ m, (6.7) 

since N,t. u N':,. contains N m' 

We begin with the situation 

(Case I). (6.8) 

Here N~, u N~n is a subset of T, so that (6.6) yields 

c? = 1 for i E N~, u N~n ' (6.9) 

and s ince N,t. contain s the IN~,llargest Vi'S and IN~,I < m , it foUow s from (6.5) that 

p? = 1 for i E N~,. (6.10) 

Combining (6.7), (6.9) and (6.5) , it follows that 

I {p?: i E N~,} = m - IN~,I (6.11) 

p? = 0 for i EN;;,. (6.12) 

By (6.3) and (6.12), 

c? = 1 for i EN;;,. (6.13) 

Conversely, any (CO,pO) which satisfies (6.9-6.13) also satisfies (6.3) through (6.5), and so is an 
equilibrium point. This completes the analysis of Case I. 

Next assume 

(Case II), (6.14) 

so that N,t., N':,., N;;, coincide with T, E, U respectively. By (6.6), 

c? = 1 for i E N~" (6.15) 

so that (6.5) implies 

p? = 1 for i E N,t. . (6.16) 
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Define the set 

N';,.J = {i: (6.17) 

we note that for i EN':" - N':"h (6.3) implies 0 ~ p - PP?, i.e., 

p? = 1 for i EN';,. - N':"J. (6.18) 

First assume that 1 

(Case HA). (6.19) 

Then (6.5) implies 

p? = 0 for i E N':" - N';,.l> (6.20) 

p~ = 0 for i E N-:;,.. (6.21) 

Comparison of (6.18) and (6.20) shows that N~, - N':"l is empty, i.e., 

c? = 1 for i EN':", (6.22) 

while (6.21) and (6.3) imply 

c? = 1 for i E N-:;,. , (6.23) 

and (6.16) and (6.20) imply 

2: {p?: i E N~} = m - IN;tI. (6.24) 

Conversely, such a (CO,pOj, which has the same structure as in Case I, satisfies (6.3-6.5) and so is an 
equilibrium point. The defining condition (6.19) takes the form 

IN;:;I + IN';,.I > m, (6 .25) 

i.e., m is not the last member of N':". 
Next assume that 

(Case lIB). (6.26) 

Then (6.5) together with (6.18) imply 

p~ = 1 for i EN';,.. (6.27) 

From this and (6.16) it follows that 

and comparison with (6.7) shows that 

(6 .28) 

I The analys is whic h follows wi1l show that this kind of correspondence coincides with Case IIA as de fined in section 5 (5.15). The same situation will recur 
in late r subcases . 
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(hence there is no overlap with Case IIA's range) and that 

p? = 0 for i EN;;,. (6.29) 

By (6.29) and (6.3) 

c? = 1 for i EN;;.. (6.30) 

From (6.5) it follows, in view of (6.27) and (6.29), that 

for i E N'i,. andj E N-;;" 

which by (6.28) and (6.30) is equivale nt to 

for i E N~,. (6.31) 

Conversely, if (6.28) holds, then any (CO,p<l) satisfying (6.15-6.16), (6.27) and (6.29-6.31) obeys (6.3-
6.5) and so is an equilibrium point. This completes the anaJysis for Case II. 

We turn now to the situation 

(Case III). (6.32) 

By (6.5) and (6.6), 

p? = 1 for i E T. (6.33) 

For i E E, if p? < 1 then (6.3) would imply c? = 1, which by (6.5) would imply p? = 1; hence 

p? = 1 foriEE. (6.34) 

According to (5.34), U has been paltitioned as L u N'i,. u N;;" where 

L = {i: Vm < ~ < P}; (6.35) 

Also, Ni" is partitioned as T u E u L. For i E L, if c? = 1 then (6.5) implies p? = 1, which by (6.4) 
implies c? = O. Hence 

c? < 1 for i E L, 

which by (6.3) implies 

fori EL. 

For each of co, le t 

M = max {~c?: i E U}, 

S = {i: i E U, ~c? = M}. 
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Then (6.34) and (6.5) imply 

c? 2:: MIP fori EE. (6.40) 

If 151 s m - IT u EI, then (6.5) would imply p? = 1 for i E 5 , in which case (6.4) implies c? = 0 for 
i E 5, so that M = 0 and 5 = U, which (since m < n) would contradict the supposition lSI S m -

IT u EI· Hence 

IT u EI + 151 > m. (6.41) 

By (6.5) followed by (6.3), 

p? = 0 fori EU -S, (6.42) 

c? = 1 for i E U - S. (6.43) 

It follows from (6.43) and the definition of M that 

M > max {Vi: i E U - 5}; (6.44) 

in particular, for each S E 5 , Vs exceeds that maximum. An immediate consequence is that 

L is contained in 5. (6.45) 

By (6.41), 5 cannot consist just of L, and then (6.44) implies 

N'in is contained in 5. (6.46) 

In particular m E 5, so that 

(6.47) 

At this point it is convenient to consider separately the situation 

M = 0, (Case IlIA) (6.48) 

or equivalently 

c? = 0 fori EU, (6.49) 

which by (6.3) requires 

foriEU, (6.50) 

implying 

m 2:: IT u EI + L {VJP: i E U}. (6.51) 

Conversely, under Case III, if (6.51) holds, then there exist pairs (CO,pO) satisfying (6.6), (6.49), (6.33-
6.34) and (6.50); since any such pair obeys (6.3-6.5), it is an equilibrium point. 
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From now on, assume 

M > 0 (Case IIIB). (6.52) 

Then it follows from (6.45) that c? > 0 for i E L, so that (6.4) implies p? :::::; V;!P, which together with 
(6.37) yields 

for i E L. (6 .53) 

A similar argument using (6.46) yields 

for i E N~, . (6.54) 

Also, (6.45) implies 

for i E L , (6.55) 

while (6.46) gives 

(6.56) 

Combi ning (6. 3) with (6.54) yields 

p? = V", IP [or i E N~" if C~, < 1. (6. 57) 

Now paltition N;;, into f3 blocks Bb , as de c ribed foU owing (5 .34). Then by (6.44), 5 n N-;;. 
consists of the first a of these blocks, (or some in teger a with 0 2: a 2: [3. For each block Bb in 5, 
{c~ i EBb} consists of a single numbe r d, and 

ct; = c?YmIVt; for 1 :::::; b :::::; 0' . (6.58) 

Since ct :::::; 1, (6.58) yields 

(6.59) 

On the other hand, if 0' < [3, the n (6.44) and (6.47) imply 

(if 0' < (3). (6.60) 

If c?n = 1, this implies 0' = 0, and requires 

IT u EI + I{V; IP: i EL} + IN~,I v'n iP 2: m. (6.61) 

If C~, < 1, then (6.58) implies 0 < cZ < 1 for 1 :::::; b < 0', and thu s by (6.3) and (6.4) 

p? = nIP for i EBb and 1 :::::; b < 0' . (6.62) 

Since c* :::::; 1, (6.4) yields 

p? 2: n iP for i E B a' (6.63) 
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It follows from these results that 

(6.64) 

Equality in the second relation is equivalent to equality in (6.63); this situation corresponds in the 
notation of (5.37) to A = IB "IV~ !P. If on the other hand A < IB aIV~!P, then since 

(6.65) 

by virtue of (6.33-6.34), (6.42), (6.52), (6.57) and (6.60), it follows that p? < V~ !P must hold for some 
i E B a , and so by (6.3) we have c~ = 1, which by (6.48) fixes the value of c~ at V~/Vt" 

Finally, observe that (6.51) and (6.64) will hold simultaneously if and only if the former holds as 
an equality while the latter' s second part holds as an equality with C\' = f3. 

