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Transient Solutions for Stratified Fluid Flows™
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The solution to an initial value problem for the flow of a buoyant inviscid incompressible fluid
in three-space is given in terms of a fundamental solution. The initial values and the distribution of
source strength can be quite general subject only to mild restrictions on smoothness. The fundamental
solution and its associated velocity and displacement fields are given explicitly and in some detail.
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Introduction

This article presents a solution to an initial value problem in the theory of stratified fluids.
Thus it is a contribution to the theory of buoyant flow and internal gravity waves and also to the
closely related topic of flows in rotating fluids.! A system of two linear second order equations in
three space dimensions and time govern the problem. The equations describe the flow of an in-
viscid incompressible fluid in which an arbitrary distribution of source strength is prescribed.
The approximations that the density and the buoyancy frequency are constant are used. A funda-
mental solution of the system is used to solve the initial value problem in terms of the source
distribution and the initial conditions. The fundamental solution is given explicitly; and a number
of its properties are noted, including its velocity and displacement fields.

Section 1 gives a summary sketch of the system of equations governing the flow. They result
from a first order perturbation from static equilibrium of the conservation equations for momentum,
density, and mass. Needless to say, these equations agree in all respects with those given in
standard works such as [8].2 Two technical differences are worth noting. First, the unknown
functions in the system with which we work differ somewhat from those most often seen; and
second, we prefer to deal with a pair of second order differential equations rather than combining
them into a single fourth order equation. This section concludes with the statement of an appro-
priate set of initial conditions for the problem.

We start section 2 by writing down the full initial-value problem in the exact form we need.
Then in section 2.1 we give the fundamental solution and an interpretation of it as an impulsive
injection of fluid; the corresponding velocity field is also presented. A verification of the solution
is sketched. In section 2.2 the solution of the problem with a prescribed source distribution but zero
initial conditions is given. Then the initial conditions are accounted for, and everything is put
together. Some of the properties of the solutions are verified in this section, but other technical
details will appear elsewhere [3].

Properties of the solutions are examined in section 3. The structure of the fundamental solution
shows a natural decomposition of the flow into two parts, one the flow of nonbuoyant ideal fluid of
constant density and the other a modification that gives the influence of buoyancy. The first part
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responds immediately to the injection, the second is slow and long lasting. We give especially
simple expressions for the fundamental solution directly above and below the singular point and
in the horizontal plane with it.

The solutions of the initial-value problem are then examined in light of the properties of the
fundamental solution. We note that, in addition to an oscillating source-like effect, the initial condi-
tions produce a term that rings without changing spatial distribution. Under certain conditions this
can be the total effect of the initial conditions. In other circumstances, when the initial conditions
are confined to a bounded region, we show that the influence of the initial conditions dies off at
large distances faster than that of a source distribution with nonzero total strength.

The last section discusses very quickly the displacements that result from the fundamental
solution. These are purely radial and are found from an exact integration of the velocities.

A summary of portions of this work has been presented in [2].

1. The Equations of Motion

We start from a usual system of equations for an inviscid incompressible fluid in a constant
gravity field. These state the conservation of momentum, density (incompressibility), and mass:

pDu/Dt + grad p +gpk=0, (1.1)
Dp/Dt=0, (1.2)
p divu=pu, (1.3)

where k is the vertical unit vector (in the xs-direction), and w is a prescribed distribution of source
strength. The rest of the notation is standard. These equations are to be linearized about a state
of stable static equilibrium described by u=wu,=0, p=po(x3), and p=po=—g [ po(z)dz. For
stability po is required to be positive and monotone decreasing with x;. The perturbed flow is taken
in the form u=wy+ 1, p=po+p, and p=py+p. These are put in (1.1), (1.2), and (1.3), and quan-
tities of order higher than the first are discarded to obtain the linear equations

podu/dt+grad p+gpk=0, (1.4)
65/8t+ﬁ;;dp()/dx;;= 0, (15)
po div a=p. (1.6)

