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In recc nt yca rs a con s id e ra bl e a mount of th eo re ti ca l, experim e nt a l, a nd co m put a tiona l work in 
th e de ve lopm e nt and appli ca t ion of techniques for acc ura te meas ure me nt of mi c rowave a nt e nn as has 
been s uc cessfull y co mpl e te d a t the Na tion a l Burea u of S tanda rd s (a nd wo rk is continu in~). This pa pe r 
prese nt s and ex tend s th e basic plan e-wave s('a tt e rin ~- rn a tri x form ali sm and prese nts ne w generali zed 
or adjoint rec iproc it y re la ti o ns fo r a nt e nn as. Th e PW S M formali s m is e minentl y s uit ab le fo r the fo rmu ­
la ti on a nd sol u ti o n of prob le m s in vo lvin g int e rac tion s a t a rbit ra ry di s ta nces a nd for th e express io n o f 
convent io na l asymp toti c quantiti es , s uc h as gain , e ffec ti ve a rea, a nd po la ri za ti o n. It h as in partic u la r 
enab le d de riva ti on of t wo ne w tec hni qu es th a t pe rmit acc ura te, " probe -corre c te d " ant e nn a meas ure ­
Ill e nt s a t g rea tl y red uced d is ta nces: ( I ) by deco nvo lut ion o f tra ns ve rse s ca nnin g d a ta, tak e n with d "" ell! 
(w here ell! = a'/2,,-) a nd (2) by ex tra po la ti o n of receive d s ignal o bsc rved as a fun c tion of di s ta nc e d , 
with d - rI". The s e tcc hniq ues bas ica ll y de te rmin e th e sca la r produc t, C, of two vec tors ch a rac t e ri s ti c 
respec ti ve ly of th e tra ns mitting a nd the rece iving a nt e nnas. Formul as fo r utili za ti o n o f Coda t a, ta kin g 
full accuu nt of polari za tion charac teri sti cs and not requiring rec ipruca l ant enn as, a rc ~ive n for (a) 
one-un know n-ant e nn a. (b) ge ne ra lize d t wo ·id e nti ca l-ant e nn a. and (c) ge ncra li zed three-antenna Ill eas ure­
me nt tec hniqu e s . 

Key wo rd s: A nt enn a-a nt enna int erac ti ons: ant enn a me as urem ent s: ant enn a th eu ry: sca tt e rin g-matrix 
th eo ry of a nt e nn as . 
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Some Conventions and Notation Used Consistently 

(a) Conventions 
1. Complex numbers are sometimes called phasors; they are not called vectors. 
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2. Bold·face symbols denote vectors or dyadics defined in "ordinary" space or in wavenumber 
space. Components may be complex numbers. 

3. Scalar and vector products of two vectors are denoted by A . B and A X B, respectively. 
The scalar product of three vectors taken in the cyclic order A, B, C is denoted by [ABC]. 

4. A superposed bar denotes the complex conju gate. 
5. The magnitude of a complex number z is denoted by I z I. 
6. The squared magnitude of a vector V is defin ed by V . V and denoted by IV 12. 
7. The "square" of a vector V is defined by V . V and denoted by P. Example: k2 = W 2 fLE (see 

the list of symbols following). 
8. "Transverse" means perpendicular to the z axis unless otherwise indicated. 
9. " On-axis" refers to the z axis of coordinates, not to an axis possibly suggested by antenna 

geometry. 
10. The (suppressed) time dependence is exp (-iwt). 

(b) Roman Letters 
aq: Complete vectorial spectrum for E of incident field (p. 14). 
Aq: Transverse part of a q (p. 15). 
ao: Incident wave-amplitude in antenna feed transmission line or waveguide (p. 9). 
b q: Complete vectorial spectrum for E of scattered or radiated field (p. 14). 
Bq: Transverse part of b q (p. 15). 
bo: Emergent wave-amplitude in antenna feed transmission line or waveguide. 

dK: Symbolizes surface element in double integrals in kx, k y space. 
dR: Symbolizes surface element in double integrals in x, y space. 

E: "Electric field" (complex representation). 
E t: Transverse part of E. 

ex, e y, ez: Fixed, orthogonal, right-handed system of unit vectors. 
e ll ' e-L ' e,,: Orthogonal, right-handed system of unit vectors tied to k (p. 13). 

Cq(K): Power-gain function evaluated in the direction of k; q= lor 2 implies k = k + or k -, 
respectively (p. 23). 

H: "Magnetic field" (complex representation). 
H t: Transverse part of H. 

l: v=:--I. 
k: Propagation vector; components kx, k y, kz. 

k ": Propagation vector with z-component equal to ±yo 
K: Transverse part of k (K is chosen real in this work). 

k: : ~= w-Y;;(a real quantity in this work). 
K: v'i(:J( 

m, n: Index taking on val ues 1, 2 and indicating association with unit vectors K I, K2(P. ). 
p, q: Index taking on values 1,2 and indicating association with regions to the "right" and 

to the "left" of an antenna or scatterer(p. 12). 
r: Position vector (a real vector); components x, y, z. 

R: Transverse part of r. 
r: Magnitudeofr. 

R : Magnitude of R. 
SOq: Transverse vectorial receiving characteristic (p. 17). 
SOl): Complementary receiving characteristic (p. 25). 

Sqo: Transverse vectorial transmitting characteristic (p. 16). 
SqO: Complete transmitting characteristic (p. 23). 

wq(K) : Polarization index for incident plane-waves (p. 25). 
Yo: ~,wave admittance for simple plane-waves in medium with parameters E , fL. 

(c) Creek Letters 
y: V 1. 2 - K2, taken positive when K < k , positive imaginary when K > k ; kz = ± y (p. ). 

o(k x ): Dirac delta "function." 
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1)(K) : 

E~ EO: 

'Y/ 0: 

'Y/ I : 

(): 

f-L , f-LO: 

POq: 
pqO: 

<Tq(K) : 

4>: 
W : 

Abbreviation for 1) (k x ) 1) (k y). 
Perm itti vity of homogeneous , isotropic, dissipationless medium. 
C ha rac te ri s t ic admittance for the propagated mode in waveguide feed (p. 9). 
z-co mpone nt of wave·admittance for TM plane-waves in space; 'Y/I = WE/Y= Yok/y, 

and for 0 - () <: 7T, = Yo/lcos (}I (p . 12). 
z·co mponent of wave·admittance for TE plane·waves in space; 'Y/ t = Y/ (wf-L) = YoY/ k, 

and for 0 <: () <: 7T , = Yo Icos () I (p. 12). 
Polar angle in sphe ri cal pola r coordinates (p. 13). 
Unit vector == K/ f( (p. 11 ) . 
Unit vector == e z X KI (p. 11 ). 
Permeability of homoge neo us, isotropic, dissipationless medium. 
Polarization index for recei vin g c haracteristics (p. 25). 
Polarization index for trans mitting c harac teri sti cs (p. 24). 
Effective area for reception (p. ~4) ; q= 1 or 2 implies k = k - or k = k +, respec tive ly. 
Azimuthal angle of plane o r s ph erica l po lar coordin ates (p. 13). 
Angular ve loc ity as in th e suppressed ti me factor exp (- iwt). 

Introduction 

In sec ti on I we give, q uite th oroughl y as far as de finiti ons a nd nota tion a re co nce rned, a formu· 
la ti on of the plane·wave scatt e rin g·matrix for an te nn as and sca tte re rs. I In pre vious pub lica tio ns 
[1 , 2],t onl y a "one·s ide" matrix description of ante nn as, usin g one spatial re fe re nce pla ne, was 

given explic itl y. To provide a more compl ete exposition, we give he re th e formul a tion of the 
comple te scattering matrix obtained by e nclosing the a nte nn a be tween two pla nes and cons ide ring 
inc id ent and e mergent pla ne waves on both planes. 

The p lane·wave scatte ring ma trix is put for th as a good bas is for adva nced a nte nna th eory, 
es pecia ll y s uch theo ry related to a nte nna meas ure me nt techniqu es. Whi le the res ults give n may be 
pe rsuasive, nume rous ana lyti ca l exa mples and app li cations whi ch illu s tra te a nd extend th e th eo ry 
a re ava il ab le-and a re not in c lud ed. These are inte nd ed for a more co mpre he nsive pub licati on. 
Apart from append ices A a nd B, re la tive ly littl e th eo ry is deve loped in thi s pape r. Howeve r , logica l 
inte rre la tions are ind ica te d, a nd more detail is give n when it is a question of re latin g ne w co nce pts 
to more fa mili a r co ncepts a nd to p rac ti ca ble antenn a measurement techniqu es. 

An "acousti cs translation " of mu ch of the present work has been pub li shed [3]. Becau se of 
the relative s implicity of the acousti c wave· fields in volved, thi s may be found he lpfu l in illumin ating 
the elec tromagne ti c case. 

The scattering matrix formulation properly includes basic expressions for power transfer a nd 
for rec iprocity. 

The reciprocity relations are stated in a generalized form, us ing the concept of mutuall y ad­
joint a ntennas. The concept of generalized reciproc ity is not in itse lf new [4 , 5], but a ppare ntl y it 
has not previously been formulated for ante nnas and scatterers (see, however, remark fo ll owing eq. 
(1.6-21)). The gene ra lize d or adjoint rec iproc ity re la ti ons have fou nd subs ta ntial app lica tion in 
research es ta blishing the found a tions of the ex trapolation technique [6 , 7]. They a re used in this 
paper in the formulation of possib le new ante nna measure ment tech niqu es, predicated upon the 
physical rea lization of mutu all y adj oint ante nnas. 

In section 2 the plane· wave sca tte ring matrix approach is used to obtain a complete and gene ral 
solution to th e prob le m of co upled ante nn as . In spi te of the ir formal appea rance, the general reo 
sults obtained represent the heart of the present theory, and provide a fruitful and reliable basis 
for additional results (includin g those reported here). Two of these results are the deconvolution and 
extrapolation techniques, labeled (1) a nd (2) in the Abstract and ou tlined in sec tion 3. These techni· 

1 Since a n antenna is in gene ra l a seall ering ohject. a nd a pass ive antenna ex ternally is merely a sca lt erin l! object. the cons ide ration of sca lt ering is included in 
the full consideration ofanl ennas and nee d not a lways be me ntio ned expli citl y. 

2 Figures in brackets indica te the lite rature references at the e nd of this paper. 
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ques basically determine values of the scalar produ ct, called the coupling product, of two two-com­
ponent vectors characteristic of the two antennas involved. (This statement also applies to the conve­
tional far-field antenna measurement methods, provided due attention is paid to polarization charac­
teristics.) 

Utilization of coupling-product data is discussed as a separate topi c_ Here the analytical prob­
lem is primarily geometric and algebraic , with the exact form depending upon what is considered 
known a priori and what information is sou ght. Three classes of antenna measurement situations 
[labeled (a), (b), and (c) in the Abstract] are disc ussed in section 4. The order of li sting and dis­
cussion is roughly that of decreasing a priori information and increas ing complexity. 

An increasing body of experimental results involving various combinations of the se veral 
techniques identified above may be found in the literature [8-11 , 54]. Moreover, the e rror analysis 
required for determination of accuracy in concrete measurement situations is approaching com­
pletion (Kanda [12], Yaghjian [13], Newell [14]). 

The combination of the tech niques labeled (1) and (a) amounts to a technique for correc tion of 
near-field antenna measurements made with an arbitrary but known measuring antenna. The ability 
to obtain the true radiated spectrum of an unknown antenna, fully corrected for the effects of the 
measuring antenna, incidentally implies the ability to obtain corresponding true values of E and H 
in the near field, similarly fully corrected. Frequently, and in particular in the following paragraphs , 
the measuring antenna will be referred to as a "probe." 

The general subject of determination of far-field antenna patterns from near field data is 
surveyed and an extensive bibliography is given in a recent paper by Johnson e t al. [15]. This paper 
should be consulted for an overview of the subject. Here we me ntion specifically only certain earlier 
work in which the "probe-correction problem" was considered or which represented steps leading 
to the eventual simple, rigorous, and general deconvolution solution of the problem. 