7. Formulation and Results for Model 3 

Recall that section 5 originally set out to analyze the consequences of the payoff functions 

(7.1) 

G(c,p) = - 'IIi V;Ci (7.2) 

for inspectee and inspector respectively, but that this was found unfruitful within the framework of 
"equilibrium point" solutions to nonzero-sum games. The response in section 5 was to replace (7.2) 
with an alternative function (5.5) representing the loss (e.g., to consumers) due to undetected 
cheating (rather than all cheating) . In this section we explore a different approach, in which (7.2) is 
retained but the customary game-theoretic framework is altered. 

Specifically, the critical assumption here is that no matter what strategy p is selected by the 
inspector, the inspectee learns of it in advance (or can estimate it through experience), and so is able 
to select a strategy c(p) which maximizes his payoff, i. e., 

F[c(p),p] = maxc F(c,p). (7.3) 

(In general p is a mixed strategy, so that the inspectee need not know exactly which devices will be 
inspected but only the associated probabilities.) The inspector's problem, therefore, is to c hoose p so 
as to maximize the function 

H(p) = G[c(p),p]. (7 .4) 

To discuss this approach further, It IS convenient to make the further hypothesis that each 
component of c(p) depends only on the corresponding component of p , so that we can write C i(P i) 

rather than Ci(P). This hypothesis is reasonable per se (since the inspectee's c/s are not linked by 
any constraints), and also is consistent with the consequences 

Ci(Pi) = 0 if Pi > V;!P, (7 .5) 

if Pi < V;!P (7.6) 

of (7.1) and (7.3). 
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In term's of the set 2 

E(p) = {i: P i = V;/P} , (7.7) 

we can identify a set of components of c(p ), namely 

{Ci(P ;): i E E(p)} , 

which are not determined by the criterion (7. 3) . That is, c(p) is not single-valued, and so the same is 
true of the inspector's objective function 

(7. 8) 

Some further ass umption is needed to resolve this ambiguity. For example, since our critical 
assumption (that the inspectee knows p) is "pessimistic" fro m the inspector's viewpoint, one might 
wish to be consistently pess imistic and thus to re place the right-hand side of (7.4) by its minimum 
over all c(p) consistent with (7 .3). This is equi vale nt to setting 

all i E E(p ). 

At the opposite ex treme, one might want to introduce a co untervailing bias 111 the optimistic 
direction, and so wo uld set 

all i E E(p ). (7.9) 

This is the c hoice that will for the prese nt be made. It involves a notion of " no c heating wi thout a 
positive expec tation of gain," which is not im pla usible but certainly in volves appeal to co nsidera tions 
that are externaJ to the model (and that, in partic ula r, go beyond the penalty P a nd its dete rre nt 
effect). After the conseq uences of hypothesis (7.9) have been analyzed, we will co nsider the more 
general situa tion in whic h thi s ass um ption is not im posed. 

Retaining the notation 

V - ""V 101 - L 1 j , 

define 

V(/) = L {V;: i d} 

for subsets I of N, and set 

I (p ) = {i: P i ~ V; /P} . (7 .10) 

Then H(p) depends on p only via I(p ), since by (7.5), (7.6), (7.8) and (7.9), 

H(p ) - L {V;: i EN - / (p )} (7 .11) 

- V io l + V [/(P )]. 

2 The following nota tion sho ul d no t be confused with the usage of symbol " E" in (3 . 10) or with the expec ted va lue fun ction. 
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'- - Note that I(p) corresponds to -the set of devices· on which cheating will not occur, according to 
(7.5) and (7.9). From (7.11) it follows that the inspector' s problem can be written 

choose p to maximize V[I(p)]. (7.12) 

In this context, it is natural to ask which subsets I of N can arise in the form I(p) for so me p , i.e., 
as the " non-cheating" set for some strategy of the inspector. A>; will be shown in section 8, a set of 
conditions on a subset I which are both necessary and sufficient that I = I (p) for some p , are 

V(l) :s: Pm , (7. 13) 

1 <: T = N - T, (7. 14) 

P(m - II I - lTD < V(N - I - T). (7. 15) 

For a subset I of N which obeys these three conditions, there may be many choices of p for which 
I (p) = I . If III + ITI < m, one such p is given by 

Pi = 1 for i E I u T 

P i = [V;(m -I II -I T I)]IV(N - 1 - T) fori EN - 1 - T. 

If II I :s: m :s: II I + I Tj, then such a p is give n by 

P i = 1 for i E I , 
for i E T, P i = [m - III]/ITI 

P i = 0 for i EN - 1 - T. 

If II I > m then suc h a p is given by 

P i = V;/P + (1 - V;/P) [Pm - V(l)] / [P II I - V(l )] 
P i = 0 

fo r i E 1, 
fo r i EN - 1. 

(7. 16) 

(7.1 7) 

(7 .18) 
(7.19) 

(When Pili - V(I) = 0 then V; = P for all i E I and we interpret (7.18) as P i = 1. ) This will be 
proved in section 8. 

The inspector's problem can now be re phrased as that of choosing a subset I of N, subject to 
(7.13) through (7.15), to 

maximize V(i ). (7. 20) 

When such an I has been found , an optimal p can be calculated through (7. 16), (7. 17) or (7.18- 7.19). 
For the maximization problem, (7.15) and (7.16) are, in fact , unnecessary, that is, if 1 maximizes V(I) 
subject to (7.13) and (7.14) then III + I TI 2:: m , so that (7.16) does not arise, and I satisfi es (7.15). 
For a proof, suppose that II I + IT! < m. Since ITI + ITI = n > m, it follows that I is a p roper 
s ubset of T. Let} E T, } f I , and set 

J = 1 u {j} . 
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Since III ::s III + ITI < m, we have III ::S m - 1 and so 

1.l1 ::s 1.11 + ITI = III + ITI + 1 ::s m. 

Clearly .I satisfies (7. 13) and (7.14) and the left-hand side of (7.15) is nonpositive. The left-hand s ide 
of (7. 15) is equal to zero only whe n 1.11 + ITI = m and , in thi s case, .I is a proper subset ofT, so 
that the right-hand side of (7.15) is positive. Hence .I sati sfi es (7.15) as well. This contradic ts the 
assumption that I maximizes V( / ) subject to (7.13-7.15). 

For yet another formulation of the inspector's problem, introduce a vector x = (xt. X2, ... ,x n) 

of discrete variables 

{ lfori EI 
X;= OforiEN - I. 

Then the problem is to choose x to 

maximize L V;Xi (7.2 1) 

subject to the analogs of (7. 13) and (7. 14): 

(7 .22) 

Xi = 0 for iET. (7 .23) 

Problem (7.21}-(7.23) cannot in general be so lved in closed form. As a (b inary) integer program , 
it can (if n is not too large) be solved by any of the methods de veloped for suc h proble ms. More 
pec ificaUy, it is a " knapsac k proble m," for whic h special algorithm s a re available. 3 Its pec uliarity as 

a knapsack proble m, namely the prese nce of the same coeffi c ie nts (V;) in both (7.21) and (7.22), 
suggest the possibility of more e ffic ie nt " tailored" methods, but thi s will not be pursued here. 