Now we drop the s, and henceforth all the quantities will be the perturbations except for Pos
which designates the prescribed equilibrium density. From the horizontal components of (1.4) it
follows that the vertical component of vorticity does not change with time so that for a variety of
flows, including all motions that start from rest, the horizontal velocity components derive from a
potential. We assume this to be the case. For convenience we write this in the form

_1 e

5 =1, 2.
Po 0xq “ 45

Uq

Also from (1.4) and (1.7) it follows that p can be expressed by
— p=dp/ot, (1.8)
and that the equation of motion in the vertical direction takes the form
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d¢ _
ot <p"”” E)x;;) +&p=0. (1.9)

The equations (1.9) and (1.5) imply

G ( 1 (')<p> g dpo
e S
ot pPo 0x3 po dxs

and (1.6) takes the form

P, 0% dus_

st + g P0agy =P
Now we introduce the notation n and w*. The buoyancy frequency n is defined by n? = — (g/po)dpo/
dxs, and w* is given by
1 0
w*Eu:{——_So. (1'10)

Po 0x3

We write the preceding pair of equations in the more convenient forms

',2 2 0
(,(—_,+rlz>w*+n—,(—"0=0, (1.11)
at* Po 0xy
and
ﬂ+ﬂ+ __0_<Ld_¢>+ {”w*— (] ]2)
(ixf dx:: p” ()x_-; pq) (’)X;g ‘ ('ix;; I-L ’

Note that in general n? and py depend on x;.

The coupled system (1.11) and (1.12) governs the quantities ¢ and w™*, from which in turn the
eqs (1.7), (1.8), (1.9) and the definition (1.10) determine the velocities, density, and pressure. How-
ever the system must be completed by appropriate boundary conditions for ¢ and w* on the pre-
scribed boundaries, a surface condition on free surfaces, and by initial conditions.

Here we shall be concerned with the situation in which all of the boundaries are far away from
the region of interest and their influence can be neglected. In this case only initial conditions remain
to be considered. These fall on w* alone since in (1.11) and (1.12) w* is the only quantity to be
differentiated with respect to t. They can be prescribed by

Jw*

w*(x, 01) =f(x) and o

(x, 0F)=g(x) (1.13)

where f and g are given functions. The second of (1.13) is equivalent to a statement of the initial
perturbation density as can be seen from (1.9) and (1.10).

It may seem strange at first to give initial conditions on just w* and dw™/dt, but this is precisely
what the system (1.11) and (1.12) requires. This is to be compared with a similar circumstance in
the linear theory of surface gravity waves on an ideal fluid in which the initial values of the potential
and its time derivative on the free surface are all that is required.? In each case the reason is much

3See [7] Chapter 6 for a clear exposition,
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the same: an equation of motion, in our case (1.12), determines the remainder of the solution at
t=0" from what is given.

2. An Initial Value Problem

Here we present a solution to a general initial-value problem for a fluid in which the density
and the buoyancy frequency are treated as constant, i.e., the flow is described by (1.11) and (1.12)
in which po and n are taken to be constants. The region of the solution is all of three-space.

We shift the time scale to 7 = nt, set 2= g/n, note that 2 = n/n = 1, and then drop the ~'s for
simplicity; the problem is thereby put in the form
. ;
("—,H >w*+if—@=0,
at? po dx3
x, teR3X (0, ) (2.1)
ow™*
V2 =
e+ po ETN
where V2 is the three-dimensional Laplacian. The initial conditions become
* +Y —= £ aw* +) —
w*(x, 0)=f(x), == (x 0")=gx). (2.2)

Our approach to the solution of the problem stated by (2.1) and (2.2) is the determination and
systematic use of a fundamental solution of (2.1).

The importance of a fundamental solution derives from the fact that for the equations and
region for which it is valid, it reduces the solution of inhomogeneous initial-value problems to
integration. Further, by a variety of more-or-less standard devices it often can be modified to apply
to a number of other regions. Equally important, an analysis of the behavior of a fundamental solu-
tion can yield considerable information on the properties of whole classes of solutions, any of which
might be difficult to obtain explicitly. In addition, it is a usual starting point for a formulation of
initial-boundary-value problems in terms of integral equations.

