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Real, 3 X 3, D-Stable Matrices* 
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We c harac te rize the 3 X 3 rea l D-stable Matri ces. 

Key wmds: Arc-co nnec tedn ess: Carl son-John son conjec ture; D-sta bl e: positive s ta ble matrix. 

W e give a co mpl e te desc ripti on of the 3 X 3 , re a l, D-s ta ble ma tri ces and th e re by exte nd one 
of th e main theore ms in 12].1 One nice feature of o ur c ha rac te ri zin g co nditi ons is that the re qui s ite 

in var ian ce unde r ac ti o n by the multipl ic at ive group of diago nal matri ces with positive diago nal 
e ntri es a nd th e requi s ite in var ia nce unde r inve rs io n are c lea r. Our result is more e vidence that the 
se t of D-s ta ble matri ces is co mp li c a te d , a nd we ho pe th a t it will assis t th e sea rc h fo r a ge ne ral 

desc ripti on , b y he lpin g with th e formul a ti on of conjec ture s and by providin g counte rexa mples. For 
more info rm a ti o n on thi s exte ns ive ly s tudi e d prob le m see [3]. 

We ca ll th e square matrix M (pos itive) stable p rov id ed that Re( .\ ) > 0 fo r e ve ry eige nva lu e .\ 
of M_ And M is D-s tab le provide d th a t MD is s tab le for e ve ry di ago na l ma trix /J whose diago nal 
e nt ri es are pos itive . 

Le t M = (m ij ) be a 3 X 3 matrix with re a l e ntri es . Th e princ ipal minors of M will be de noted : 

a = ml l , 6 = 111 11, c= m :t:t, A = m~~ m:l:!- m :! t ln 1:J' B = m"In:!3- In :! ,lnt 3 , C = I11llln22- m 2 tlnI 2, 

o = de t (M). W e s ha ll say th a t a a nd A , 6 a nd 8 , c a nd C, and 1 a nd 0 are s upple me nta ry princ ipal 
minors of each oth e r. W e s ay that M is of type 1 if so me pr in c ipa l minor of M vani shes without its 

s upple me nt vani s hing a lso. O th e rwise M is of t ype 2_ 
Le t CI = v-;A + VbB + V"£_ 

THEOREM: M is D-s ta6le if and only if 

(i) a, b, c, A, B, C are non-negative, 
(ii) a + b + c, A + B + C, 0 are positive, and 

(iii) 0 ~ Cl 2 if M is of type 1; 

0 < Cl 2 ifM is of type 2_ 

PROOF: Let D=diag(x, y, z)_ The Routh-Hurwitz Theore m [5], appl ie d to th e c harac te ri s ti c 

po lyno mial of MD (d. [2]) , says that MD is s tabl e if a nd only if 

(a) ax + 6y + cz > 0 
({3) (ax + 6y+ cz) (Ayz+ Bxz+ Cxy) - xyzo > 0 
(y) xyzo > 0_ 

Thus M is D-stab le if a nd on ly if (a), ((3), (y) ho ld for all x, y, z > 0_ That (a) holds for a ll x, y, z > 0 
is cle arly e quivale nt to "a, 6, c ;;;. 0 and a + 6 + c > 0". That (y) holds is e quivale nt to " 0 > 0"_ Whe n 

(a) and (y) hold the n ({3) implies th at Ayz + Bxz+Cxy> O. If Mis D-s table thi s is true for all 
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x, y, z > 0, and so A, B, C ~ ° and A + B+C > 0. To summarize: Mis D-stable implies (i) and (ii), 
and (i), (ii) imply that (a), (y) hold for all x, y, z > ° (cf. [2]). We pause here to prove : 

LEMMA: Suppose that the principal minors of M satisfy (i) and (ii). 
Let f(x, y, z)=(ax + by+ cz) (Ayz+Bxz+Cxy)/xyz and let J denote the infimum off(x, y, z) 

for x, y, z > O. Then 

(1) J = ~2 

(2) f(x, y, z) > ~2 for all x, y, z > ° if M is-of type J 
(3) f(x, y, z) = ~2 for some x, y, z > ° if M is of type 2. 