EXAM PLE 1: Equal-Sized Firms. As before, we assume in thi s sce nario that all V; = V. If P < 
V, the n T is aU of N, so that (7.14) impues I is e mpty. Thus (7. 17) appues, giving 

Pi = min for all i, 

and the associated payoffs are 

FO = 11;", - Pnl, (7.24) 

GO = - 11;", . (7.25) 

This case corresponds to weak social sanctions, resulting in cheating on every de vice. 
If P 2:: V, then T is empty and the problem is that of choosing I to maximize III subject to 

III ::S Pm/V. (7.26) 

To describe the solution in thi s case, let k be the largest integer not exceeding eithe r Pm/V or n, and 
let I be any subset of N with III = k. Since n > m and P 2:: V, it follow s that k 2:: m, so (7.18-7.19) 

3 See. e. g .. A . V. Cabot ... An Enumeralion Algo rithm for Knaps ack Problems:' Opera tions Re se~rc h 18 ( 1970), 300.... 311 . 

219 



applies to yield 

Pi = m/k for i E I, 

Pi = 0 for i EN - I . 

The associated inspec tee strategy is 

Ci = 0 for i E I, 

Ci = 1 for i EN - I, 

and the resultant payoffs are 

p = - GO = V(n - k) = VIOl - Vk. (7.27) 

See figure 5 for a depiction of the payoffs a functions of P and m. FO is continuous along the 
line P = V, whereas GO has a discontinuity across that line. To the right of this line, P and GO are 
both discontinuous across each hyperbola Pm = tV for integers t ::::; n, since the integer parameter k 
changes value there. 

m 

n 
m =n ... -------...... -- -- _ ........ -------- ---

o 0 
F = -G = 0 

o -G = Vtot 
----.. Pm=Vtot 

v 

FIGURE 5. Net illicit gain (FO) and total illicit-activity level ( - GO). 
tEqual.s ized firm s) (k is g rea tes t intege r s Pm!V). 

p 

EXAMPLE 2: Big Firms, Little Firms. As before, N is partitioned into nonempty subsets, N 
B u S, with 

for i E B 

for i E S, 

and Vb > Vs. The notations nb = IBI and ns = lSI will again be used. 
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If Vb > V. > P then T is all of N, so that (7.14) implies I is empty (hence all Ci = 1). Thus 
(7.17) applies, giving 

Pi = min for i EN. 

The corresponding payoffs are 

FO = lItot - Pm, GO = - lItot. (7.28) 

If fb > P 2: v., then T = B and, by (7.6), Cj = 1 for all i E B. Thus by (7.14), I must be a 
subset of 5, and the inspector's problem is to choose such a subset to maximize III, subject to 

III ::; Pm/V.. (7.29) 

Two cases arise: 
In case ns ::; m, we take I = 5. This is clearly the largest possible subset of 5, and it satisfies 

(7.29) since ns ::; m and V. ::; P. From (7.17) 

Pi = 1 for all i E 5, 

for all i E B, 

and by (7.5) and (7.9), Ci = 0 for all i E 5. The resuJtant payoffs are 

(7.30) 

In the remaining case m < n s, let k be the largest integer not exceeding either Pm/V. or n s, and 
let I be any subset of 5 with III = k . (Thus k = n s and I = 5 when Pm 2: v,ns.) Since P 2: V. (and 
hence Pm/V. 2: m), and ns > m, it follows that k 2: m, and so (7.18-7.19) applies to yield 

Pi = m/k for i E I , 

Pi = 0 fori EN-I. 

Since m/k 2: VIP, it then follows from (7.5) and (7.9) that Ci = 0 for i E I, while by (7.6), Ci = 1 for 
i E 5 - I. The corresponding payoffs are 

FO = - GO = lItot - V,k. (7.31) 

Finally, if P 2: Vb > V., then T is empty. Let Xv = II n BI and Xs = II n 51. The inspector' s 
problem is to choose integers Xb and x s , which 

maximize z = VoXb + V-Xs (7.32) 

subject to 

(7.33) 

(7.34) 
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If Pm ~ V"'t then the optimal I is all of N (i. e ., Xb = nb and Xs = n s), so that all Ci = 0, implying FO 

= Co = 0, while (7.18) gives, for all i, 

Pi = V;/P + (1 - V; /P)[(Pm - V;oJ/(Pn - V;ot)]. 

Now assume Pm < Y;ot. No closed-form answer to (7.32- 7.34) seems possible, but trial-and
error solution methods should suffice. The maximum value Z max in (7.32) can be estimated by 

Pm - Vb < Z max ::; Pm ; (7.35) 

here the right-hand inequality follows from (7.34), while the left-hand one follows by observing that if 
Z ::; Pm - Vb then either x b can be increased by 1 (thus increasing Z by Vb) without violating (7.33) or 
(7.34), or else Xb = nb so that (since Z ::; Pm < V;ot) Xs < n s, implying Xs can be increased by 1 
without violating the constraints. (If Pm ::; V.n s , similar logic shows the left-hand side of (7.35) can 
be sharpened-i. e., increased-to Pm - v..) Furthermore, any optimal solution must satisfy Xb + Xs 

~ m , sin ce otherwise 

contradic ting (7.35). Thus III ~ m, so that (7 .18- 7 .19) applies to yield 

Pi = V; /P + (1- V; /P) [Pm -zmaJ/ [P(Xb +x s) -zmaxJ (7.36) 

for I EI , and Pi 
payoffs are 

° otherwise. Thus Ci ° for i E I and C ; 1 otherwise, and the associated 

(7.37) 

so that (7.35) yields the estimates 

(7.38) 

(In accordance with a parenthetical remark above, the term Vb in (7.38) can be reduced to Vs if Pm 
::; Vsns·) 

Figure 6 shows the payoffs FO and Co as functions of P and m. This concludes the di scussion of 
Example 2 in the context of Model 3. 

It remains to discuss the consequences of dropping assumption (7.9). For this purpose, we 
introduce the numbers 

C{ = C i(V;/P ), (7 .39) 

which necessarily satisfy ° ::; C{ ::; 1, and also set 

N + = {i E N : C{ > o}. (7.40) 

In practice, it is unlikely that the crs (i.e., the probabilities of cheating at the various devices in a 
context of zero expected gain) would be known accurately . They might be assigned nominal high, 
medium or low values (such as 0.90, 0. 50, and 0.10) in accordance with the insight or degree of 
optimism applicable to a specific application. They might well be assumed equal over all devices, or 
over each group of devices in a classification into a very few groups ; these common values could 
then be varied in a parametric sensitivity analysis. At any rate, these numbers are treated as 
"given" in what follows. 
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m 
n 

m=n 

---....... Pm = Vtot 

o 0 
D~F =-G <D+Vb 

o Pm = Vsns -G = Vtot 

F IGU RE 6. Net ill icit gain (p O) a.nd total illicit-a.ctivity level ( - C o). 
d~i ~ firrn !'o. ~ l1lal1 l i l'l ll ~) a, i ... j.!walt· ... t ill t t 'l.!t ' I s l}m!l '~ f (/) = l 't"l - l' fII L 