2.1. A Fundamental Solution

A fundamental solution for the problem stated by (2.1) and (2.2) is a singular solution ¢, w*
of (2.1) that gives the effect at x, ¢ of a disturbance at y, 7. Here the disturbance can be interpreted
as an impulsive injection at time 7 of a unit mass of fluid of density p, at the point y. The body of
fluid is supposed to be at rest prior to the injection. Since the fundamental solution will depend
only on x—y and t —7, we need to consider only y=0 and 7=0 for the moment.

The fluid is at rest prior to t=0, and consequently both ¢ and w* will be identically zero for
t <0. For t = 0 our fundamental solution is given by

A =]l F) :
e(x, 1) :47T|x| {5(5)4‘5]0“ cos 0) + [ Jo(t cos 6)]* [J (¢) ] }

t
(223)
A —1 d Ja(t)
* - Y e x| L)
wH(x, t) Tmpola]? { . tJi(t cos 0) + [t],(t cos 6)] [ . ] }
where |x| = (x2+ x2+ x2)"2, §(¢) is the Dirac §-measure concentrated at zero, and cos 6 = x3/|x|.
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t
The symbol * indicates convolution, e.g., [(¢)*m(t) Ef [(7)m(t—7)d7; and J, and J, are Bessel
0

functions of the first kind. The fundamental velocities w are those corresponding by (1.7) and (1.10)
to the fundamental solution (2.3). These formulas yield by a direct calculation.

a° J LSl
ll:m{ 5(!) +W[Jn(l cos ) +|:5[J”(t cos ()) ] l:—li—)jl } (2.4)

In the computation it is economical to differentiate the quantity in braces in ¢ with respect to cos 0
and then cos 6 with respect to each of the space variables.

We cive elsewhere [3] a detailed and mathematically complete demonstration of the validity
of the fundamental solution and the representation formulas that make use of it. Here we give only
a very brief sketch.

Note first that ¢, w™, and @ given by (2.3) and (2.4) have the correct coordinate singularities for
a fundamental solution [1]. It is quite easy to show that ¢ and w™ do satisfy (2.1) with u equal to
zero for any nonzero x. In fact, the first of (2.1) is demonstrated by showing that 92w*/dt? is just the
negative of the third component of w given by (2.4), and consequently equal by (1.10) to
—( w* i

Po X3
indw*/at at t=0. The verification of the second equation of (2.1) is equivalent to showing that p, div

)- Note that the 6(¢) appears in the second differentiation of w* due to the jump

u=0 for x % 0. This is accomplished by a routine calculation on (2.4) using the same device as in the
computation of . The vanishing of py div u for x # 0 implies that the mass outflow Q(¢) from the

origin can be calculated from Q(t) =p<,f u-nds for any fixed closed surface S that contains the
S

origin. Taking S to be the sphere |x|=1 we find Q(¢) =8(¢). The computation is aided by using

T 2 t
polar coordinates, observing that f Jo(t cos 0) sin 0 (IH:7f Jo(7)dr, and using the relation?
0 0

[Jo(e) 1% [Ji(t)/t] = Ji(t). Notice that only the leading term in (2.4) gives a nonzero contribution

to Q(t).

2.2. Representation of Solutions

The fundamental solution (2.3) provides a representation for solutions of the initial value
problem (2.1) and (2.2) with only mild restrictions on w, f, and g.

To begin we consider the case with f/ and g equal to zero. Then ¢ and w* are given by the
integral formulas .

t
o(x, t):ﬁ fk olx—y, t—1)uly, 7)dydr,
) 3

(2.5)
t
w* (x, t) =f f w*(x—y, t—7)u(y, 7)dydr.
0 Jrs
The parallel formula for the velocity is
t
u(x, t) :f f ulx—y, t—1)u(y, 7)dydr. (2.6)
0 R3

The verification that the velocity derived from (2.5) by the formulas (1.7) and (1.10) is that
given by (2.6) and that the equations (2.1) are satisfied by (2.5) is given in [3]. The arguments there

i See [9] p. 380.