W oonton, in 1953 [16], obtained an integral expression for the near-field response of a linear 
(= thin wire) antenna and discussed probe effects qualitatively. Woonton stated that the problem 
had not been critically discussed previously. Dayhoff (1956) [17] , using scalar waves, plane-wave 
spectrum analysis, and reciprocity, introduced a version of the very important transmission integral. 
(Dayhoff used the transmission integral to obtain an approximate solution of the diffraction cor­
rection problem in microwave interferometry. A rigorous and more general version of this solution 
was presented by Kerns in 1957 [81-) Brown [19] (1958), using plane-wave spectrum analysis and 
reciprocity [20], obtained a version of the transmission integral and used it to give an approximate 
analysis of probe effects, assuming simple, known data for both antennas involved. More work along 
this line (limited to two-dimensions) was done by Jull [21,22]. In 1961 Brown and Jull [23] gave a 
rigorous and general solution to the probe correction problem for the two-dimensional case using 
cylindrical wave functions_ The use of two-dimensional solutions in certain three-dimensional 
problems has been suggested, and was studied experimentally by Martin [241 , but is not valid for 
any three-dimensional problems. The proper extension to three dimensions in s pherica l or cylin­
drical coordinates is far from trivial. See Jense n [25], Leach and Paris [261, and Wacker [271. 

The key to the present solution to the probe-correction problem is the use of plane-wave 
analysis and rectangular coordinates and the recognition that planar scanning would permit 
solution of the integral equation presented by the transmission integral by Fourier inversion:l 

(better called deconvolution in the existing context). This solution was presented in 1963 by Kerns 
[28], and again, including application of a two-dimensional, spatial sampling theorem, in 1967, 
at a University of Colorado Advanced Electromagnetic Theory Summer Course. Archival publica­
tion, accompanied by substantial experimental application and verification by Baird et al. [8] , 
was accomplished in 1970 [2]. The transmission integral used, though similar to that derived by 
Brown, was actually obtained by methods used in Kerns and Dayhoff [1], where it was derived 
without recourse to reciprocity and was explicitly recognized as the first term in an infinite se ries 
of inte raction te rms. (See the remarks at the end of appendix A, below.) 

3 These ma ilers are adequately discus sed lat e r in Ihis paper. 
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The Ke rns and Dayhoff paper, not originally considered to be in the domain of ante nna theory 
by its authors, has se rve d as an important base for much of the mate rial e mbodied in th e present 
and re lat ed pape rs a nd in other work as yet unpublished. 

1. Plane-Wave Scattering-Matrix for Antennas and Scatterers 

1.1. Representation of Fields on So, Definition of all and b o 

Let us consider the antenna system shown schematically in figure 1. We choose a (mathe­
matical) terminal surface So in the waveguide feed and define a supplementary surface Sa, such 
that 5" + So forms a closed surface enclosing the source or detector associated with the an tenna_ 
The surface 5" coincides with shielding, which is required to make the problem well defined 
(both experimenta ll y and theoretically!)_ As an important measure of simplicity, we consider only 
the case of a s ingle waveguide feed, supporting just one propagated mode. We employ conventional 
ph as or wave amplitudes ao and bo for the incident and emergent traveling wave components at 
50 - Th ese wave amp litu des are fully defined by the following four equations_ 

Th e tange ntial (= tran sve rse) co mpon e nts of E and H on 5 11 are giv en by 

EIII = (au + bo)eo(r) , (L1-1a) 

(l.l-lb) 

whe re eo(.-) a nd h o(1') are rea l bas is fi e ld s for th e mod e involved, s ubjec t to th e im pedance 
normal iza t ion 

(1. 1-2) 

-. I 
b b2 I 1 .. • I 

-a I '0'1 
2 • 

I -.. I .. 
D2 

I 
D1 

I 
I 

0 ~h I 
I 
I 
I ~ 

(Z = 22 (0) (Z = 0) (Z= Zl ~O) 

FICURE I. Som.e notation Jor plane-wave scattering-matrix description of antennas. 

Arrow s indica te the a ssoc iation uf (L"s and //5 wilh inc ident an d emergent waves respectively. Ant e nna-s ys tem representation is sy mbolic: no particular s ize. 
s hape. symm etry. t ype . orien tation. or pos it ion is implied. In any concrete case. pos ition a nd orientation of antenna relative to coordinate sys tem must be e s tabli shed. 
as with the aid of fiducial marks on th e antenna. 
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and to the power normalization 

J [eohono]dS=1. 
So 

(1.1-3) 

Here the integrand is the scalar triple produ ct; no is the unit normal vector, drawn inward with 
respect to the antenna; TJo is the characteristic admittance, and YJ w is the wave admittance for the 
mode involved. Equation (3) establishes peak·value normalization for ao and 60 , so that net time­
average power input to the antenna at So is given by 

Po=~ Re J So E ot X Hot . nodS=~ 7]o ( 1 ao 12 -160 12), 0·1-4) 

where Re denotes that the real part is to be taken, the superposed bar denotes the complex con­
jugate, and the vertical bars denote absolute values. Remarks: (a) The impedance norm alization 
shown above is more flexible than that used previously [1, 2]. It allows one to choose whatever 
characteristic impedance or admittance is deemed familiar or convenient for purposes of measure­
ment-related calculations. Examples are, for waveguide, TJo = 1 or TJo = 7] 10; and, for coaxial line, 
the conventional characteristic admittance (= 27TVEril-/ln( b/a) in . conventional : notation). (b) 
Power normalization differs slightly from that used previously: Powers of the factor (27T) have 
been redistributed. (c) For a detailed discussion of the material in this subsection and for the small 
but essential amount of microwave network theory needed in measurement-related calculations, 
see [29] or the es pecially prepared report [30]. For more elementary discussion see also [31]. 

1.2. Representation of Fields in Space; Definition of oq(m, K) and bq(m, K) 

We choose a rectangular coordinate system Oxyz (with unit vectors ex, e!l' and e z) so that the 
considered antenna system may be confined entirely to the space betwee n the (mathematical) sur­
faces FI and F2 at z= ZI ~ 0 and at z = Z2 "" 0, as suggested in figure 1. The elec tromagne tic fields in 
the regions to the "right" and to the "left" are to be represented as superpositions of plane·wave 
solutions of Maxwell's equations. This type of representation is well known (see e.g. , [32]), at least 
for solutions of the scalar Helmholtz equation; an appropriate generalization to the (vector) elec­
tromagnetic field, though often shunned, offers no particular difficulty. 

The electromagnetic field in the regions under consideration satisfies Maxwell's equations in 
the form 

v X E = iWfLH, v X H =- iWEE, (1.2-1) 

where fL, E are constant real scalars representing respectively the permeability and the permit­
tivity of the medium , and exp (- iwt) time dependence is assumed. We derive our basis fields from 
the general plane wave 

E=T exp (ik'r), 

Cik .• J (1.2-2a) 

which is a solution of (1) for any propagation vector k such that k2 == k· k = W 2fLE and any vector 
T (independent of position r) satisfying the transversality relation 

k·T = O. (1.2-2b) 

In sp ite of this occurrence of "transversality," in what follow s the term "transverse" will mean 
tran sverse with respect to the z direction unless otherwise specified. 

The propagation vector will be regard ed as a fun ction of its transverse components k.r, k y 

(whic h are chosen real); the z-compone nt is thus 

(1.2-3a) 
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where "12 = k2 - kfr- kt. It will be conve ni ent to de note th e tran sverse part of th e propagation 
vec tor by K, so that K = k .r e x· + k!Je!l and 

(1.2-3b) 

Since k.r , k y must be allowed to vary inde pe nd ently in the range (- 00 , (0 ), real and imaginary values 
of "I will occur. "I will be taken positive for K2 < k2 , positive imaginary for K2 > k2 • Superscripts 
"+" and "-" will be used wh en it is desired to indicate the choice of sign associated with k z• When 
"I is real, the expone ntial s exp (ik+ 'r) and exp (ik - ' r) respectively represent simple plane waves 
traveling into the + z and - z he mispheres. When "I is imaginary, the exponentials represent in­
homogeneous plane waves with propagation of phase in the transverse direc tions and exponential 
attenuation of amplitude ("evanescence") in the + and - z directions, respectively. 

In virtue of the relation k ·T= 0, (2a) yields just two linearly independent fields , he nce just 
two basis fields , for any give n k. The appropriate polarizations for the basis fi e lds are those with 
the electri c vectors paraliel or perpe ndi cular to the plane of k and e z, whi c h is th e plane of in­
cidence for a wave incide nt on any plane z = consL This choice of polariza tion s yie ld s "trans­
verse magnetic" a nd " transve rse e lec tric" waves; the same c hoi ce of polarizati ons, usually labelled 
" Ell " and " E 1-" , simplifies th e derivation of Fres ne l's equ ations in optics or e lec tromagneti c 
theory. 

In ord er to se t up the basis fi e ld s in the des ired form , we require th e transverse unit vec tors 

KI = K/K, K 2= e z X KI , (1.2-4) 

which are res pectively in a nd pe rpe ndic ular to the plane of k a nd e z . This pa rt of th e notation is 
illus trated in fi gure 2; KI and K 2 ma y be ide ntifi ed as radial and tange ntial unit vec tors, as ofte n 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

K~----

FI (;U I1E 2. Il lustrating k, K, K I. and K,. 

associated with pola r coo rdinates in a pl ane. As a te mpora ry a bbre viation " we put u · = exp (ik :!: ' r)/ 
(27T). For th e E ll (o r TM) co mpone nts we put T = KI + K'Y - 1ez and obtain fro m (2a) 

E f = [KI + K'Y - 1ez]u :!: ,} 

H f = ± Tilez X KIU :!: , 

4 The fac tor 1/(21T ) in the definition of II represent s a c hange in normalization consistent with that not ed for (/0 and 00 in the preceding s ubsection. 
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where 1)) = wEI y. For the E 1.( or TE) components we take T = K2 and obtain from (2a) 

(1.2-6) 

where 1)2 = Y I (wJ.l). Among other similarities it may be observed that 1) 1 , 1) 2 are wa ve·admittances 
that correspond closely to the wave·admittances encountered in the theory of rectangular wave­
guide. Equations (5) and (6) furni sh the desired basis fields; somewhat arbitrarily, we have c hosen 
to make the expressions for transverse E as simple as possible. The normalization and orthogonality 
properties of the basis fi elds are of course implicit in the expressions the mselves. (This is an inte r­
esting contrast to (1.1-1), where the field patterns are implicit and the normalizations exp li c it.) 

Let us now examine the plane-wave representations of electromagnetic fields in the regIOns 
z ~ z) > 0 and z :< Z2 < O. We write . 

Eq(r) = f,J lit) [bq(m, K)E ii,(K, r) + aq(m, K)E t,,(K, r)]dk J..dk y, 

Hq(r) = L:f I~) [bq(m , K)H ~,( K, r) + aq(m, K)H 7,,(K, r)]dk J..dl,y. 

(1.2-7a) 

(1.2-7b) 

Here the index q takes on the values 1 and 2 and identifies quantities respectively associated with 
the regions to the "right" and to the "left" of the system considered; the upper and the lower 
superscript signs are associated with q = 1 and q = 2, respectively; and b,,(m, K) and aq(m , K) 
are scalar spectral-density functions for outgoing and incoming waves, respectively. The electro­
magnetic fields given by (7) will satisfy Maxwell's equations provided that the necessary differentia­
tions can be taken under the integral signs. 

Now, as will be shown in a moment , a knowledge of the transverse components of Eq and Hq 
(in a single plane, in fact) is sufficient to determine aq(m, K) and bq(m, K) ; and hence, by (7). the 
entire electromagnetic field in each of the regions considered. The z-components of the fields in 
(7) are, strictly speaking, redundant. The transverse components are both necessary and suf­
ficient for the expression of normal energy-flux and continuity conditions across a transverse plane. 
We find , in fact, that the inclusion of z-components is sometimes convenient and sometimes not. 
The following equations illustrate the latter case. 