Ln addition to the set E(p ) de fin ed in (7. 7), it is co nve nie nt to de fin e further sets 

M( p ) = {i: Pi > V) P }, (7.41) 

L (p ) = {i: Pi < V) P }, (7.42) 

so that M( p), E(p ) and L (p ) form a partition of N. By (7.5) and (7.6), 

Ci = 0 for i E M( p ), 

Ci = 1 for i E L (p ). (7.43) 

while by (7.39) 

C i = ct for i E E(p). (7.44) 

It follows that 

- H (p ) = L {ViCr: i E E(p) Ii N +} + V[L(p)]. (7.45) 

The membe rs of the set E (p ) Ii N + constitute the "violatio ns" of the prev ious ass umption (7.9). 
At thi s po int, we te mporaril y restric t attention to the special case in whic h the set E of (3.10) is 
e mpty, i.e., no Vi is exac tly equal to P. The n for i E E (p ), we have Pi < 1. In this case, as will be 
shown in section 8, such violations ca nnot occur for an optimal p unless the two conditions 

M(p ) is empty, (7.46) 

Pi = 0 for all i E L(p) (7.47) 
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both hold. If they do hold, then 

2. {V;lP: i E E(p)} = V[E(p))/P. 

Thus violations of (7.9) can only occur for an optimal p if the problem's data present the 
"coincidence" that some subset of the ~'s, specifically {~: i E E(p)}, sums exactly to Pm. In all 
other cases, the assumption (7.9) does not alter the problem of finding an optimal p. 

To describe how the exceptional cases just defined can be treated (and identified), define an 
inspector's strategy p to be exceptional if it satisfies (7.46) and (7.47), which as already seen, implies 

V[E(p)) = Pm. (7.48) 

Since i E E(p) implies ViP = Pi::; 1, it also follows that 

E(p) c;;; f = N - T. (7.49) 

Conversely, if E* is any subset of N such that 

V(E*) = Pm, E* c;;; f, (7.50) 

then E* = E(p) for one (in fact, precisely one) exceptional p, namely the one defined by Pi = ~/P 
for i E E* and all other Pi = O. For exceptional p 's, (7.45) becomes 

-H(p) = 2: {ViC;*: i E E(p)} + V [n - E(p)) 

2. {~Ci*: i E E(p)} + V(N) - V[E(p)) 

2: {~Ci*: i E E(p)} + Vto' - Pm, 

so that the problem of selecting a "best" exceptional p is equivalent to that of choosing a subset E* 
of N to 

minimize 2: {~c/: i E E*} 

subject to (7.50). This can be written as a binary integer program in terms of variables 

namely 

subject to 

{ I ifi EE*, 
Y i = 0 otherwise, 

mInImIze 2: \' ~Ci*Yi 

L \' V;Yi = Pm, 

Yi = 0 if i E T. 
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As noted already, the preceding analysis leads (in partic ular) to those optimal p's which exhibit 
violations, i. e., for which E(p) n N + is nonempty. But it may be that no optimal p is of this type, 
and in any case the restriction to thi s type may unduly limit the varie ty of alternate optima found. 
Therefore, still assuming that E is empty, we consider how to find optimal p which are violation
free . 

For any such p , the first summand on the right side of (7 .45) is zero , and since L(p) and I(p) 
are complementary subsets of N, the problem becomes that of choosing violation-free p to maximize 
V[l(p)]. This leads, as below (7. 12), to the pro blem of choosing a subset I of N so as to maximize 
V(I) subject to (7. 13) through (7.15). As noted below (7.20), (7.15) is superfluous for this purpose and 
(7.16) does not arise. 

Suppose that III::; m ::; III + ITI. Then, by (7.17), no i d can lie in E (p ). Also, no i E T can lie 
in E(p) since Pi ::; 1 is required. If some i EN - I - T lay in E(p ) then Vi = 0, since Pi = ° by 
(7.17). Thus p is violation-free. 

Next, suppose such an optimizing I satisfies III > m. Since the emptiness of E implies 1 - V;IP 
oF 0, the p given by (7.18-7. 19) has E(p ) empty and hence is violation-free, except if V(l ) = Pm 
(i.e ., if equality holds in (7.13)). So if V(l ) < Pm , then a comparison of H(p) as give n by (7.11) with 
the "exceptional-strategy maximum" of H will identify the optimum. 

Finally, suppose the maximum value of V(l ) is Pm . (A higher value is forbidden by (7.13).) For 
any I achieving this value , and any p for whic h I ( p ) = I , we have (since V; ::; Pp i for all i E I (p )) 

V[l(p )] = L {V;: i E I (p )} 
(7.55) 

a nd since the end term s in (7.55) are equal, equality must hold thro ughout , implying that p is give n 
by 

P i = V;IP for i E I , (7.56) 

Pi = 0 fo ri EN - I . (7.57) 

This p is exceptional, and will exhibit violations unless I n N + is empty (for example, violations will 
occur if all ci > 0). If I n N + is nonempty for all I obeying (7. 13-7.15) and yielding V(l ) = Pm , 
then finding a best violation-free p is not constrained by sharpening (7 .13) to 

V(l ) < Pm. (7.13 ') 

In this case, for any I maximizing V(l) , it follows as before that the p given by (7.16), (7:1 7) or (7.18-
7.19) is violation-free and hence is a best violation-free strategy for the inspector. 

In the context of the last paragraph, it is necessary to check whether the constraint (7. 15) can 
s till be omitted in maximizing V(l ). If Pm < VeT) then the justifying argument given below (7.20) 
remains valid. The same is true when Pm ;::::: VeT), except if VeT) = V(U) = Pm. In thi s case (7.13) 
will be replaced by (7.13') and the solutions will be all sets I = T - {j} , where j is such that ~ = 

min {V;: i E T}. Since Pm = VeT), (7.15) is equivalent to V(/ ) < Pili + Pin whic h is true when III 
oF 0 (since I <;::; T) and is also true when III = ° (since ITI > 0). 

EXAMPLE I': Equal-Sized Firms . Here we illustrate the preceding material. The scenario (all V; 
= V) treated in Example 1 of thi s section is retained. However, the assumption (7.9) is no longer 
retained. It is assumed that E is empty, i.e., V i= P. " Violations" of (7.9) can occur only if Pm = kV 
for some integer k with k ::; n. When no such k exists, the analysis of Example 1 remains valid. 

For the present example, we therefore assume that Pm = kV where k is an integer with k ::; n. 
It is also necessary to specify the numbers ci of (7.39). Without loss of generality, the devices may 
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be supposed numbered so that 

:::; c/ :::; 1. (7.58) 

If P < V, then T is all of N, so (7.54) implies that E* is empty. Thus no exceptions to (7.9) 
arise, so that the analysis in Example 1 is applicable. 

Now suppose P > V. First a best exceptional strategy, pE, will be determined. Since T is 
empty, (7.54) is vacuous. Since PmIV = k, problem (7.52- 7.53) becomes that of choosing a subse t 
E* of N to minimize I {ct: i E E*} subject to IE*I = k. Clearly a solution is given by E* = {1,2, 
... , k}, and by the remark following (7.50), pE is given by 

p/ = VIP fori EE*, p;E = 0 otherwise. 