83



are principally of the type used in [5] to demonstrate the differentiability properties of generalized
domain potentials for elliptic partial differential equations. A suitable set of conditions to impose
on u are that it be piecewise continuous in ¢ for ¢ = 0 for all x and satisfy a uniform Lipschitz con-
dition in x for all t = 0. These are sufficient for the proofs in [3], but certainly not necessary.

On the other hand it is comparatively easy to see directly that w™ given by (2.5) satisfies

*(x 0+)_

=0. In fact, the expression for @™ in (2.3) shows that for small positive ¢

A 1
*—
" 4mpo | x |

where B is uniformly bounded in ¢ and cos 6. This implies that w*(x, ¢) given by (2.5) is 0(¢?)
provided only that w(x, ¢) is not too rough, e.g., continuous and uniformly bounded, for small
nonzero t. From this the required initial conditions follow immediately.

Now suppose w = 0 but that the initial functions f and g for w* and 9w */d ¢ are nonvanishing.
We require that d f/dx3 and dg/dxs exist and satisfy the same sort of smoothness conditions given
for w earlier. Let iA(x, t) be defined by

h(x, t)=polf(x) cos t+g(x) sin t].

Then a solution to (2.1) with (2.2) is given by

eo(x,t) ff laz=17, 6="1), %(y,f) dy dr,

Byg
(2.7)
dh h(x, t)
w* o L
(x, t)= ff i=t—a) P (y,7) dy dt+——= o
and the corresponding velocity is
t A oh h(x,t)l
u(x,t)z—ff b(x—y, t=7) 22 (3, ) dy dry BE DK (2.8)
0o JRe dy3 Po

Since the integral expression in w* given by (2.7) and its derivative with respect to ¢ vanish at t=0,
the function w* has the same initial conditions as h/p, as required. Further, since h satisfies
d%h/dt*+h =0, the functions ¢ and w™ satisfy the first of (2.1). The second is also satisfied with
@ = 0 since the contribution from the integrals in the solution is exactly cancelled by the contri-
bution from the nonintegral term in w*.

By linearity the sum of the solution given by (2.5) and that of (2.7) satisfy the full inhomo-
geneous initial-value problem (2.1), (2.2); the corresponding velocities are the sum of (2.6) and (2.8).
Thus a full solution of (2.1), (2.2) is given by

e (x, t)=ﬁfm eplx—y, t—7) [u(y,r)—% (ysr)]dydr,

(2.9)
oh
wo= [ ara—yi=n [ w0 T 00 |drar+ HEL,
dys Po
and
2 ,
u(x, t)—ff x—y,t—r)[M(}’,T)—.()—(y,r)}dydr—kw. (2.10)
dys Po
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3. Properties of the Solutions

Here we examine some of the properties of the solutions of the initial-value problem (2.1),
(2.2). We begin by pointing out some of the more evident properties of the fundamental solution
(2.3) and the fundamental velocities (2.4).

By inspection of the expressions for ¢ and u it is clear that each of them breaks naturally into
two parts; the first is exactly that of the fundamental solution in R? for an ideal fluid of constant
density po, and the remaining part the required modifications which account for the effects of
buoyancy. Thus the potential and velocities can be conveniently written as ¢ =¢°+ ¢ * and a4 =
u’+ u*, where

~ _ 1
L vy o

{ Jo(t cos 0)+ [Jo(t cos 0)]* [ J1 (5)] }

t
(3.1)

X

2 a L)
u®(n,t) = 47Tp1)|x|‘{ 5t Jolt cos 0)+l: t,]o(t(os()] [ = ]}

Examination of ¢* and u* shows that each of them is 0(¢) at t = 0, and consequently the influence
of buoyancy takes some time to have an important effect; however that effect is long lasting, as
we shall see more fully later. Since the quantities in braces in (3.1) are bounded functions of cos
6 for each ¢, it is clear that the velocity field decays in space like 1/|x|?, i.e., just as in the ideal
fluid case.