For the transverse components of E and H in the regions z ~ z) ~ 0 and z ,,;:; Z2 ,,;:; 0 , we find from 
(5), (6) and (7) the Fourier integral representations 

(1. 2-8a) 

(1.2-8b) 

where 1))=wE/y, 1)2=y/(wJ.l)' and r=R +ze z. Here and in subsequent expression s of this 
type sum mation over the values 1 and 2 of the polarization index m and integration over the in­
finite kx, k y plane is to be understood. The role of the index q is as described under (7); the use of 
Iz l and -Izl assures proper phase variation for outgoing and incoming waves, respectively ; and 
"q is the outward normal unit vector on F'I: ") = e z, "2 = - e z (i .e., "outward" means with respect 
to the slab between the surfaces F) and F 2)' The functions aQ (m, K) and bq(m, K) may be regarded 
as modal terminal variables for the continuous spec trum; a mode is identified by a triplet of values 
(m, kx , k y) and a direction (rightward or leftward). 
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Explic it ex press ions for th e s pec tral den sity functions b,/m, K) and ([,,( m, K) may be found 
from th e Fouri e r in ve rs ion of th e above equations: 

(1.2-9a) 

e iy jzj J - i K . R 
([,,(m, K) = ~ K m ' [E,,(R, z) - Y/ Ii,' H,,(R, z) X nq] e dR. (1.2 -9b ) 

Here the integrations are to be taken over the entire x, y plane - as required by the Fourier in­
version - for any suitable fixed value of z (for q = 1, z ~ z,; for q = 2, z ~ Zt). 

The s pectral functions b,,(m , K) and ([,,(m, K) are independent of z, although thi s may not 
be immed iate ly apparent in (9) . and the values of the fun ction s are referred to th e plane z = 0. If 
des ired, the phases and amp litudes could be refe rred to othe r reference planes 5" at z = Z", say. 
Howe ve r, th e choice impli citl y made, Z, = Z t = 0, is co nve nie nt at least for present purposes. 

It is conve ni ent at thi s point to introduce a number of definiti ons for future re fe rence when 
a nd as needed . 

We observe that (7a) can be written 

/ 

e . -z 

~1I=~e 

e =e,.l., =K -1. -'1' -2 

~- , r;URE 3. Unit vectors associated with k and K (for real k). See also table 1. 
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TAB LE 1. U nit Vectors A ssociated With K and k 

K: (k x , k,,) = (K cos q" K sin q,) 

k: (k.r , ky , kz) = (k sin f) cos <p , k sin 0 sin q" k cos 0) 

ell == 1(2 X ek = (kzl(l - Kez)lk = cos (II(, - sin e e z 

ell (-k) = ell (k), kz = ± y 

Notes: 
(a) 1(\ and 1(2 are respectively "radial" and "tangential" unit vectors associated with the plane polar coordinates 

for K. These unit vectors are always real. 
(b) In the propagating regime, where e ll as well as e-L is real , e ll and e..L may also be identified as the customary () 

and q, unit·vectors of the spherica l polar coordinates for k. The "middle" forms in the table help show what happens when 
K > k: e ll and e " become complex. but remain unit vectors in the sense ell . e ll = e" . e" = I. 

(c) The unit vectors 1(\ , 1(2, and el l are not defined by the equations in the table at the singular points K = ° and 
() = 0, 1T. For k = ke" one may, e.g., determine a consistent set by choosing 1(\ = e x. (cf. use of (4.1-4)) . 

Here b q and a q , the "complete vectorial spectra" for the outgoing and incoming plane·wave com· 
ponents of E q , respectively, are given by 

(1.2-11a) 

(1.2-11b) 

(The association of the upper and lower signs with q = 1 and q = 2, respectively, is continued from 
(7).) Alternatively, b q and aq may be expressed as follows: 

(1.2-12a) 

(1.2-12b) 

where ell (k) is defined as K2 X k/ k, and e .L (K) is a suggestive alternative notation for K 2. (The 

factors in brackets in (12) are introduced as a convenient, explicit way of helping to keep signs 
straight.) The complete vectorial spectra are of interest to us primarily in the propagating regime, 
where e II, as well as e .L , is real. 

All the unit vectors associated with k and K are pictured in figure 3 and fully identified and 
related in table 1. 

The complete vectorial spectra must and do satisfy the transversality relations 

(1.2 -13) 

which indeed are expressions of the transversality of the basis fields (5) and (6) . 
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W e next o bserve that (8a) can be writ te n 

(1.2- 14) 

where Bl[ and A" , the " tra nsverse vec to ri a l s pectra" for the outgoing a nd in co min g plane-wave 
components of K" , res pec ti vely , are give n by 

B q( K ) = L b,,( m, K)Km, (1.2- 1Sa) 
/1/ 

Aq( K ) = L aq( m , K)K m. (1.2-1Sb) 
m 

Further we note that, given (15 ), z-compone nts can be recovered wi th the aid of the transversality 
rela tions (13) or s imply by inspec tion of (11 ). 

Re mark s: (a) One may observe a switc h - from sca lar spec tra and vector waves in (7) and (8 ) 
to vec tor s pectra and scalar wa ves in (10) a nd (14). Equ ation (7) re mains funda me ntal. (b) Th e use 
of the lower case le LLers a and b to de note cu mplete s pec tra and th e use of the capita ls A a nd B to 
de note the corres pondin g transverse part s s hould be noted. T hi s para ll e ls our use of the le tters 
r, k and R, K. 

T he rep rese nta tions (7) and (8) afford a s im il a r and esse nt ial reso lution of any elec tro­
magneti c fi e ld into two major parts: th a t rep resented by incom ing waves a nd th at re present ed 
by outgo ing waves . The role of the former part is ide ntifi ed va ri ously by te rms s uch as in cid ent , 
e xci ting, prim ary, or in co ming; the latt e r, by te rm s such as indu ced , secondary , radiated, re rad ia ted, 
sca LLe red , or o utgo ing. The scatte ring matrix , de fin ed in the ne xt section, wiH be see n to be a way 
of specifying t he linear tra nsfor mation from the fi rs t part of the fi e ld to the second. 

T he asymptotic re lation betwee n th e far-fi e ld va lues of a scaLLered or radia ted fi e ld a nd its 
s pectru m is of esse nti a l inte res t and importa nce. This re lat ion revea ls th e res ult of the int erfe re nce 
among t he waves of the continuous s pec trum at large d ista nces in an y chosen direc tion of obse rva­
t ion. No rm all y thi s inte rfere nce results (re mark ably) in the we ll-known exp ( ikr ) / r va riat ion with 
di stance. This norm al res ult does not apply to the spec trum of a plane wa ve , and it might not a pply 
to the radiation or re radia tion from a source of infinite size in one or more dime nsions. F or a n 
ante nn a of fini te size rad ia ting into 3-dimensional s pace, we do have the asy mptoti c re la tions 
[33, p. 750] 

(1.2-16a) 

E r( r) ~ -ik I cos e I b q( R k/ r )eik"/r. 
q (1.2-16b) 

Here the supe rscript "r" refers to the radiated or reradiated component of the fi eld a nd e is th e 
polar angle of r with respect to the z axis. The fir st of the two equations relates to (14) and the 
second to (10); they differ onl y in the presence or absence of the z-compon ent. Both equ ations are 
valid whether or not incident waves are also prese nt in the field. Note that we have writte n R k /r 
for K as the argument of the spectral fun ctions. This expresses the fac t tha t the vec tors r and k 
involved mus t be para lle l. In fac t if we introduce s pherical coordinates for r such that x = r sin () 
cos cp, y = r s in () s in cp, z = r cos e, we see that b q and Bq a re e xpressed as fun ctions of the angular 
coordinates of r . F urth ermore we note that he re only real directions of pro pagation come into 
consideration , so th at y is real a nd y = k I cos e I is valid . 

To conclude this subsec tion, we give a useful , nonphysical, special r e sult, which offers a 
sharp contras t to the type of results give n just above. Name ly , if an electromagnetic field is every-
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where the (simple or evanescent) plane wave with E = a exp (iko . r)/27T, then from (9) the corre­
s ponding spectral functions are found to be 

al (m,K) = bz(m,K) = 0'1II8(K - K o), 1 
b l (m,K) = az(m,K) = o. 

(1.2-17) 

where O'm""'K/II'a and 8(K-Ko) is an abbreviation for the delta-function product 8(k.r-ko.r ) 

8(k y -koy ). The vector 

A "", O'[K[ + 0'2K2 0.2-18) 

will be known as the transverse spectral vector associated with the considered plane wave. 

1.3. Definition of Scattering Matrices for Antennas and Scatterers 

Let us first consider that a passive material structure. exhibiting linear electromagnetic 
behavior. is present in the region ZI < Z < Z2. The scattering equations are written 

bq(m,K) = L ( L 5"fJ(m,K; n,L)aj,(n,I~)dL, 
p JL 1/ 

(q = 1,2) (1.3-1) 

where, in addition to the summation and integration conventions noted following 0.2-8), we 
have summation over the index p, giving the contributions from the waves incident both from the 
"right" and from the "left." The processes described by the functions 5 11 and 5 22 will be called 
backscattering; those described by 5 12 and 5 21 will be called transcattering. Essentially the same 
definitions and an example of (1) may be found in [1]. 

If the scattering object is also an antenna, the scattering matrix must include the transmitting 
and receiving characteristics, and the scattering equations are written 

b) = 500ao+ L ( L 50fJ (n,L)ap(n,L)dL, 
JJ J.. II 

(1.3-2a) 

b,,(m,K) =5qo (m,K)ao + L 1 L 5qj,(m,K;n,L)a j,(n,L)dL. 
]J t.. 1/ 

(1.3-2b) 

Here q = 1,2 and we have made use of the quantities bo and ao, defined in ( 1. 1-1) . The quantity 
500 represents "backscattering" observed at 50 in the feed waveguide , and the functions 50q (m,K) 
and 5"o(m,K) respectively represent the receiving and the transmitting characteristics of the 
antenna. (The quantities bearing the subscripts q or p = 2 in (2) represent the desired generaliza­
tion of the antenna scatterin~ matrix originally defined by Kerns and Dayhoff [l].) 

The definition of the antenna scattering matrix is now literally complete. We do not wish 
to belabor the generality of the definition, but we do call attention to the absence of restrictive as­
sumptions_ At best, its full significance can be made apparent only gradually. 

It will be advantageous to have the basic scattering equations expressed in vector-dyadic 
form. In addition to the transverse vectors Bq and Aq defined in (1.2-15), we introduce the vectorial 
transmitting characteristic 

SqO (K) = L 5 qo (m, K) Kill, (l.3-3a) 
III 
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the vectori a l receivin g charac te ri s ti c 

So,,(K) = L So,,(m, K ) K ill, (1.3- 3b) 
III 

and th e dyadi c sc a tt e rin g c ha rac te risti c 

SCfP(K,L) = L Sqp(m, K ; n , L) K ill A", (1.3-3c) 
m , 1I 

where the Kill and A" are the uni t vectors associated respectively with K and L The scattering 
equation s become 

bo = Sooao + L f S OP (K) 'A I' ( K)dK 
P 

B " ( K ) = Sqo(K)ao+ L f Sqp(K,L) ·Ap( L ) dL. 
I' 

(1.3-4a) 

(1.3-4b ) 

T he equ ations are now invari ant with res pec t to c hoi ce of coordinates in th e tran sverse plane. 
This fac ilitates di sc uss ion of " rea l world" cases, in whic h it is neither expedie nt nor necessa ry 
a lways to observe or produ ce pLi re KI or K2.field compon e nts . 

One may obtain an ana lys is of th e sca tte rin g equation s by considerin g the s imples t modes of 
exc itation: b y a wave re presented by ao a lone, a nd by individua l spati a l pla ne waves , re prese nted 
by de lta·function spec tra. This proced ure leads esse nti a ll y to re-express ions of the basic de fini­
ti ons co ntained in the sca tte ring e quations. Th e c irc um s tan ces of th e resulting de fini ti ons or 
exprcss ions a re sim pie e nou gh to s ugges t severa l more or less direct and conve ntion al methods 
of meas uremen t for the scatte rin g- matrix ele me nts. Le t us in par tic ular co ns ider the de finiti ons of 
S"o(K) a nd SOCf ( K )-the sca tte rin g- matrix quantiti es that will receive the mos t attention in our 
work. 