Use of the formula preceding (7.51) gives 

(7.59) 

Now a best violation-free strategy, pF, will be determined. The problem of maximizing V(I) , 
subject to (7.13- 7.14), has as solutions all subsets I of N with III = k, implying V(l) = kV = Pm. 
There are two subcases. If I can be chosen disjoint from N +, w hjch is true if and only if Ck = 0 in 
(7.58), then in particular I can be taken as the set E* given above; here pI-; is violation-free , can be 
taken as pF, and so is optimal. But if ci; > 0, then (7.13) must be replaced by (7.13') in the 
maximization of V (l). This problem has as so lution any subset I of N with III = k - 1 (note that 
P > V and Pm = kV imply k > m 2: 1), in particular I = {1,2, ... , k -I}, yielding 

p/ = ml(k - 1) for i E 1, p t = 0 othelwise . 

Equation (7.11) yields 

H(pP) = - V;"I + V(k - 1) = - VI"I + Pm - V. (7.60) 

When Ck > 0, (7.59) and (7.60) must be compared to determine the optimum. If I1 c; 2: 1, 
then H(pt) :::; H(pF) and so p P is optimal. If It c1 :::; 1, then H(pc) 2: H(pF) and pE is optimal. 
This concludes the discussion of Example I'. 

To complete trus discussion of Model 3, we must consider the consequences of removing the 
restriction, introduced shortly below (7.45), that E is empty. Denote by P* the problem of c hoosing 
an inspector's strategy p to minimize the expression (7.45). For each integer k in the range 0 :::; k :::; 
min {lEI, m} , let Pk be the problem obtained from P* by adjoining the constraints 

Pi = 1 for exactly k members i E E. (7.61) 

If pk denotes an opt imal solution to Pk , and K is such that 

(7.62) 

then clearly pK is an optimal solution to P*. Thus it suffices to be able to solve the problems Pk . 

For each k, let Ek be a subset of E such that lEI = k and I {cr: I EE k} is minimum. In other 
words, this sum consists of the k smallest me mbers of {cr: i E E}; ties can be broken arbitrarily. It 
will be shown in section 8 that Pk has an optimal solution for wruch 
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P i = 1 (7. 63) 

Pi = max {a, m - k - (n - IEln /(I E I - k) fori EE - E k • (7.64) 

Thu s the analysis o f Pk can be co nfined to s uc h strategies. Because m < n , (7.64) gives i E L (p ), and 
so (7.45) yield s 

- H (p ) = 2: { /I;c{: i E E(p) r N - E} + V[L( p ) - E] 
(7.65) 

There fore the problem Pk becomes that of choos ing the nonnegati ve quantIt les {pj : i E N - E}, 
whic h by (7.63) and (7.64) must sum to min {m - k, n - lE I}' so as to minimize the sum of the first 
two s ummands in (7.65). This problem, howeve r, is of the type treated ea rlie r (no V; = P), with N 
re placed by N - E and m by min {rn - k, n - lE I}' and in that se nse 4 can be regarded as " already 
solve d." 

It wiJJ also be shown in sec tion 8 that the range of k , for proble ms Ph" to be trea ted as indica ted 
a bove, can be co ntrac ted. To de fine the reduced range, le t U = {i : V; < P} as before, a nd se t 

p = min {lE I, m - I - V(U)/P}, 

a = max { - I , m - V(U)/P }. 

Let r be the greatest intege r not exceed ing p, and s the s mallest intege r greate r than a. If s 2:: min 
{lE I, m }, se t I equal to thi s minimum ; othe rwise, se t l equa l to the grea test integer be tween sand 
min {lEI, m} incl us ive for which 2: {cf : i E E[ - Es } < 1, with tie-brea kings in the choices of El -
E s pe rfo rmed so th at the latte r is a subse t of the former. The n the proble ms Pk need be solved only 
ove r the range 

max {a, r} :s k :s I . (7.66) 

No loss of alte rn ati ve optima is inc urred by im posing the uppe r limit ; the same is true of the lowe r 
limit , whe n Vi : i E E} has as many as r me mbe rs < l. 

EXAMPLE 1": Equal-Sized Firms . We can now co mple te the d isc ussion of thi s sce nario, for 
Mode l 3 without assumption (7 .9), by cove ring the case excl uded in the previous Example I ': tha t of 
all V; = P. As before, we ass ume the numbe ring is suc h that 

o :s ci :s ct :s .. . :s c;, :s 1, 

and can the refore take E k = {l , 2, .. . , k} . Since E = N, the first two te rms on the right-hand side 
of (7 .65) are zero, yielding 

H(p ) = - P[2:~ c)' + (n - k )] 

as the optimal value (call it H J fo r problem Pk . Because 

the value K in (7 .62) can be take n he re to be K = m. Thus an optimal strategy for the ins pector is 

~ Except fo r the poss ib il it y of equalit y in mi n (tTl - k. n - lEI> = m ' :s: 11 ' = 11 - lEI. whe n the solution of the red uced proble m is tri vial. 

227 



given, by (7.63) and (7.64), as 

Pi = 1 
Pi = 0 

and the optimum insjJector's payoff is 

for 1 ::; i ::; m, 
form < i::; n, 

H m = - PO:;" ci + (n - m)] = - T';ot + Pm - V L;" c1 

consistent with the result (7.59) for Example I'. 
In order to illustrate the various types of optimal strategies which can occur, we will close this 

section with a numerical example. 
EXAMPLE 3: Let n = 5, m = 2, P = 1, and 

Thus T is empty, E = {1,2}, and V(U) = 1.3. Also, p = -0.3 and r = -1, so that the lower limit in 
(7.66) does not ease the analysis. Without loss of generality, we can assume ci ::; c~ and c~ ::; ct. 
We have (]" = 0.7 and s = 1, so that if c~ = 1 then I = 1 and so (7.66) would excuse us from 
analyzing problem P2• The problems Pk (k = 0,1,2) will be considered separately . 

For P2 we have E2 = {1,2}. By (7.63), 

PI = P2 = 1, 

and, in the reduction of P2 to devices {D3, D4, D,;}, we have n' = 3 and m' = o. Clearly this has the 
sole solution 

P3 = P4 = Po = o. 

Combining these, we get the unique optimal solution to g. By (7.65), 

- H2 = 1.3 + ci + cr (7.67) 

For PI we can take EI = {I}. By (7.63-7.64), 

PI = 1, P2 = 0, 

and, in the reduction of PI to {D3, D4, D5 } we have n' = 3 and m ' = 1. According to (7.51) through 
(7.54), finding a best exceptional strategy pE for this reduced problem is equivalent to finding {Y3, 
Y4, Y5}, each either 0 or 1, to 

mllllmize 0.3 cj Y3 + 0.5 ct Y4 + 0.5 d Y5 

subject to 

0.3Y3 + 0.5Y4 + 0.5yo = 1. 

The only solution of the constraint in (O,I)-valued variables is Y3 = 0, Y4 = Yo = 1, yielding 

pf = 0, pf = p~ = 1/2 , 
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and corresponding via (7.65) to an H-value given by 

- Hf = 1.3 + ei + 0.5et + 0.5er (7.68) 

According to (7.21) through (7.23) finding a best violation-free strategy pF for the reduced problem 
begins by finding {X 3, X4, X5}, all 0 or 1, to 

maxImize 0.3X3 + 0.5x4 + 0.5x:; 

subject to 

0.3X3 + 0.5x4 + 0.5x:;::s; 1. (7.69) 

Since the maximum achieves equality in (7.69), if e~ > 0 then (7.13) is to be replaced by (7.13'), i.e ., 
(7.69) is to be replaced by 

0. 3X3 + 0.5x4 + 0.5x:; < 1. 