As we have noted earlier, the fundamental velocity field g has vanishing divergence except
at x=0 and has a net mass outflow 6(¢) from the origin, but the same is true of the ideal fluid part

This means that the buoyancy induced velocity a* is also divergence free and, while singular
at the origin, has zero net mass outflow.

The symmetry properties of the fundamental velocity w are those to be expected: axial sym-
metry about the x3 axis and odd symmetry about the origin. It is perhaps more surprising that
u is purely radial. Since it is, and is also proportional to 1/r?, the corresponding fundamental
displacements are also purely radial and can be calculated easily.

We now turn our attention to those places where the fundamental solution and fundamental
velocities have simple expressions. These are the x; axis and the plane x3=0, i.e., 0=0, 7, and
0= /2. In fact, we find for 6=0 and =

A _l PO 1 X3
™ daa] Sl @ " dapo Amr|x[? =
(3.2)
== 0, iy = o T (5(1) — si
W =u,=0,u3= 4-7Tp |x|3 sint},
and for 0=1/2
A —1 IJI(T) Ak
<p—4———7_r|x|l:8(t)+f0 = dT], w*=0,
(3.3)
. Xa Ji( D
Ua=— 47Tp |_l:6( Jr :| LY"'],Q. lL;;—O.

Thus, directly above and below the disturbance the vertical velocity is excited into a permanent
oscillation at the buoyancy frequency, while in the plane the velocities u, oscillate about and tend
1
to the values —— e ?l_ It is not really surprising that the fluid injected at t= 0 should try to squeeze
0
into the lamina x3=0 from which it came.



Some of the properties of the fundamental solution that have just been noted are reflected
immediately in the properties of the solutions (2.9) and (2.10).

The decomposition of ¢ and u has its direct counterpart. In fact, we see that in general we
may write the solution of (2.1) and (2.3) as ¢ =¢°+¢*, w*, and u=u’+u*, where

. — 1l ah
e°(t)= | ————— 1 ROt ——— (nt) ¢ dy,
re 4| x — ] dy3

t - ah
*@,t)= f f efx—yt—1) { r(y,m) —— (v,7) } dy dr, (3.4)
0 JRs3 3}”:;
xt)—f f x—y,t—r){ y,T)——h— V'r)}dyd7+h(x”
R3 y Po
and
1 — oh
w)=| —= y.,{ p(y,t) = —— (:t) } dy,
R3 477po|x—y|' dys
(3.5)
t
u*(x,t)zf f u*(x — y,t —17) { w(y,7) . (y,7) } Ay Qhpar=——= il l)k
0 JRs3 \ ay3 Po

Clearly, the effect of a source distribution w is two-fold. First there is an ideal fluid response
given by the expressions for ¢° and u®; then there is a slower long-lasting response due to buoyancy
given by the expressions for ¢*, w*, and u*. The latter depends, as the integrals show, on the
history of .

Suppose that u is a source distribution that vanishes outside a fixed bounded region G of space
and has a total strength M(t) = [, m(x,t)dx. By a standard line of argument® it is clear that at
distances from G that are large compared to the diameter of G the source distribution has very
nearly the same effect as a concentrated source of strength M located at the center of G. This leads
naturally to an interest in a variety of concentrated source distributions, but discussion of this
topic would lead too far afield; we shall pursue it elsewhere [4].

It is interesting that at large distances directly above and below G one is led by (3.2) to expect
very small horizontal velocities and vertical velocities close to

_ 1 X3 Y3 _ . . .
u3_477po|x—y|3[M(t) fOM(T)sm(t T)d’r],

where y is the center of G. The second term in the brace is exactly the response of a simple oscillator
having the buoyancy frequency and driven by a force M (t).
The influence of the initial conditions through the source-like term —% in (3.4) and (3.5) has
3
the same decomposition into an instantaneous part and a slowly responding part. The terms in
¢° and u® as well as h(x, t)/po in w* and u* ring at the buoyancy frequency, and the latter with
no change in shape from that given by the initial functions f and g.