Let LI S co ns ider an antenna operating in its tran s mitting mod e; tha t is, an antenna e xc ited on ly 
by an incid en t wave in its waveguide feed and radi a ting into e mpty space. This e le me ntary pattern 
of exc itat ion is re presented by ao ¥- 0 , a" (m, K) == O. Under th ese conditions , the spec tra radi­
ated (to the left a nd to the ri ght), normalized to unit ao, c haracterize the transm itting prope rti es 
of the ante nn a; indeed, from (4b) 

0·3-5 ) 

Incident spatial waves being absent, (1.2- 9a) and (1.2-9b) together imply th at Bq may be re lated 
either to E or to H; in terms of E we have 

(1.3-6 ) 

where Z > ZI or Z < Z2 mu s t be in forc e. Thi s gives us a Fourier tran s form de finition of SCfO, and , 
to the e xtent th a t E "r/ao is known or meas urable, a mea ns of ca lculating S "O . The asy mptotic 
relation (1.2- 16a ), app li ed in th e present circumstances, may be writte n 

(1.3-7) 

C learl y thi s relati on may be regarded as a formul a for de te rmining SqO (K ) in term s of observed 
asymptotic Eqr/ao. It in fac t represents the basis of so-called direct methods of measure ment 
of transmitting characte ristics . 

2ll - 694 0 - 76 -2 
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The co mbination of (6) and (7) inc identally furnishes a rigorous, vectorial form of the Fourier­
transform relation between far- and near- field s_ 

Next, consider an antenna exci ted solely by a spatia l plane wave, incident on side q, say, and 
having E=a exp (i k -r) /27T"_ The pattern of excitation is accordingly represented by ao=O 
and a,,' (m, K') = 0',"0,,',,0 ( K ' - K) , where 0'111 =' Kill . a and the spec trum of the incide nt wave 
is- fOound just as in 0 .2-17). The scattering equations (2a) or (4a) now yield 

(1.3-8) 
= Soq(K) -A. 

In oth er words , 50q (m, K) denotes the receiving sen sltlvlty~r receptivity~f the ante nna 
to the Kill-compo nent of polarization of a plane wave incident on the antenna with direction of 
incidence specified by q an d K. The normalization is to unit 0'," (which means unit delta-function 
spectrum amp litude). 

Equation (8) imm ediately suggests basic equations for direct measurem ent of receiving 

charac te ri stics . Viz. , 

b ~ = S oq( K ) . A' , 
(1.3-9) 

b"=So,/(K) -A", 

where b~ , b'~ are observed and A ', A" a re known a nd linearly independent. The equati on ca n, of 

course, be solved for Soq ; an algebraica ll y ide ntical problem is encountered in subsec tion 4.1. 
The following compact notation for the scattering equations, to be secured by introducing 

fun c tion vectors and making more use of matrix-algebraic co ncepts, provides a pers pective quite 
different from that of the discussion just preceding. We first define the column matri ces 

( ao ) ( bO ) 
al , bl 

(1.2 b2 

(1.3-10) 

in which Qq and /)'1 may themselves be regarded as column matrices re presenting the functions 
a q (m, K ) and bq (m , K ). That is to say, the elements of these column matrices are labeled or 
indexed according to the values of m and K , and have the values all (m, K ) a nd bq (m, K ), re­
spectively. The transformation from the entire se t of incident waves to the entire set of e mergent 
waves is now written 

(:) c oo 
501 SO) (:) 510 511 512 ( 1.3-11) 

5 20 521 5 22 

or, equivalently, after performing the indicated matrix multiplic ation, 

(1.3-12) 
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Here the four kinds of produ cts involved are de fin ed by co mpari son with (2) or (4). This compact 
notation , in whi ch the s ubscripts identify the three input-o utput refere nce surfaces, ma kes the 
overall structure of the equations more ap pare nt and is a prac ti cal necessity for th e demons tra­
tion in th e ne xt sec tion. lhe rul es of matrix algebra ~ppl y: the S(1l (as we ll as Crq and bq) corres pond 
to column ma tri ces; the 5 0(/, to row matrices; and the 5 PQ, to square matrices . 

We should noti ce the form th at the sca ttering equations take in the absence of any scatte ring 
object (or con ceivably in th e presence of a non·scattering object). The free passage of waves is 
expressed by 

b2 (m,K) == a1 (m,K). (1.3- 13) 

(No propagation factors of the form exp (±iyd) appear here because the phase reference surfaces 
were chosen coincident at z = 0). The pertinent submatrix in (11) is 

(1.3-14) 

Here i denotes the ide ntity tran sformation with ele ments 0 11111 0 (k J . - Lx) 0 (ky - Ly) and 0 denotes 
th e zero transformation . One may regard a scattering obj ec t as prod ucing a perturbation of the 
properties of free-s pace described in (13) or (14). Fr,?m thl s vie:-vpoin~, what we may caJJ true or 
bona fide transcattering is described by the operators 5 12 - 1 and 5 21 - 1. 

1.4. Power Expressions 

The requlsJle expression for one- mode power transfer in the an tenna feed waveguide was 
give n in (1. 1-4). He re we sha ll give the cor respondin g expressions for power transfer ac ross the 
s urfaces FI and F2 • 

The tim e-average energy Au x across the surface Fq in the outward d irection (the direction 
of n q) is given by 

(l.4-1) 

where the integrand is the scalar triple product and the superposed bar denotes the complex con­
jugate. We wish to evaluate P q in terms of the spectral density functions a" (m, K ) a nd b" (m, K). 
After some analysis, one obtains 

(1.4-2) 

noting that fo r the lossless medium y and TIm are both real in the propagating region (K < k) 
and both imaginary in the evanesce nt region (K > k). The eq uation shows that power may be 
transferred by the couplin g of incom ing and outgoing e vanescent modes having the same m and 
K. (This the essentia l mechanism of power transfer in a waveguide-below-cutoff a ttenuator.) 
We expec t a nd ass ume th at ordinarily this interaction will be negligible, as in the case of coupling 
of ordinary waveguide junc tions; the separation required is measured in wavelengths, not Ray­
leigh distances. Thu s the basic expression (2) may ordinarily be abbreviated to 

(1.4-3 ) 
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This may be used, e.g., to deduce conservation relations. In the absence of incident waves, (3) 
expresses the equivalent of "pattern integration" over a hemisphere. 

1.5. Reciprocal Relations-A Summary 

In this section we briefly state recently derived [34] generalized or adjoint reciprocity relations 
for antennas and scatterers. (The derivation is reproduced in appendix A.) These relations very 
readily adapt to the expression of ordinary reciprocity as a special case. We shall also comment on 
the question of "realizability" of mutually adjoint systems. First we must define mutually adjoint 
media and systems. 

We describe the distribution of material media making up an antenna or scattering structure 
by means of the constitutive equations 

D = E • E + T· H, B=v·E+p·H. (1.5-1) 

Here the tensors E and p have their usual roles; T and v allow for the description of possible mag­
netoelectric properties of the medium [35].0 (This last bit of generality may provide future benefits 
and does not appreciably complicate the discussion.) The tensor parameters will of course in gen­
eral depend upon position within the region of the antenna or scatterer considered; outside this 
reg;ion the set of parameters must reduce nominally to vacuum values: E= Eo, p = iJ.-o, T = v= O. 

In addition to a "given" or " original" system, described by the above equations, we must 
consider the adjoint system, which is described by the constitutive equations for the adjoint 
medium,6 

- - --
D = E • E - v . H, B = - T . E + P . H, (1.5-2) 

where the superposed tilde denotes the transpose , and the tensors E, T, p, and v are those of 
the original system . As the equations show, "adjointness" is a mutual relationship: the adjoint of 
the adjoint system is the original system. 

Since the tensor parameters are essentially arbitrary, we should realize that the "original" 
system is in no way a theoretically preferred system; the designation is arbitrary but useful. 

The concept that a medium may be lossy, lossless, or even "gain y" is familiar. In an in­
homogeneous medium these "dissipative properties" will in general change from point to point. 
In appendix B dissipative properties are more precisely defined and it is shown that these prop­
erties are point-wise identical for mutually adjoint media. In view of the us ual connection between 
dissipative properties and the concept of "realizability," we may say that mutually adjoint media 
are equally realizable. 

Nonreciprocal antennas are most commonly (if not invariably) so because of the use of fer­
rites subjected to a static magnetic biasing field. In such cases the adjoint antenna can in prin­
ciple be produced by reversal of the bias field. (We say "in principle" because in general no pro­
vision is made for conveniently or precisely accomplishing the bias field reversal.) 

The scattering matrix for the adjoint antenna may be and is assumed to be defined with the 
same basis fields, the same reference surfaces, and altogether in the same way as that for the 
original antenna. Then , as shown in appendix A, the following generalized or adjoint reciprocity 
relations hold between the characteristics of mutually adjoint antennas: For the antenna-feed re­
fl ec tion coefficients, 

(1.5- 3) 

S In some of the recent lit e rature. media described by equ atio ns of the fo rm of (I ) are ca lled " bianisolropic." Howe ve r_ optically ac tive media. whic h have been 
s lUdi e d for many yea rs [36]. sa ti s fy equations urlhe abo ve form with scal a r parameters a nd are not anisotropic al a ll. Optica lly aetivc medi a inc ide nt a ll y are reciprocal , 
a nd thus cou ld fo rm pa rt o f a n :ciprocal ante nn a or othe r rl evice. 

6 J\.'ledi a rela ted b y (1 ) a nd (2 ) a re c all ed " compl ementa ry" med ia iJ y Kong a nd C he ng [37 ]. The adjective " adjoint" seem s more appropr iat e both non technicall y 
a nd technical ly; Maxwell 's equa tions fo r the ad joint syste m ca n be writt e n as the mathe ma tica l adjoint of Maxwe ll's equatio ns for the origina l s yste m. See a ppendix A. 
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for the trans mitting and the receiving characteristics, 

(q = l ,2) (l .S- 4a) 

1) oSo,, (m, K ) = - 1) III(K)S~~ (m, - K); (q = 1,2 ) (1.S- 4b) 

and for the scatte ring c haracteri sti cs, 

1)m (K)Spq (m, K ; n, L )= 1)/1 (L)S~" (n, - L ; m, - K ). (p=1,2 ; q= I , 2) (1.S- S) 

The superscript "a" distinguishes quantItIes associated with the adjoint antenna. We observe 
that all the equations hold with S and Sa interchanged. 

Scattering· matrix e le ments, s uch as S 10 (m , K) and S II (m , K,n,L), characte rize processes 
associated with a pair of directions : 7 the direction of an incide nt wa ve and a direction of "ob· 
se rv ation." For the fun ctions mentioned, the direc tion-pairs a re " 0, c" and c /, ek, res pec tively. 
Reciproc ity re la tes processes associa ted with two pairs of directions, obtain ed by revers ing a nd 
inte rc hanging the direc tion of incide nce a nd the direction of observation. See fi gures 4 a wl S. 

If the co nstitutive te nso rs obe y the sy mme try re lations 

(1.S- 6 ) 

th e n, as may be see n direc tl y from (1) and (2), the adjoint a nte nna and the ori gin a l a nte nn a are 
identi cal. In this case, if we use conventiona l te rminology, we say th at th e ori gin a l ante nn a is 
rec iprocal ; in the prese nt contex t, a te rm such as se lf-rec iprocal or se lf-adjoint would be less li a ble 
to a mbiguit y. In the self-adjoint case the supe rsc ript "a" is without force a nd may be elimin ated ; 
(3), (4), and (S) beco me express io ns of prope rti es of one a nd the sa me a nte nn a (a nd redu ce to 
res ults give n with p = q = 1 in [1]). 

Equations (3), (4), and (S) are our bas ic ex press ions of rec iproc it y a nd adjoint reciprocil y. 
As mentioned in the Introduc tion, these re la tions ha ve found substa nti a l a pplica tion in research 
es ta blishing the foundations of the e xtra pola tion techniqu e [6 ,7]. More imm edi ale co nseque nces 
are brou ght out in the ne xt s ubsection and in sec tion 4. 

Fl l/ I -k 
I 
I 
I 

++----... -~z -+-+----~ ~z 

F' ICU Il E 4. Reciprocity d irection-diagram Jo r S '0 and Sf:, . 

7 This is in marked contras t 10 wh at is in vo lved when s pherical or other non planar waves a re used 10 represent the fiel ds in s pace. 
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1.6. Power Gain, Effective Area, and Polarization Indices 

Our primary purpose in this subsection is to exhibit some of the con tent and applicability of 
the PWSM form ali s m by defining so me of the more familiar and conve ntional quantities of antenna 
theory in terms of the a ntenna sca tte rin g matrix quantities. In parti cular, we s hall define the power­
ga in function Cq and the effec tive-area function U"q associated respectively with the transmitting 
and receiving c haracte ri sti cs SilO and SUq. We shall also define polarization indices PqO and poq 

associated respectively with SqO and Soq. All the quantities to be defined are of course functions 
of direc tion and all are meaningful and applicable in dealing with the coupling of widely separated 
antennas, the context of conventional antenna theory. It will be seen, however, that although these 
quantities are uniquely defined (in a given coordinate system) by the antenna scattering-matrix 
quantities, the converse is not true. Hence they are not adequate characterizations of transmitting 
and receiving properties for the type of theory of essential interest in this paper (and, of course , 
they say nothing about scattering properties of an antenna). 