This yields alternate solutions I = {3,4} and I = {3,5}; the first of them gives, by (7 .18-- 7.19), 

p~'=.5/ 12 , p~'= 7Il2, p~ = O . 

By (7.6.5), 

- Ht' = 1. 5 + ej. (7.70) 

Co mpari son of (7.68) and (7.69) yields 

if d + c~ ::s; 0.41 

Ht' = max {Hf, Hi} if d + d 2: 0.41. 

Finally, corresponding to problem Po we have the empty set Eo. By (7.64), 

PI = P2 = O. 

The reduction of Po to {D3, D4, D5 } has n' = 3 and m' = 2. Since no subset of {V3 , V4, V:;} sums to 
Pm', we need only find the best violation-free strategy for thi s reduced problem. This leads to I = 

{3, 4, 5}, and by (7.18--7.19), 

P3 = 10117, P4 = P5 = 12117. 

By (7.65), 

- Ho = 2. (7.71) 

The maximum value Hmax of H, corresponding to the optimal inspector's strategy, is given by 

-Hmax = min {-H2' -Hf, -HL -Ho} 
(7.72) 

= min {1.3 + cf + e~, 1.3 + ei + O . .5(d+e~), 1..5 + ei, 2}. 
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Note that the value of d is irrelevant. In table 3, it is shown that each of the four possible optimal 
strategies described above, and correspondingly each of the four candidate expressions for the 
minimum in (7.72), can yield the optim urn for some choices of {cr, c~, c~, C~5}' In each row of the 
table, the optimal value of H is marked with an asterisk. 

ci = cr = 0. 1. 

c~=c~= 0.9 

ct = 0.1 , cJ = 0.9, 
c~ = c~ = 0.1 

ct = O.I ,c~ = 0.9, 
c~=c;= 0.9 

ci = ci = ct 
= c; = 0.9 

TABLE 3. Alternative forms of the optimu.m for Example .j 

Problem P, Problem PI 

PI = p, = 1 PI = 1 p, = 0 

P3 = P4 = p, = 0 
. . . I F 

p~ = 0 p!( = pk = :1 p5' = 5112, P:' = 7112. p, = 0 

- 1.5* - 2.3 - 1. 6 

- 2. 3 - 1. 5* - 1.6 

- 2. 3 - 2.3 - U j* 

-:3.1 -3.1 - 2.4 

8. Verifications for Model 3 

Problem Po 

PI = p , = 0 

fJ 3 = 10117, 
fJ " = p , = 121 17 

-2 

- 2 

- 2 

- 2* 

In this section we present proofs of several assertions made during the analysis of Model 3 in 
section 7. 

For the first of these, recall from (7.10) the definition 

I (p) = {i: Pi ~ V;lP}. (8.1) 

We are to show that a subset I of N has the form I(p) , for at least one p , if and only if 1 satisfies the 
three conditions 

V(I) :::::; Pm , (8.2) 

1 <;: t = N - T, (8. 3) 

P(m - III - ITI) < V(N - 1 - T). (8.4) 

For the proof of sufficiency, suppose 1 obeys (8.2-8.4). If III + ITI < m then, following (7.16), 
set 

Pi = 1, fori El u T, (8.5) 

Pi = [1-';(m - II I - ITl)l /V(N - 1 - T) for i EN - r - T (8.6) 

Since m < n and all 1-'; > 0, the denominator in (8.6) is strictly positive. It is clear that all P i ~ 0, 
and it follows from (8.4) and (8.6) that Pi < 1 for i EN - 1 - T, so that all Pi:::::; 1. From (8.6) we 
have 

I {Pi: i EN - I - T} = m - III - ITI, 
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so that ~;' Pi = m. Thus (8..'"r8.6) indeed define a proper p . It follows from (8.3) and (8.5) that i E I 
implies i E I(p). It follows from (8.6) and (8.4) that i EN - I implies i EN - I (p ). So I = I (p ), as 
desired. 

Ifl/l :s m:S II I + In the n followin g (7. 17), set 

Pi = 1 
Pi = [m - 1/1l /ITI 
Pi = 0 

fo r i E I , 
fo r i E T, 
fo r i E N - 1 - T. 

(8.7) 

(8.8) 
(8.9) 

The de nominator of (8.8) can be nonpositive onl y whe n T is e mpty. Clearly 0 :s Pi :s 1 for alJ i. 
Also, ~;' Pi = m. Thu s, (8.7-8.9) de fin e a proper p. Clearly (8.7) implies that i E I (p ) fo r al l i E I 
and , if i EN - I, the n (8.&--8.9) imply that i EN - I (p ). So / = 1(P), as desired. 

If III > m the n, following (7. 1&-- 7.19) , set 

Pi = V;/P + (l - V;/P) [Pm - V(l) ) /[P I/I - V(l) ) foriE/, (8. 10) 

Pi = 0 fori EN - I . (8.11) 

In view o[ (8.2), the denominator of (8.10) could be nonpos il ive onl y if Pil i :s Pm , contradic ting II I 
> In. It fo llows, us ing (8. 10), (8.2), a nd (8.3), that all P i ~ O. Us in g II I > m , il follows fro m (8. 10) 
that Pi :S 1 fo r i E I , and thus fo r a ll i. Also 

L;' P i = V(1) /P + [II I - V(I )/P)[Pm - V(I) ) /[P I/ I - V(I)) 
= V(I )/P + (11 P)[Pm - V(I)) = m. 

T hus (8. 10-8. 11) de fin e a proper p . Clea rl y (8.11) impli es thai i EN - I (p ) for aU i E N ~ I . And if 
i E I , Ihe n (8. 10) togethe r with Ihe prev io us reaso ning, impli es thai Pi ~ V;/P, ass urin g i E I (p ). Thus 
aga in / = J(p ), as des ired. 

Fo r the necess it y proof, we show th at eac h sel I (p ) sati s fi es (8.2-8.4) . First, 

V[I(p )) = L {V; : i E I ( p )} :S L {PP i: i E I (p)} 
:S P 2:;' Pi = Pm , 

ve rifying (8.2) . Second , by (8. 1), i E J( p ) im plies 1 ~ V; /P, ve rifying (8.3) . Third , 

In = I ;'P i = L {Pi: i ET - / (p )} + 2: {Pi: i E/(p )} + L {Pi: i ET} 

:S I {V;/P: i E T - J( p)} + I/(p)1 + ITI 

= {V(T ) - V[I(p)]} / P + 1/(p)1 + In 

with s trict inequality whe n T - J(p ) is none mpty. This verifies (8.4) unless J(p) = T in wh ich case 
(8.4) foll ows from n > In . 