If f and g are smooth and vanish outside a bounded region G*, — dh/dy; has zero total source
strength. Since h vanishes outside G*, the effect of such an initial disturbance dies off at large
distances faster than that of a source distribution of nonzero total strength.

It is worthwhile to note that if f and g are independent of the vertical coordinate, then ah/ay;
vanishes, so the total influence of the initial conditions is given by the term A/po in w* and u3*. This

5See, for example, [6] Chapter II, Article 6.
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can be seen directly from (2.1) and (2.2) as well. In fact, it is clear that the second of (2.1) is satisfied
with w = 0 by ¢ = 0 and w* independent of x5 Then the first of (2.1) and (2.2) imply

w*=f(x) cos t+g(x) sint=h(x, t)/po.

4. The Fundamental Displacements

This section is devoted to a brief examination of the displacements caused by the fundamental
velocity field. The disturbance is taken to be at the origin, and for convenience it is scaled by the
factor « so that the velocities are given by those of (2.4) multiplied by a.

Since the velocity field is radial, each fluid particle is displaced radially by the flow depending
on its original radius ro before the disturbance, its polar angle 6, and time. In fact, the radial posi-
tion r of a particle satisfies the ordinary differential equation dr/dt= u,, which takes the form

dr «

1 ~
E—W'FF(CUS 0,t), 4.1)

where F is given by

- @)% d T Ji(t)
F(cos 6, t)=25(t) +Wt./n(t cos 60) +[& tJo(t cos 0) ] *|: ]l ]-' 4.2)
The equation (4.1) is easily integrated to obtain
: 1/3
r(ro, 0:t) :[ r}%+ix~l"(cus 0,t) ] , (4.3)
d1po
’ ~
in which the quantity F, defined by F(cos 6, t) ff F(cos 0, 7)dr, is given explicitly by
0
F(cos 0, t) :%tjo(t cos 0)+ [tJo(t cos )] * [Jl—it)} (4.4)

From (4.4) simple expressions can be obtained for /' on the x3 axis and in the plane x3 = 0. These
are

cost, =20,
F(cos 6.,t)= 4.5)

t./l(T)
Jo(t) + tf

0

dr, 2 0=1/2

\ - . 4 - R . .
For ease in interpretation we take « = —— po so that the coefficient multiplying /' in (4.3) is

3
one. This is equivalent to an impulsive injection at t = 0 of just enough fluid to fill a sphere of
unit radius. Since F(cos 6, 0")= 1, we have r(0*)= (ro> + 1)"/3, so the first thing to happen is that
the fluid pops out about the origin to accommodate the injected fluid. Subsequently, because F'(cos
0,t)= 1+ 0(z%) for small positive ¢, the initial displacements begin to change very slowly.

We noted earlier that the velocity u is singular at x = 0 but does not have a net in- or outflow
there after t = 0. As a result, fluid is taken into the origin from some directions and given out in
others. This is evidenced in the consequence of (4.5) that on the x3 axis all the points that satisfy
ro < 1 before the flow starts are drawn into the origin during the interval 7/2 < ¢t < 7. Further
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out along the x3 axis displacements oscillate up and down without ever reaching the origin. It also
follows from (4.5) that the displacements in the plane x3 = 0 grow without bound.

Vertical displacements in a stratified fluid are of considerable interest, for they are often
the easiest to measure. We note that they can be obtained equally well by interpreting (4.3). If we
designate a particle in terms of its original height zo=ro — cos 6 and 6, the relation (4.3) also gives
z=rcos O by

3a

1/3
z(zo0, 05 t)= [ zg+ cos? 02 F (cosB,t) ] . (4.6)

4 Po

In a subsequent article [4] we shall give a more detailed analysis of the displacement and
velocity fields of the fundamental and other singular solutions.
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