Our definitions of power gain and effective area are consistent with the essential content of 
the corresponding IEEE Standard definitions. However, our definitions of receiving and of trans­
mittin g properties are formed wholly indepe ndently of each other- in con trast to a tactic used 
to so me exte nt in the IEEE Standards. Reciprocity relations then appear on ly la ter in the ir proper 
role as theorems. 

The key relation appropriate for the present considerat ion of transmitting charac teristics 
is the asymptotic relation 

( 1.6- 1) 

Here 
( 1.6- 2) 

where bq is the complete radiated spectrum in the sense of (1.2- 12a) and Squ is the corresponding 
"complete" transmitting characteristic given in terms of components of Soq by 

SqO( K ) = [(_)q - lj. /y]S"o( l ,K)err + Squ(2 , K)e .L . (1.6- 3) 

The following relations are noted: 

k :t . sqo(K) = 0, 

and Sqo (K) is the projection of Sqo (K) on the I. xo, k y plane. 
From (1) one easily finds for the power radiated per unit solid angle at large distances 

(1.6- 4) 

The Yo appearing here is the value of the admittance (Eo/f-to) I / ~ for the ambient medium. The func­
tion {Jq is a "power pattern" for the considered antenna; generally any function proportional to 
Pq , wheth er or not the factor of proportionality is known, is called a power pattern. 

The power gain (function) of an antenna is defined by 

(1.6-5 ) 
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where Po is the net input power to the antenna. It follows from (1.1-4) and (5) that 

(1.6-6 ) 

It should be noted that the power gain is a characteristic of the antenna under consideration, 
independent of the source used to excite the antenna. This means that the value of Gq(K) is 
independent of the insertion or adjustment of a lossless tuner in the feed waveguide, whether or 
not this tuner is counted as part of the antenna (cf. discussion of eq (2.6-13) in [30]). 

Using the co mponents shown in (3), we define the polarization ind ex 

(1.6 - 7) 

associated with the transmitting characteristics of an antenna. This spectral polarization index 
is definable more physically and more conventionally in terms of the components of the corre­
sponding asymptotic E ; by (1), it is just the ratio of the .1 and I I (or <p and 8) components of this 
E in the direction of observation. Polarization characteristics are conveniently and fully described 
by the single complex number PqO; other polarization parameters, such as axial ratio and orienta­
tion of the associated polarization ellipse, can be determined, if desired, from pqO. 

For an antenna functioning in a receiving mode, the counterpart of the power gain is the 
effective area or effective receiving cross-section, O"q(K). Like the gain, this quantity is a scalar 
function of direction and involves a far-field concept - in this case that of an incident plane wave. 
It is here defined by 

(1.6-8) 

where PA,max is the available power at the antenna terminal and Spoyis the magnitude of the Poyn­
ting's vector of a plane wave arriving at the antenna from a given direction and providing a polari ­
zation match to the antenna receiving characteristic. The derivation of an expression for O"q in­
volves a number of intermediate results that are at least as important as O"q itself. 

Let the electric field of the wave incident on side q of the antenna be E = it exp (ik r) j27T; 
then from (1.3-2a) or (1.3-4a), the emergent wave-amplitude at the antenna terminal is 

bo = 5 00 ao + Soq(K) . A. (1.6-9) 

(This expression differs from (1.3-8) only in that here we have not assumed ao= 0.) Thus, from 
(9), we see that the antenna, as excited by the incident spatial wave, appears at So as a source 
having a reflection coefficient 500 and a generated wave bc =50q (K) -A. By ordinary (microwave) 
circuit calculation the corresponding received power is found to be 

(1.6-10) 

where r L is the reflection coefficient of the passive termination at So. By setting ft. = Soo, we get 
for the available power 

1 ISoq(K) . A 12 
PA = -2 Y/o IS 12 . 1- 00 

(1.6-11) 

To aid in the consideration of the polarization-related parts of the problem, we display the 
spectral vector 

A = 0' I K I + 0'2 K2 
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used he re a nd ori gin a ll y de fi ned in (1.2- 18); we introduce the com plete spectra l vec tor fo r the inci­
de nt wave in the form 

(1.6- 12) 

and we defin e th e pola ri za ti on index 

(1.6-13) 

for the incide nt wa ve. 
Further, it is co nve nie nt to de fin e a receiving characteristic , SOq, comple me ntary to the com­

plete transmitting characteristic s"o. The single essential require ment is that 

Soq(K) . a= Soq(K) . A (1.6-14a) 

be an id e ntit y in A. Thi s leaves a poss ibl e e,,-compon e nt of So" undefin ed ; we a re in fact free to 
requIre 

(1.6- 14b) 

(He re, as before, the upper s ign goes with q = 1 , the lower, with q = 2.) Equ ations (14) a nd (12) 
imply 

So,, ( K) = [ (-)"y/k]50,, (l , K)e ll +50,,(2, K) e.l ' (1.6-15) 

One should note pa rti c ul a rl y that y/k a ppea rs he re whe reas k/y a ppears in the ex press ion for S'I'I; 

SO" is in no way a "co mpl ete" vec tor of whic h Soq is a part. Howe ver, th e re lation 

does hold . 
Us ing the co mpone nts sho wn in (15), we de fin e a po la ri za tion ind ex for th e rece iving cha rac­

te ri s ti cs 

(1.6- 16) 

Thi s para me te r re la tes to the prope rti es of a pass ive mate rial s tructure; it does not directl y cha r· 
ac te rize the e lliptical path of a time-varying vec tor. It is a ratio of rece ptivities to co mpone nts of 
polarization in an incident plane wave under the specified conditions. 

Observin g that I al 2 = 87T25J,oy/Yo, we can now combine (11), (14a) , (1 3), a nd (16) to obtain 

(1.6- 17) 

The quantity in brackets is a "polarization mi s match" factor, whic h , acco rding to the S chwarz 
ine quality for complex vectors, attains its maximum valu e of unity for 

Wq(K) = Poq(K). (1.6-18) 

Thus the condition [or polarization match is expressed as a conjugate match of polarization indices. 
When (18) holds, we find from (17) and (8) 

(1.6- 19) 

as the desired expression for the effective area. 
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The minimum value of P A, incidentally, is zero: for the given antenna and for any given direc­
tion of the incident wave, there is always a wave-polarization, Wq= -1/ POq, that is not received at 
all. The polarizations best received and not received are mutually orthogonal (in the power or 
Hermitian sense). 

The complete transmitting characteristic SqO and the complementary receiving characteristic 
So" for a reciprocal antenna satisfy the reciprocity relation 

YJokSoq( K) = YoYSqo (- K), (1.6-20a) 

which follows from the basic relations (1.5- 4). (In applying (1.5-4) it may be convenient to use the 
forms YJI = Yo/,/y and YJ2 = Yoy/k for the YJ's, which were originally defined in (1.2 - 5, - 6).) For mu· 
tually adjoint antennas, the relations corresponding to (20a) are 

(1.6-20b) 

The power-gain and effective-area functions for a reciprocal antenna satisfy the well-known 
reciprocity relation 

(1.6-2la) 

For mutually adjoint antennas the corresponding relations are 

(1.6-21b) 

The results in this set are conveniently found as corollaries of (20). Relations of the type (21b) 
were noted by Harrington and Villeneuve for antennas containing gyrotropic media [38]. 

The rec iprocity constraint for the transmitting and receiving polarization characteristics of 
a reciprocal antenna reads 

poq(-K) =- pqo(K). (1.6-22a) 

The corresponding relations for mutually adjoint antennas are 

(1.6- 22b) 

which follow as further consequences of (1.5-4) or (20). 

An interesting corollary of the polarization matching and reciprocity theorems is that if the 
radiation from a reciprocal antenna in a certain direction is circularly polarized, the wave best 
received from that direction is circularly polarized in the same screw sense. A verification of this, 
though basically simple, involves a few key elements. The polarization-index definitions (7) and 
(13) are so fa sh ioned that pqo(K) = i and wq(K) = i both represent right·handed circular polariza· 
tion s 8 (for q = 1 , 2 and for all f( < /,). Here the behavior, and in particular the parity , of the unit 
vectors e ll and e L as functions of k is directly involved (refer to table 1 and especially to fig. 6). 
Note that e ll _ e l. - and e/; form a right-hand ed system congruent to e~·, e y, and e z. The stated corollary 
follows upon setting pqo(K) = ± i and applying (22a) a nd (18). 

~ Sce, C.g .. Beckmann 1391 or Hollis et al. [40[. Fo r op t ical terminolo~y (whicb diffe rs) see. e.g .. Born and Wolf l33, p. 271. 
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FI GU RE 6. Unit vectors in and perpendicuLar to the plane of e , and k for ± k , k real. 

2. Scattering-Matrix Analysis of Coupled Antennas; General Solution for System 
2-Port 

W e conside r a sys tem cons is ting of a pair of ante nna syste ms ope ratin g in a homogeneous, 
isotropi c . di ss ipationless medium , as shown in th e highl y schemati c fi gure 7. We are primarily 
inte res ted in thi s sys te m as a transmission system, with one ante nna transmitting and the other 
receiving. The com plete treatm ent of a tra ns mission syste m must include effects of scatterin g 
by both anten nas . a nd thu s automati call y includes treatm e nt of reflection systems, in whic h one 
a ntenna fun c tions in both tran smittin g a nd rece ivi ng modes a nd the other antenna represe nts an 
arbitrary passive (linear) scatte rin g object. 

For the description of the ante nn a on the left in fi gure 7. we app ly (1.3- 12). In th e proble m of 
interes t th ere are no waves in cident from the left ((12= 0) ; the spec tru m of wa ves go in g to th e 
left. &2. is not involved in th e process of solving the probl e m (but it is obtain ab le as a part of th e 
so lut ion). Thus (1.3- 12) redu ces essentia lly to 

~x I 
'" .... I 

I .- b1 021 
I I 

-+-°1 bI -+ 
I 2 I 

I ez 
I 

51 I IS' 
I I 2 

z=o ~ z= d 

F ICURE 7. Transmission system -schematic. 

(2 - 1) 

These equations are se t up with reference to terminal surfaces50 and St. the latter being a t z= 0 
in the coordinate system Oxyz. For the description of the antenna on the right , we again apply 
(1.3-12), using primes to distinguish quantities associated with this antenna. In the problem of 
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interest there are no waves incident on the right side of this antenna (~' = 0) and the spectrum of 
waves going to the right, b;, is obtainable as a part of the solution. The needed scattering equa· 
tions thus are 

(2-2) 

For these equations the terminal surfaces are S~ and S~, the latter being z = d in the coordinate 
system Oxyz. 

The separation of the phase reference surfaces for the two antennas by the di stance d implies 

a~ (m, K) = b l (rn, K) eiYd , (2 - 3) 

Now, with respect to the transmission path as an element of the system, the set of incident waves 
is represented by bl and 'b; and the set of emergent waves by a1 and &.;. Thus from (3), the matrix 
description of this element is 

(2-4) 

where the elements of tare T(K; L) = 8 (kx -Ix·) 8 (k y - I !I) eiy(!,)d. This is equivalent to the two 
separate transformations 

(2-5 ) 

We are now in a position to obtain a complete formal solution for the behavior of the trans· 
mission system under consideration. That is, we can obtain expressions for both bo and b'o , valid at 
arbitrary distances and including the effects of multiple reflections. (We can also formally determine 
the field in the transmission path.) We first consider transmission from left to right, assuming that 
the receiving antenna is terminated with a passive, reflection less load. Using (2) and (5), we find 

(2-6) 

The operator TS;2T appearing here is the description of the rece iving system, as a passive scatter· 
ing object , referred to the reference pla~e S I of the transmitting antenna. Since this operator 

recurs frequently , we denote it briefly by R '. Substituting (6) in (1), we obtain 

(2-7) 

which (at least when written out more fully) is seen to be an integral equation determining b l . 