Nex t s uppose p is a n optimal stra tegy [or the ins pector, that E = {i : V; = P} is e mpl y, and 
that 

E( p) (I N+ = {i: Pi = V; /P a nd cl > O} (8. 12) 

is nonempty. We are to prove that 

M( p ) = {j: Pi > ViP} is e mpt y. (8.13) 
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and that 

(8.14) 

For the proof, first observe that Pi < 1 (i.e., V; < P) for each i E E(p) II N+. If there existed 
j E M(p), then one could choose a number 8 with 

o < 8 < min {1 - V;/P, Pj - ViP} 

and then define an inspector's strategy q by 

qi=Pi+8, qj=Pj-O, qt=Ptfort 4=i,j. 

Since M(q) = M(p) u {i}, E(q) = E(p) - {i} and L(q) = L(p), it follows from (7.45) that 

- H(q) = - H(p) - V;ci < -- H(p) , 

contradicting the optimality of p. Hence (8.10) holds. If there existed an index k for which (8.14) was 
contradicted, i.e., k E L(p) and P k > 0, then one could choose a number YJ with 

o < YJ < min {1 - V;/P, Pk} 

and then define an inspector' s strategy r by 

ri=Pi+YJ, rk=Pk-YJ, rt=ptfort 4=i,k. 

As above, this would lead to a contradiction of the optimality of p, so (8.14) must hold. 
It remains to verify the assertions made in the final part of section 7, that following the 

discussion of Example I'. Recall that P* is the problem of choosing an inspector's strategy p to 
mInImIze 

-H(p) = 2: {V;ct: 
= 2: {V;ct: 
+ P[l {ci: 

i E E(p)} + V[L(p)] 
i E E(p) - E} + V[L(p) - E] 

i E E(p) II E} + IL(p) r: Ell 
( 8.15) 

For 0 :::::; k :::::; min {IE I, m}, P k is the problem of minimizing H subject to the further restriction that 
IE(p) II E I = k. 

The first of these assertions is that P k has an optimal solution in which E(p) II E = E k, where 
Ek is any particular solution to the problem of finding a subset E' of E which minimizes 2: 
{c;: i E E'} subject to IE'I = k. In fact, the following argument will show that every optimal 
solution p of P k is such that E(p) II E is a solution of the last-mentioned problem, which we denote 
(h-

For the proof, assume p is an optimal solution of Pk for which E(p) II E 4= E k . Since these two 
sets each have k members, it follows that 0 < k < lEI and that there exist indices 

i E Ek - E(p) II E, 

By the definition of E k, we have ci :::::; cj, with strict inequality if E(p) II E is not a solution of Q k 

(i.e., does not correspond to k smallest members of the indexed set {c ~ : r E E}). Define an 
inspector's strategy q by setting 

qj = Pi < 1, qi = pj = 1, qt =P, for t 4= ij. 
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Then E(q) - E = E(p) - E, L(q) - E = L(p) - E, and 

E(q) n E = [E(p) (I E - {j)] u {i}, 

L(q) n E = [L(p) (I E - {ill u {j}. 

Thus q satisfies the condition defining P k, and it follows from (8.15) that 

-H(p) - [-H(q)] = P(Cj - cJ ~ 0, 

where the inequality is strict if E(p) n E is not a solution of () k. contradicting the optimality of p for 
Pk • Thus equality must hold, and so q is also optimal for Pk ; repetition of thi s step will clearly lead 
to an optimal strategy 1T' for P k such that E( 1T') (I E = E k, as desired. 

We are now assured that Pk has an optimal strategy p such that 

Pi = 1 (8.16) 

Pi < 1 for i E E - E k • (8.17) 

By (8.15), for such a strategy H(p) does not depend on the specifi c values of {Pi: i E E - E k } = 

{Pi: i E L(p) n E}. To see how these values might be chosen, note that by (8.16), the devices 
{Di: i E E k } rece ive an amount k from the total::;' Pi = m of " inspection resou rces." For an 
optimal solution to Pk , since H(p) does not depend on {Pi: i E E - E k } so long as they are < 1, it 
can certainly do no harm to make available to the remaining n - lEI devices {D;: i EN - E} as 
much of the remaining subtotal m - k of inspection resources as they can absorb . This amount 

m - k - min {m - k, n - lEI} = max {O, m - k - (n - IEIl} 

is to be realized as L {Pi: i E E - E k}, subjec t to (8.17). The simplest such allocation of this 
residual is the uniform one, leading to (7.63) and (7.64); alternative allocations lead to alternative 
optimal solutions to P k. 

For the verification of (7.66), first observe that proble m P k has been reduced to that of choosing 
the probabilities {Pi: i EN - E = V u T} , summing to min {m - k, IV u TIL so as to minimize 
the function given by (7.65), namely 

- H(p) = L {VI-ci: i E E(p) - E} + V[L(p) - E] 

+ P[L {c{: i E Ek} + IE - Ekll 
(8.18) 

Let H k denote the corresponding maximum value of H. The solution of the original problem, P *, 
has been reduced to determining an index k for which max {Hk: 0 :::; k :::; m} occurs, and solving 
the associated problem Pk • 

The set-inclusions 

E(p) - E ~ V, T ~ L(p) - E 

are easily verified. Their use shows that (8.18) can be written 

- H(p) = L {V;c f: i E E(p) n V} + V[L(p) (I V ] 

+ V(T) + P[l: {c{: i E E k } + IE - Ekll. 
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Thus solving P k is equivalent to choosing the probabilities {Pi: i E U}, summing to min {m - k, 
I U I} , so as to minimize the sum of the first two summands on the right-hand side in (8.19). The 
probabilities {p j: i E T} can be c hosen arbitrarily, except that they must s um to min {m - k, 
IU u TI} - min {m - k, lUI}, whic h can be ac hie ved since the difference li es between 0 and ITI 
inclus ive . 

Le t r be the largest inte ger not greater tha n 

p = min {lEI, m - 1 - V(U) /P}, 

and assume for this and the next paragraph that p > 0, so that r 2: O. Le t fl, 
will next show that 

max {Hk : r :s k :s fl,} = max {Hk : 0 :s k :s fl,} . 

(8.20) 

min (lEI, m ). We 

8.21) 

In othe r words, the search for the maximum in (7.62) can be confined to the s ubrange {k : r :S k :s 
fl,} of {k: O :s k :S fl,} . Note th at thi s is prec isely the a ssertion made by the first equality in (7. 66). 
The argume nt will also show that if r me mbe rs of {ei : i E E} are < 1, the n no optima exi st o utside 
thi s s ubrange, i. e., 

max {Hk: O :s k < r} < max {Hk: r :S k :S fl,}. (8.22) 

For the proof, assume k :S r. Since ,. :S p, it follows tha t k < Tn - V(lJ)IP. Moreove r, since Vj 

< P for i E U, it follows that V(U)IP < lU I if U is no ne mpty. Thus, if U is none mpty, the n 

V(lJ)IP < min {Tn - k, IU I} :S IU I· 

This implies tha t the probabilities {Pi: i E U} , summing to min {Tn - k, lUI}' can be chose n so 
that Pi > VJP. S uch a choice (vac uously poss ible if U is e mpty) makes the fi rs t two summ a nds on 
the right-hand side of (8. 19) va ni s h, a nd the re fore achi eves the optimum in proble m P k' It follows 
tha t 

for k :S r, (8.23) 

where 5 ". de notes the s um of k smallest me mbe rs of {ei: i E E}. Thus, for k < r , 

where the inequality holds because 5 k + l - 5 k is equal to some ei. Mo reove r, if each summa nd of 5 r 
is < 1, the n fo r k = r - 1 thi s ineq ualit y must be stri c t. The res ult s (8. 21) a nd (8.22) follow 
immediately from these obse rvations. 