PROOF: A bit of algebra shows: 

Thus } ~ ~2, and when M is of type 2 we can verify (1) and (3) by selecting x, y, z > ° so that the 
quadratic terms vanish. Indeed, if M is of type 2 then the coefficients of each quadratic term either 
both vanish or are both nonzero. Thus, a quadratic te rm which is not identically zero will be zero 
for appropriate positive values of its variables. If none of the quadratic terms is identically zero 
then cdl will vanish if x= VcA/aG. y= VcB/bC, z= 1. In all other cases the choice of x, y, z > 0 is 
easy because at least t~o of the quadratic terms must vanish identically. 

For M 's of type 1 we have yet to prove (1) and (2). In this case at least one nonzero principal 
minor has a vanishing supplement and we change the notation if necessary so that cC = 0, c + C > O. 
We define Tso that equation (*) divided byxyzisf(x,y,z)-~2=[(~x-VbAy)2/xyJ+T. 
If c= 0 and C > ° the n T= C(ax+ by)/z, and if c > 0 and C= 0 then T= cz(A/x + B/y). Thus in 
both cases (i) and (ii) imply that T > 0 for all x, y, z > 0 and (2) follows. Furthermore, in both cases, 
if we fix x, y > 0 we can manipulate z > ° to make T small. Thus we c an establish (1) by finding 
x, y > ° for which the quadratic term divided by xy is small. If aB = bA = 0 this is trivial. If aBbA =!= ° 
we se t x= YM, y= 'V7Jj so that the quadratic term vanishes. In the only other case exactly one 
of the coefficients 'V7Jj, YM is nonzero. We then set the variable it multiplies equal to 1 and makes 
the other of the two variables x, y very large. 

We now return to the proof of the theorem. If M is D-stable then equation (f3) holds for all 
x, y, z > O. By the lemma that implies that ~2 ~ 0 if M is of type 1 and ~2 > 0 if M is of type 2. In 
other words (iii) holds. Conversely, when (iii) holds the lemma shows that for all x, y, z > 0, xyz 0 
~ zyx ~2 < xyzf(x, y, z) if M is of type 1, xyz 0 <xyz ~2 ~ xyzf(x, y, z) if M is of type 2. Thus 
equation (f3) holds for all x, y, z > 0 and M is D-stable. 

COROLLARY: The real 3 X 3 matrix M is D-stable if and only ifM + D is D-stablefor all diagonal 
D with nonnegative entries. 
PROOF: The converse is trivial, take D = O. 
Now assume that M is D-stable. Since M + D may be viewed as the res ult of three successive 
pertubations of M by diagonal matrices each having at most one nonzero entry, there is no loss in 
assuming D has only one nonzero entry. Moreover, we may assume that D=diag(x, 0, 0) with 

x > O. Since M+D=x[~ M + diag(1, 0, 0)] and ~ Mis D-stable, it will be sufficient if we can prove 

that M' = M + diag (1 , 0, 0) is D-s table if M is. Let a', b', . .. , C', 0', ~' be defined with respect 
to M' jus t as a, b, . . . , ~ were with respec t to M. Then a' = a+ 1, b' = b, c' =c,A' =A, B' = B+c, 
C'=C + b, o' = o + A. Thus M' has properties (i) and (ii ). Since (~')2-o' ~ ~2-0+2bc and 2bc, 
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LV-(5 are nonn ega tive, we are s ure that M' is D-s tabl e exce pt in the case (whi c h we will s how 
ne ver occ urs) th at £12 - (5 = bc = 0 and M' is of type 2. In that case a pri nci pal minor of M' vanis hes 
if and only if its suppl e me nt does. Th en 8' = 8 + c > 0 =? b' = b > 0 =? C' = C + b > 0 =? c' =c > O. 
So the assumption 8' > 0 contradic ts bc= O. Similarly the assumpt ion C' > 0 also co ntrad ic ts 
bc= O. Thus 8' = C' = 0 , Ih at is b=c= 8=C=0. Conditions (i) and (ii) now imply that a, A a re 
positive. This m ean s th at M is or type 2 a nd s ince M is D-stable 112 - (5 > 0, a contradiction . 

The precedin g corollary is more ev idence for the Carlson-Johnson Conjecture [1] that if M is 
n X nand D-stable the n M + D is stable for all diagonal D with positive diagonal entri es. 
COROLLARY: The set of 3 X 3 real D-stable matrices is arc-connected. 

PROOF: If M is D-stable, then (1- t)M + tI for O:s; t:s; 1 is , by the preceding corollary, an arc 
of D-stable matrices connecting M to l. 

Both corollaries hold in th e 1 X 1 and 2 X 2 cases also. 
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