(It may be identified as an inhomogeneous , linear integral equation of the second kind.) The solution 
may be indicated formally by writing 

'" A A A A 

61 = (l-S IIR') - IS 10aO• (2- 8) 

This gives us the spectrum of outgoing waves in the transmission path; it includes both the simple 
plane waves and the evanescent waves. (~ I is now determined by (6); E lI(r) and Hlt(r) are deter· 
mined by (1.2- 8).) We may obtain a more explicit but still formal solution to the basic integral 
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equation by the Liou ville-Neum a nn method of successive s ubs titution s. Thi s leads to a representa­
tion of the in verse ope ra tor in (8) in a se ri es of ite rated ope ra to rs,~ so that 

(2-9 ) 

The s pecial virtue of thi s form is tha t th e s uccessive terms in the seri es correspond to successive 
round-trip multiple reflections between the tran s mitting and the receiving ante nn as . Of course, 
(9) is meaningfuL as a n infinite series only if it converges in s?m~ useful sense. The domain of 

convergence will depend upon ~he "smAallness" of the product 5 IIR', and it is worth not in g that 
this product depends upon both 5 II and 5;2 (as well as upon the di stance be tween the tran sd ucers). 

We complete this analysis by calculating the scattering matrix of the "system 2-port." which 
has its terminal s at So and 5~ and is defined by the equations 

&O=Ml l aO+M I 2a~, 
(2- 10) 

(The properties of a transmission sys tem are often convenien tly embodied in this form_) Inasmuch 
as we have made a;) = 0, solving for bo /ao and for &;)/ao yields directly 

"',.., '" '" " 
Mil = 5 00 + 50lR' (L -5 II R') - 15 10 , (2- 11 ) 

A A ,..,,... '" 

M 2 I = 5 ;12 T (I - 5 I I R' ) - I 5 I O. (2- 12) 

A simi lar alternative solution with (/0 = 0 and ((;1 7'= 0 yields 

(2 - 13) 

(2 - 14) 

where R == 1'S II 1'. These formuLas were first given in [411; formally identical expressions are ob­
tained in the electroacoustics case [31. Their general significance was mentioned in the Introduc­
tion_ Complete analytical solutions can be found in a highly speciaLized and idealized (but never­
theless interesting) class of problems; in one such solution the associated Liouville-Neumann series 
is incidentally found to converge or diverge according as kd is greater or less than 0.87993310 ... 

In the measurement technique to be described in subsection 3.1 (but not that in 3.2) we assume 
that the effects of reAections between antennas have been minimized and may be neglected. When 
such reAections are omitted, (12) and (13) become M21 = S(;21'Slo and M22 = 5;10' respectively. If 
the (passive) termination on the receiving antenna has reflection coefficient fl,' we obtain from (10) 

where F' = (I - i'1,5;)() - 1. More explicitly_ we have 

(2-15) 

(Equation (15) is essentially a basic and simple case of eq (43) or (46) in [lJ.) The integral appearing 
in this equation is called the transmission integral, and the scalar product in the integrand, 

9 The operator expansion in (9) is analogous 10 t he fin it e-dimen sional matrix expans ion (1- A) 1= 1 + A t A~ + A:' t- . . which is va lid if all the eig:envalucs 
of A are less than unit y in rnagnilUde. 
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L S;)2 (m, K)SIO(m, K) == S02 (K) . SIO(K) , (2 - 16) 
III 

is called the coupling product. This marks the emergence of the central quantities involved in the 
antenna measurement techniques described here. 

In order to establish some of the content of (15) (but not for present applications) we note that 
the well-known Friis transmission formula can be derived from the asymptotic form of the equation. 
The asymptotic form in question is 

(2-17) 

(This is analytically a version of (1.2- 16a) or (1.2 - 16b) evaluated on-axis.) If we now calculate the 
ratio of th e available power at the receiving antenna terminals to the net power input at the trans­
mitting antenna terminals and use the Schwarz inequality, we obtain 

P;l _ Cl (O)uHO) 
Po <: 47Td 2 

(2-18) 

where (;1 (0) pertains to the transmitting antenna , (T~ (0) pertains to the receiving antenna, and we 
have used (1.6 - 6. - 19). Equality in (18) holds for polarization match. 

We mention one more important result, contained in (11). The first iterated integral in the Liou­
ville-Neumann series for Mil is the reflection integral, 

(2 - 19) 

This is the simplest form of integral involving a scattering process. It can be interpreted as a mono­
static radar equation . which, apart from multiple reflections between target and transceiver, is 
valid at arbitrary distances. Examples of the use of this equation may be found in [1]. In particular, 
upon setting S;2 (K, L)=-18(K - L), where 1 denotes the transverse unit dyadic, one obtains 
the interferometer reflection-integral of reference [11. 

3. Determination of Coupling-Product Values 

3.1 . Deconvolution of Transverse Scanning Data; Application of Sampling Theorem 

We can now quite easi ly give the analytical basis for determining coupling-product values from 
transmission data taken in a transverse plane. Let the required relative transverse displacement 
between the transmitting and the receiving antennas be denoted by a transverse displacement 
P = xe.r· + ye y of the receiving antenna (fig. 8). By considering the phase k · r (r = P + de , ) of the 
waves in the spectrum incident on the reference plane S~ of the receiving antenna, we see that the 
process of displacement simply introduces the factor exp (iK· P) in the integrand of (2- 15). The 
expression for the received signal becomes 

(3.1- 1) 

Note that the quantity b~ (P) is what is observed in the measurement process; it mayor may not 
be simply related to E at the point ( P, d). Inasmuch as (1) represents a Fourier integral trans­
formation. its inversion is immediate: We write 

(3 .1- 2) 

where D(K) is here an abbreviation for the determinate function of K given by 
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(3. 1- 3) 

The inve rs ion of (1) is appropriate ly term ed deco nvolution (each of the factors S~2 and SIO can be 
interpre ted as Fourier tran sform s of ce rtain physical field s). Th e term distinguishes the inversion 
of (1) from the invers ion of th e s imple r equation (1.3-6) representing the Fourier-transform defini­
tion of Sqo. 

~x b ~ 1 
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F2 

:0' , 

S2 
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': " ;UHE 8. Arrangement Ja r trol/ sverse scanning: d isJixed, P is va.riablr,. 

T e 

The ri ght-ha nd s id e of (3) is in fac t de te rmined (up to a phase factor) by I he following measurable 
quanlili es: the di s lan ce d betwee n th e refere nce planes S I and S~: Ih e re Rec ti on coe ffi cie nts L . 
and Sbo; and the magnitude and re la live phase of bb(P) /ao as a fun ction of P. (For co nve ni ence in 
meas ure me nt bb (P) may be normalized in two s tages, indi cated by the express ion 

where Po is a se lected fixed point-) 

An instructive hypothetical case in which our analysis correctly shows that no probe correc­
tion , other than a known constant multiplier , would be needed occurs when the receiving antenna 
is considered to be an ideal electric-field probe_ Such a probe can be described and treated ana­
lytically as an elementary electri c dipole antenna, assumed loss less and reciprocal. For such a 
probe it can be shown that the rece iving response is b~ (P) = CE (P) . e,,, where e" is a unit vector 
givin g the ori enta tion of the dipole a nd the absolute valu e of th e constant C can be cal c ulated. 
Eviden tly th e assumed use of an ideal probe or iented in the x-direction. say, in (3), would effec­
tively reduce (3) to th e e ol·-component of (1.3- 6). 

As (1) shows, planar scanning (in th e absence of multiple reRection s) can be interpre ted rigor­
ously as a spatially invariant , lin ear, filtering process in the two-dimensional wavenumber domain 
(for filtering concepts see e.g., [53 1). The concept of the action of a receivin g antenna as a filter 
has been noted, e.g., by Brown [19], apparently with non-planar scanning in mind_ The processes 
are substantially differe nt in the planar and the non-planar cases, as becomes clearly evident 
upon consideration of the action of a highly directive receiving antenna. Nevertheless, the ability 
to account fully for the probe characteristics in the planar case suggests the use of a well-charac-
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terized " large" probe to reduce data taking and processing effort. Measurements at NBS using 
such a probe have produced the expected be nefi cial results. The filtering process has also been 
studied by Joy and Paris [10] using digital filt ering (after data taking) to si mulate probe 
characteristics. 

Clearly the utility of the result (3) depends upon one's ability to evaluate the transform of the 
empirically observed b~ (P ). Both least-square fitting and a two-dimensional form of the sampling 
theorem have been s uccessfully used to evaluate the required transform of b~ ( P) from data taken 
at the points of a rectangular lattice in the measurement plane [2,8]. The application of the sampling 
theorem has become the method of choice, mainly because of the greater ease of computation, 
and will be described very brie fly here. 

The essential requirement of the sampling theorem is that the function to be sampled be 
representable as the Fourier transform of a band-limited function. That bb (P ) virtually fulfills this 
condition may be seen from (1): a band-limit Kii somewhat greater than k, and a di stance d, may be 
chosen so that evanescent waves for all K > Kii are assuredly virtually zero in the measurement 
plane (e.g., with Kli = 1.05k and d = 15A, attenuation at the band limit is approximately 260 dB). 
Bandlimiting within a smaller spectral region may result from the behavior of the product S!12(K) . 
Slo(K) in individual cases (an early study is reported in [8]). If we assign band limits /' 1 =±27T/tq 
and 1.2 = ± 27T/A2 for kx and k y , respectively, a straightforward generalization of the usual one­
dimensional theory , given in appendix C, leads to 

e - iyd 

D(K) = '" b' (P ) - i K 1'" 4k I . c' ~ 0 rs e 
11121" an ,.. s 

(3.1- 4) 

The vectors P I'S = ir Alex +ts A2e y (with r , S = ... -1, 0, 1,2, ... ) define the measurement lattice, 
the quantities bb(P,.s) are the (complex) values of probe output directly observed at the points of 
the lattice, and the summation goes over the points of the lattice. According to the sampling 
theorem, (4) is mathematically exact; that is, if the data [the bo (P rs)] were complete and exact, 
the result would be exact. (Although (4) is exact, it is not the "best possible" result; more advanced 
theory [42] shows that a rhomboidal lattice would be somewhat more efficient than the rectangular 
lattice.) The theorem requires an infinite sum, but in the applications thus far we have found that 
not even all values measurable above noise are needed. 

An important feature of (4) is that the highly efficient algorithm known as the "fast Fourier 
transform" is rigorously applicable to evaluate the sum. 

3.2. Received Signal as a Function of Distance and the Extrapolation Technique 

The extrapolation technique was introduced by Wacker and Bowman, has been described 
very briefly by Newell and Kerns [9], and more fully, in an experimentally oriented paper, by Newell 
et al. [11]. The theory and numerical techniques were developed by Wacker [6]. The papers men­
tioned should be consulted for details; in the following paragraphs we give only a brief account 
of the main ideas and equations involved. 

The extrapolation technique requires that one observe b~/ ao as a function of antenna separation 
distance d, which is precisely defined by the choice of reference surfaces S I and S~ associated 
with the respective antennas (fig. 7). 

From (2-10) for the system 2-port , we obtain the expression 

(3.2-1) 

which is a precise and complete version of (2 - 15). Expressions for the elements M21 and M22 are 
given in (2-12, -13), from which, by a rather lengthy process, one finds for (1) as a function of 
d a series representation of the form 
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I' - F ' ~ exp [i(2 p + I )kdJ ~ A /_, 
)0 - (/0 L.J d~/J + I L.J II'll I. 