Ne xt le t s be the smallest integer greater than 

if = max { - I , m - V(U)IP} , (8.24) 

and co nside r an y k with k :S fl, and 

(8.25) 

It will be s hown below that H k < H s' Thi s implies the second inequality of (7.66), comple ting the 
verifi cation of the asse rtions in section 7. In (8. 25), it is ass umed that tie-breakin g in the formation of 
E k a nd E s is performed so that the latte r is a s ubset of the form er ; that is, the s um in (8. 25) cons ists 
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of k - s largest among k smallest membe rs of {cf : i f. E}, and is equal to Sk - Ss in the notation 
of the preceding paragraph. If 5 = 0, E s is the em pty se t. 

The proof that /-I k < /-Is will co nsist of showing that 

- Hk 2: V(U) - P(m - k) + V(T) + P[5k + lEI - k], (8.26) 

and that 

- /-I s < V(U) - P(m - 5 - 1) + V(T) + P[Ss + IEI-5 ]. (8.27) 

These ineq ualities together imply 

= P[l - (Sk - 58)] ::s 0, 

whe re the last inequality follows from (8.25); thi s yields H s > J-I k' 

To prove (8.26), le t p h" be an optima l strategy for Pk , so that (8. 19) yields 

- H" 2: V[L(p/) Ii U] + V(T) + P[5" + lEI - k] 

= V(U) - V[{M( ph") u E(pk)} n U ] (8.28) 

+ V(T) + P[Sk + lEI - k]. 

Since 

V[ {M( pk ) u E( pi, )} Ii U] ::s P 2: {pr i f. {M( p i,) n E(pk)} u U} 

::s P L {p7: i E U} ::s P(m - k), 

(8.26) follows from (8.28). 
We [jnaJJ y turn to the proof of (8.27). The de finiti on of 5 [see (8.24)] implies s 2: 0. S ince (8.25) 

implies k > 5, we have s < k ::s /-L ; thus ° ::s 5 < /-L , and so P8 a nd Hs a re we U-de fin ed . Note that 5 

< /-L ::s m; also, the definition of s gives 5 > m - V(U)IP. It foUows that 

0 < m - s < V(U)/P. (8.29) 

Since VJP < 1 for i E U, (8.29) imp~es that there ex ists a subset W of U such that 

m - 5 - 1 < V(W)IP < m - 5. (8.30) 

S ince intege r m - 5 > 0, the first ineq ualit y impues tha t II;/' is nonempty; s ince VIP for i E IV, it 
follows that 

V(lf/)/P < min {m - s , IWI} . (8 .31) 

Thus there ex ist probabilities {pf: i E W}, summing to the right-hand side of (8.31), for which p7 > 
V;lP for i E W . Since 

° ::s min {m - 5, lUI} - min {m - 5, IWI} ::s IU - WI, 
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there exist probabilities {Pf: i E U - W} summing to the middle term in (8.32). Thus the 
probabilities {pf: i E U} sum to min {m - s, lUI}, and so can be entered in (8.19) for the problem 
Ps , yielding 

-H(pS) = L{~ci: i EE(pS) n U} + V[L(pS) n U] 

+ VeT) + P[5s + lEI - s]. 

Thus 

-Hs::S -H(pS) ::S V[{E(pS) u L(pS)} n U] 

+ VeT) + P[5s + lEI - s] 

= V(U) - V[M(p) n U] + VeT) + P[5 s + lEI - s]. 

Since the choice of {p~: i E W} assures W ~ M( p) n U, it follows that 

-Hs ::S V(U) - V(UI') + VeT) + P[Ss + lEI - s], 

and this together with the first inequality in (8.30) imply (8.27), completing the proof. 

9. Index of Notation 

Pa~t' Pa~e 

Eb ... .... .. .. . .. .. . .. . . ... ... ..... . . ... . ....... 204 n., . .... ...... . . . . ... . ..... .. ..... . . . ... .. .. •... 196 
c ... . .. . ... . . ........ . . ........... . ......... ... 191 N m ...•......... • • • .. • . • . • . • •• • ••• •.•• • ••• • •••• 202 
Cj ...... •• ... ... • • ••.... .... • • ........ • .•. ..... . 

CO ..•......• • •........•......... . . • ......... 

c? ..... . . .... . .. . .. . . . . .. . . . . . . . . . ... ....... . . . 
c(p) .......................................... . 

D; ....•...................... . .... ............. 
E .................... . ............ . ........... . 
EP .... . ..... .. ....... .. ..... .. . . . . ... . . .. .... . 
E(p) .......................................... . 

F(c, p) ........•.. . ............................. 

FO ............•.. . . . . . . • ••• . . ... .. .. . • .• . . .. ... 
G(e, p) ..... .. .. .. . . . . . ..... . . . .... ... . . ....... . 

GO •.................... . ................... . .. . 
H(p) ........ . ..... . .. . ........................ . 

H(pf:) ...... . . ................ •.. .. .. .... . . .. . .. 

H(p'l ..... ..... • ......... . . .................... 
I ( p) .......................................... .. 

L ......... ... . . . . . ... . . . .. . .. . .. . .... . . . . . . . . . . 
L(p) ......... . ......... .. .. .. ... .. . ...... .... .. 

m .... . . .... . . .... . . . . . . .. ........ .. ... .. ..... . 

191 Ni" .......... .. . .............. .. . .. . ........... 202 
193 N-;;. ....... .............. . . . .... , ............... 202 
194 N?, .... . ...... . . . . .. . ...... . . .. ........ . ....... 202 
216 N?,; . ...... ....... . . ........ .. . .. ........... . .. 212 
191 p ............. .. ............................... 191 
194 P ............. .. .............. . .. . ............. 191 

191 202 p; 
217 pO . . . . . . .. . .. . ........ .. ... . ... . . . . . . .. . . .. .. .. 193 
192 p? ..... .. ....... . ............................. . 194 
193 p" ....... . ...... . . ... . . . . . . . .. . ..... . . . ........ 226 
202 p' ............................... . .... . ..... . .. 226 
202 T .................. . .. ................... .. .. .. 193 
216 f .............................................. 193 
225 U .. .. .. .... . .. ... . . .. ........ . ...... . ... ....... 194 
22S V; ........... . ..... . . . . .... . . . .. .. . . ..... .... . .. 191 
217 /1;", ........... • . • . • ..........•.•. • ..... •• ..... . 1% 
204 Vb ............................................. 196 
222 V" ........ . .... ......... . ...................... 196 
191 Vt ......... . ...... . ..... .. .. . . .. .. . ...... . .. ... 204 

M ..................... . ... ....... .. ...... ..... 191 
M(p) ................. . ........................ 222 ~ ................. . .. ... ..... .. . ............... 204 
n .... ..... . . ... . ... . . .... . . . .. ... . .. .. . . . . .. ... 191 A . .. . . .. . . .. . . . . . . . . . ...... .. . . . . . ...... . .... .. 20S 
N . ..... . .................. . ................ . ... 191 a .......................... .. ...... . ... . .. . . ... 204 
nb .... .... ... ..•........ ... ....... . .... ..... . . . 196 f3 ..............••.•...... ....• ... .. ...... ... ... . 204 
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