,, = 0 '1 = 0 

(3.2- 2) 

We observe that the su bse ri es of terms with a given p can be inte rpre ted as th e con tribution of 
energy which has experienced 2p re Rec ti ons or made 2p + 1 transits between an te nnas. In particu· 
lar. the subseries with p = 0 involves no reRections and is the expansion of the tran smiss ion integral 
(2- 15): 

(3.2- 3) 

It is of considerable analytical interest that this series is not merely asymptotic but ac tually con­
vergent fo r sufficien tly large d, under the main hypothesis that the two a ntennas involved be of 
finite size. If d is measured between centers of spheres, of radii,. and ,. ' ,each circumscribing one 
of the antennas, then d > do= ,. + ,. ' is sufficient. A generally sharper, but more co mplicated , pre­
scription for do can be given [6 , 71-

By compariso n of (3) and (2 - 17) we see tha t 

Aoo =- 27TikS;)~ (0) . SIO(O). (3.2 - 4) 

Hen ce determ ination of the leading coe fficient in (2) is tantam ount to th e de te rmination of the (on­
ax is) va lue of the spectra l coupling prod uc t. The basic id ea of what we may ca ll th e co nventional 
measurement method is simpl y to have d la rge e nough to make othe r term s negli gible co mpared 
to the leading term of the se ri es. Th e basi c idea of the extrapolati on techniqu e is to obse rve b;) as 
a function of d a nd to fit this func tion with as many terms of (2) as may be s ignifi cant. and so to de­
termin e a good value for Aon in particu lar. This e nables one to co pe with proximity e ffects a nd with 
multipl e re fl ection s between antennas. 

4. Utilization of Coupling-Product Data 

4 .1. One Unknown Antenna (Transmitting or Receiving) 

In this subsec tion we provide basic equations for the use of coupling-produ ct da ta in a bas ic 
an tenna measurement situa tion: the measurement of an unknown ante nna (transm ittin g or re­
ceiving) with the requisite known antennas or antenn a. Some of th e concepts and notation es tab­
lished will be used in the next two subsections (which provide a partial answer to the question. 
"How does one obtain the first known antenna?"). 

In thi s subsection "nothing more" than the algebra of two (comp lex) equations in two (co mplex) 
unknowns is involved. The only likely case involving non-uniqueness and compatibility conditions 
is di scussed. (In the following subsections the linear equations have to be re inte rpreted as 
quadratics.) 

It will suffice to consider only the case in which the unknown a ntenna is transmitting; th e di s­
cussion of t he othe r case would, of course, be ana lyti ca ll y very s imilar. 

W e do no t make s implifyin g a priori ass umptions co ncerning sym metry or polarization (o r 
other) characte ristics of th e antenna to be meas ured. Quite gene rall y. the n . we req uire measure­
ments to be ma de with (at leas t in effect) two receiving ante nnas, A a nd B. hav ing suitable known 
receiving characteristi cs, A01 (K ) a nd B01 (K ). From such measurements. th e va lu es of the coup­
ling products 

(4.1 - 1) 
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are to be determined for the desired values of K. For each chosen, fixed value of the parameter K, 
we have two (complex) equations for the two (complex) components of SJ()(K). 

Complete solvability of (1) requires that the vectors An:! and Boz be linearly independent at the 
value of K considered. A measure of the linear independence of the two vectors is given by the 
following expression for the normalized squared·magnitude of the determinant of (1): 

I A·Slz 
l- I A I2 I B l z· (4.1-2) 

As the Schwarz inequality shows, this quantity ranges from the value zero when B02 is proportional 
to Ao:! to a maximum of unity when Bn2 . Aoz vanishes. In other words , power orthogonality repre­
sents the extreme case of linear independence. Examples are linear polarizations at right angles 
and left- and right·circular polarizations. 

An explicit , coordinate·free solution of (1) may be obtained with the use of the set of vectors 
reciprocal to Aoz and B O:!. The reciprocal set 0', f3 is defined by 

O'·A()z = l, 0' . B 02 = {3 . A oz = 0, f3·B o2 = 1 

(assuming the required linear independence), and 

(4.1-3) 

as is easily verified. The algebra is summed up in the statement that D.I and D/I are the covariant 

components of SJ() with respect to An2 and B02 as base vectors. 
In much of what follows the use of x, y components relative to the fixed basis e.r , e y- rather 

than the 1,2 components relative to the variable unit vectors KI, K2-is indicated. The considera­
tion of geometric rotations and symmetries is appreciably complicated by the dependence of the 
K'S upon K. Also, the use of e.r, ey automatically takes care of the matter of defining the K'S on­
axis. The required coordinate transformations will be governed by the relationship of the unit 
vectors 

KI = eex + sey, K2 = - sex + eey, (4.1-4) 

where e == cos t:J> =kx/K and s "" sin ¢ = I.y /K. 
We introduce the abbreviations 

A.I" = Ao2x (K) , Bx= B02X (K), (x = x, y) (4.1-5) 

and write (1) in component form 

(4.1-6) 

Instead of using two intrinsically different antennas A and B, in many cases it may be possible 
and convenient to use one antenna in two orientations, differing by rotation around the z axis by 
90 degrees, say in the direction of x to y. If antenna A is so used and so rotated, we obtain for the 
equivale nt of antenna B 

(4.1- 7) 
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These equations express the rotation of the vector field A02 co rresponding to the rotation of the 
ante nna that it desc ribes. 10 They lead to a modified ve rsion of (6), which we shall di scuss in the 
particu larly interes ting case of evaluation on-axi s (K = O) . If we let A~ = Ao2.(·(O), S~ = S l o.d O ), 

etc. , the modified form of (6) is 

(4. 1- 8) 

The determinant of the system (8) vanishes if and only if A~= ± iA~ ; that is, the de te rminant 
vanishes if and only if the response characteristic A02 is "circularly polarized" at the point K = O. 
This gives us a hint as to the special advantages of the use of c ircular polarization components for 
equations of the above form. We introduce circular polarization components for on-axis quantities 
in the following manner: For the trans mitting c haracteristi c 

(4 .1 - 9a) 

and for th e receiving c ha racte ri sti c 

(4. 1- 9b ) 

wh e re th e supe rposed bar de notes the compl ex conjugate (as usual ) and 

(The ord ered pa ir of vectors c", c- in (9 b) is rec iprocal to the ordered pair c + , c - in (9a).) The 
formulas for tran sform ation to circ ular co mpon ents are thu s determined as 

(4. I- lOa) 

A~.= (A(~ + A ?)/"1/2, (4. L- lOb ) 

The scalar products in (8) become 

(4. 1- 11a) 

iA a.-Sa.- -iA~S~= Du(O). (4.I-llb) 

As is apparent, we have chosen the notation so that A + and A_ represent rece ptivities to th e cor re­
s pondingly labeled circular compone nts of S 10 . The couplin g is of course consistent with the 
polarization matching theorem (1.6-18). Equation s (11) show clearly that if the rece iving antenna 
were to res pond to only one circular compone nt of polarization , then that co mpone nt, but not the 
other, could s till be meas ured using one or the other of th e two eq uations. If both equ ations were 
to be used , the co mpatibility condition (required by the vanishing of the de terminant) should be 
satisfied within experim e ntal error. 

4 .2 . Generalized Two-Identical-Antenna Techniques 

The technique to be described is formulated for nonreciprocal antennas, assuming that one 
possesses the adjoint of the antenna to be measured. If the antenna to be measured is reciprocal 

lOConcepts. analytical tools. and notation for the rotat ion of vecto r and tensor fi eld s are discussed on p. 272 of 1431. 
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( == self-adjoint) , then the assumption is that one possesses duplicate antennas_II This is no doubt 
the more likely case but the more general formulation can be given with essentially no extra alge­
braic complication_ Under the main assumption we are assured that the receiving characteristic 
of one antenna will be related to the transmitting characteristic of the other by reciprocity relations 
whether or not the antennas are reciprocaL 

Granted the assumption of duplicate or mutually adjoint antennas, no additional as sump­
tions are required to permit formulation and solution of equations for on-axis gain and polarization 
characteristics of both antennas. Additional a priori information, ordinarily qualitative, is required 
only for resolution of square-root sign ambiguities. 

Certain commonly occurring types of symmetry permit one additionall y to obtain solutions 
for off-axis values of gain and polariza tion. 

For de finit e ness we assume transmission from left to right (as usual); limit th e discussion to 
the determination of the right-side characteristic s of the two (in general di stinc t) ante nnas labeled 
S and Sa , say; and choose to formulate equations for the direc t determination of transmitting charac­
teristics, leaving receiving characteristics to be determined by reciprocity. Under these ground 
rules , the remaining problem consists of at most two parts: 

(a) Transmit from S to Sa; formulate equation s for S 1o , find Sgl by reciprocity; 
(b) Transmit from Sa to S; formulate equation s for Sfo, find SOl by r eciprocity. 

If reciprocity (in the ordinary sense) applies, th e s upe rscript "a" is without effect and may be 
omitted ; the two cases reduce to one . 

Inasmuch as the al gebraic problem IS in all cases substantially ide ntical. it will be sufficient 
to consider only case (a) explicitly. 

Both antennas are initially to be described 111 the same orientation and posltlOn relative to 
the fixed coordinate system Oxyz. Whe n one of the antennas is placed and oriented to serve in 
reception , its description relative to fixed coordinates will be changed accordingly. Indeed , the 
phase fac tor exp(iyd) introduced by the axial translation can be regard ed either as a modification 
of the receiving characteristic of the receiving antenna or as a property of the transmiss ion path. 
W e make the latter point of view explicit by referring the description of the receiving antenna to 
the shifted coordinate system 0' xyz ', where 0' is at point (O,O,d ) in the original syste m Oxyz 
(fig. 7). 

W e s hall need to consider the receiving antenna in two receiving orientations , differing by a 
90 degree rotation around the z-axis. The operative characteristics of the r eceiving antenna in 
these two orientations will be distinguished by single and double primes_ 

Let the adjoint antenna be rotated into the first receiving orientation. This requires 180 degrees 
rotation around a transverse axis , say the y-axis. The operative receiving characteri sti c of the 
rotated antenna is then 

(4. 2-1) 

where P!J2 is a notation for the transformation (of S g) produced by the prescribed rotation. Now 

the transformed function P y2 S{j'1 is related by reciprocity , (1. 5-4) , to the similarly tran sformed 

function P !JzS 10. Thus , if the reciprocity relation is written in vector form. we have 

(4.2- 2) 

and if it is writte n in x, y component form we ha ve 

11 The id ea of us ing a refl ect ing s urface or mirror to prod uce an image an te nna is not fully appl ica ble. e ve n i f the an te nn a is rec ipl"Oca l: Coupling-produc t d ata 
ca n be ob ta ined by ex trapo la t io n or by conven tio nal tech niq ues. bu t not by trans ve rse scanni ng. The coupling- prod uc t c(!uati nns can be fo rm ula ted a nd so lved fo r 
on-ax is va lues p rovided o n-ax is polariza tion is known and not c ircular. It should be lIol eo that the ima ge an te nna . be ing a mirror image. cannot ill gene ra l be c on side red 
a n ide ntica l an t e nna even wit h a pe rfec t ly re Acel ing s urface of infin it e area. 
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(4.2-3 ) 

Here the squa re ma tri x is de te rmin ed by (4. 1-4) a nd th e co lumn matrix on the ri ght co nta in s th e 
x , y components or P y2 S I 0 ( - K ) . We may now e val uate the coupling produ ct Slo(K) · S(\~'( K ) 

== D' (K). Some degree of abbre viation is in di s pe nsa ble; we use 

(4.2-4) 

and obtain 

(4.2- 5) 

This is th e fir s t of th e desired " measure ment equat ions" re la tin g the math e mati ca l express ion 
o[ th e co upling produc t to its em piricall y dete rmined valu es. It is inte res tin g th a t the express ion 
is invari ant with res pec t to the interchange or Il y a nd - /l y ; th e empirica l D '( K ) should a lso have 
thi s sy mm etry. Furthe r. sin ce D' ( K ) is related to b;)(P) by (3. 1- 1), the b ~( P ) data should have 

the corres ponding property o[ in varian ce with res pect to the intercha nge or y and - y. These 
genera l constraints shou ld be expe rim enta lly useful. 

To ob ta in th e second measure ment equa ti on . we rotate th e rece ivin g ante nn a . as desc ribed 
by ( I ). 90 degrees aro und the z-axis in th e d irecti on x to y (cf. (4 .1 -7». Us in g th e nota tion PZI 
fo r thi s rotation and app lyin g the rec iproc it y re lat ion. as in (2), we ob ta in 

(4.2-6 ) 

In x. y compone nt form thi s is 

(4.2-7) ( 
S(\V.~ (K»)_( 

1/0 -

SJ~~ ( K ) 

Using the abbreviations 

( 4 .2-8) 

as well as SJ. and Sy in (4), we find [or the coup lin g product S)()( K) . S\\~'( K ) == D" (K ) the expres­

sion 

(4.2-9) 

In thi s case the co upling product is invariant with respect to the interchange o[ /,-J. and I,y. and 
again this con s tra int should be experimentally useful. 

In the r e mai nde r of thi s subsection we di scuss briefly some conditions and method s for 
determining co mpone nt s of S 10 from (5) and (9), assuming that the D 's are given [or the va lues 
o[ K of interest. Whe n e valuated for K 01= 0, the six quantities S.r , Sy, Si, S \~, S :;., and S \~ appea ri ng 
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in these two equations are in general distinct and unknown; obviously, some specialization or addi­
tional data are required. We consider two cases: evaluation on-axis, and a simple type of symmetry. 

(i) Evaluation on axis - Evaluated on-axis. the six unknowns reduce to two 

s~ = SIOI (0), sg = SIOy(O), (4.2-10) 

and the coupling-product equations reduce to 

- (5£)2 + (sgp = D'(O)y}o/YII , (4.2-11a) 

- 2S~S~ = D" (O)Y}o/Yo. (4.2-11b) 

(The key to this reduction is the observation that Yo is the common value of Y}I and Y}2 on-axis_) 
Sub cases under this case occur if the polarization on-axis is considered known. One or the other of 
(11) will suffice , no matter what that polarization may be_ 

Suppose, for example, that p=SZ/Sg. is considered known and not equal to ± 1; then from 
(lla) we may obtain 

50=( Y}oD '( O) )1 /2 (4.2-12) 
I Yo (p2 - 1) . 

This , together with 53 = pSI1. gives us the on-axis pattern vector in terms of D' (0) (up to a sign). 
From the expression (1.6-6) for power gain we find 

C
I 
(0) = 47T/,2( lp I2 + l)ID'(O)1 

(l -ISouI2)lp2 - 11 (4.2-13) 

We can obtain an interesting form [or this result by expressing D' (0) in terms of the integral 
of b'I(P). as in the deconvolution relation , (3.1-3). Thus, 

(4.2-14) 

(This result, as well as the version of it with p = 0 , has been presented previously [41, 44J.) The es­
sential simplicity o[ the result is somewhat obscured by the presence of the mismatch factors. 
If we assume a polarization match (p= 0, ± i, or w). a conjugate impedance match (r;,= s~o), 

and 5 00 = 5 ~o (as appropriate for mutually adjoint or for identical antennas), we i have 

C 1 (0) = /,2 . -I 1_1 I J b~(P) dPI· 
7T ao 

For the effective area. using (1.6 - 21b). we obtain the remarkably simple expression 

1 
(Tj'(O) = I-I I J b~(P) dP I· 

0.0 
(4.2-15) 

Equation (13) has been successfully applied experimentally [81 , and (15) has been tested analytically 
in a special case. In the analytical tes t the two ide ntical antennas were taken to be x-oriented ele­
mentary electric-dipole antennas. assumed loss less and reciprocal. In this case one does indeed 
obtain the expected result (TI (0) = 3,V/ (87T). 

More generally, the polarization is not known and it is necessary to solve (11) as simultaneous 
quadratics. A solution in terms of circular polarization components is convenient and useful. 
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Using the de finition s in (4.1 - 9a). one obtain s 

(50)2 = - ~ [D' (0) - iD"( O)] , 
+ 2Yo 

(S~Y = - 2~o [D' (0) + iD"(O)]. 

From these equations we obtain four pairs of values for the x, ycomponents : 

S~ = ± ~ ~ ( VD' (0) + iD"(O) ± VD' (0) - iD"(O) ). 

S(~ = ± ~ V;: ( V D' (0) + iD "( O) =+= VD ' (0) - iD"(O) ) . 

(4.2-16) 

(4.2- 17) 

(The doubl e s igns a re correlated vertica ll y but not horizonta ll y.) Whi ch solution-pair pe rta in s to 
a give n measureme nt cann ot be d ete rmin ed from th e equati ons alone. It wou ld see m th a t ordi­
naril y th e ove rall plu s-minu s s igns s hould be of no s ignifi can ce. Th e re mainin g s ign-choice does 

a ffect the dete rmination of the po larizat ion index p = S% /S ~ .. If we write p(") and p( 1) for the va lu es 

assoc ia ted with the uppe )" and the lowe r s igns. res pec tive ly. we find 

(4 .2- 18) 

With the a id of thi s equ at ion a modic um of a prio ri informati on a bout the magnitude a nd/o r the 
phase of p should ordin a rily be s uffi c ie nt to reso lve the a mbiguit y. F or example. if the a ntenna is 
kn own to be app rox im ate ly lin early po la rized (o n-ax is) in a ce rtain direc tion (we may choose th e 
y ax is in that direction). th e n Ip l is di s tin c tly greate r tha n unit y a nd one would c hoose p (lI) or 
p (O accordingly . However. if the pola rizat ion is nea rly c irc ular. th e diffe re nce be tween the two 
indi ces becomes re lative ly s mall a nd th e choice could be diffi c ult. 

Th e squared magnitude 1 5~ 1 2 1 5~/ 1 2. whi ch determines th e on-axi s powe r ga in . is un a m-

biguous. In fac t . for thi s ga in we find 

_ 27Tk2 [ID' (0) + iD"(O) 1+ ID' (0) - iD" (O) I] 
GI (0) - 1 - 1500 1 2 (4.2-19) 

(ii) Additional solutions permitted by symmetry. Certain types of symmetry e nabl e one to de­
termin e certain off-axis values of the unknown functions. We consider one type of sy mm etr y of 
fr equent occurrence, exemplified by the fields of (a) rectangular waveguide open-ended or with a 
pyra midal horn, fed by the TE 10 mode in the waveguide; (b) c irc ular waveguide ope n-e nded or with 
a circ ularly symmetric horn, fed by the TE II mode in the waveguide; and (c) a trans ve rse e lec tric 
dipo le. In th ese examples the sy mmetry may be ana lytica ll y s pecified in t erm s of spec tral co m­
pone nts by 

( 4.2-20) 

(Here a specific orientation of s tru ctures and fi elds has of course bee n assumed.) We note in 
particular that 5 l Ox mu s t va ni sh on the coordinate axes . Hence , the four unknown functions in­
volved in (5) are reduced to the s ingle one, 5 lOy (k x ,O) on the line k y = 0, and to the single func-
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lion 5 1011 (O,ky) on the line k:r = 0. From (5) we immediately obtain the separate equations de­
te rminin g these two functions , 

(4.2-21) 

Next we notice that on the diagonal line kll = k.r, we have S~ == S I and S~ == 5 II' Additionall y, the 

symmetry furnishes S I = - S~ a nd 5 11 = St. Hence, of the six unknown fun ctions involved in (5) 
and (9) essentially only two distinct ones s urvive , 

U y == 5 lOy (k I , k I ) , 

say. Further, the two quadratics can easily be solved for these unknowns, as the followin g inter­
mediate results show: 

(4.2-22) 

T}1(U l'+ U!J)~=T}o[D'( k :r ,k.r) - D" (k:r, k.r) ]. 

Hence in lhis case we can obtain solutions on the four lines , k.r = O,ky = 0 , and kll = ± k J .• 

4.3. Generalized Three-Antenna Techniques 

In thi s subsection we disc uss the analysis involved in techniques for determination of both 
power gain and polarization using three unknown (dissimilar) ante nnas. We require an ante nna T, 
to be used only in trans mitting; an antenna R, to be used only in reception ; and an antenna 5 to be 
used in both receiving and trans mitting modes. We do not need to inquire whether either of the 
antennas T and R is reciprocal or even capable of operating in a " reversed" mode. We do require 
either that antenna 5 be reciprocal or, if not reciprocal, capable of being "switched" to become its 
own adjoint Sa. 

It is interesting and import a nt that some kind of reciprocity I~ is indispensably required a priori 
information. This r equirement cannot be avoided by increasing the number of antennas involved­
even to the extent of using all possible combinations of n transmittin g and Tn receiving antenn as . 
But when the reciprocity requireme nt is met, as with a reciprocal or switchable a nte nna 5, 3 
antennas are sufficient. (Note that in the switch able case,S and its adjoint do not coexist. Actual 
simultaneous possession of both 5 and sa would distinctly chan ge the character of the meas urement 
problem: In this case one could use the generalized 2-identical-antenna techniqu e of the preceding 
subsection.) 

Of course the use of 3 anten nas in a meas ureme nt scheme is not in itself new. The use of 3 
antennas in the roles of T, R , and 5 (5 being reciprocal) is recognizable in a disc ussion in Vol. 12 
of the MIT Radiation Laboratory Se ries - material originatin g in th e ea rly 1940's [45]. However, 
in that discussion s implifying assumptions regarding polarization were made and the analytical 
problem was reduced to the use of scalar equations involving gain only. Analogous schemes using 
three electroacoustic transducers coupled by a fluid medium are well known [46]. The application 
of the requisite electroacoustic reciprocity relations was introduced by Maclean [47] and by Cook 
[48] in 1940 and 1941, respectively . 

In thi s disc ussion we consider only on-axis values of antenna characteristi cs and refer to th ese 
qu antities as the a nt e nna characteristics. Determination of off-axi s characteristics by three-

1 ~ Cunceiva b ly some linea I' rela tion, 01 he r t hun that pro vided by o rd inary or adjuint rcc i procity. bet ween rece ivi ng and I ransmjll i ng: c harac ier isl ics m i ~ht bt: know n 
a priori. Thi s w4 ,lIid Il o t in j.!c ll t.'r all ead to the relati vely s impl e e qu a tions that a re o bt a ined under the assu m pt ion made. 
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antenna tec hniqu e has not yet bee n seriously cons idered, to our knowledge. (The corres ponding 
e lectroacous ti cs problem , whic h is muc h sim pler, has rece ntl y bee n completely so lvcd unde r 

mi nimum assump tions in work as yet unpublished.) 
Whe n antenna po la rization c haracteristics are fully take n into acco unt , as in the prcsent 

discussion, three·a nte nna techniq ues for the determination of on·ax is cha racte ri s tic s require 
less a priori informatio n than a ny other technique. Thus versions of the three ·a nt e nna te chnique 
have been the me thod of c hoice in several critical appl ications [e.g., 9,11]. 

The problem now posed is taken to be the determination of the receiving characte ri s ti c 

R OI (0) of the antenna R , the transmi tting characteristic T lo (0) of the antenna T, and the four 
" right·side" characteristi cs SIO (0), Sal (0) , S;'o (0), S~I (0) of the antennas 5 and 5 a. We fur the r 

c hoose to eliminate the receiving characteristics of 5 and 5 a by means of the reciprocity relations, 
whic h for K = 0 are simply 

'1/0S01 (0) = YoS;'o (0), ( 4.3-1) 

In t his discussio n we use the notation 

5,/, = 5 lOr (0) , 5';= 5'io ,!' (0), 1',. = TJ(u(O) (x = x,y) (4.3-2) 

for th e components of th e four rc maining vecto r unknown s. Certain ly, to deter mine thcse 8 
(comp lex) quantities we need a sys te m of 8 (comp le x) equ a tion s; th e "core" of the probl e m, howevcr, 

turns out to be the so lution of s ix s illluitaneou s quadrati c equat ions for s ix of the unknown s. (T hi s 

is the comple te so lution if antenna 5 is rec iproca l. ) The remainder of th e probl e m requircs only 
the so lution of two lin ea r equation s in two unknowns ; thi s part wi ll be ca ll ed th e " s uppl c me ntary" 
probl e m. 

Th e comple te prob le m requi res co upling·produ c t data de rived from transmission betwee n 
a nte nnas paired as show n in tabl e 2. Trans miss ion is from le ft to right (as already implied in the 
notation), and for cac h an tc nna·pair cons id e red, th e receivi ng an te nna is L1 sed in two orien ta tions 
differing by 90 degree rotation a round the z axis . The firs t two column s in thc tabl e indicat e two 
ways of utilizing the sa me data and are re la ted by th e int e rc hange of the role s of Sa nd 5". If tIl e 

ant e nna 5 is rec iproca l (5=5"), the first two co lum ns co in cide and redu ce to th e th ird ; o nly th e 
co re problem remains. It will be s uffici e nt to formulat e and solve the a lgebraic problem rcprese nte d 
in th e first co lumn of the table; the co rresponding formul a tion s and so lution s may bc ob ta in ed for 
the second co lumn by inte rc hanging 5 and 5" and for the case of rec iproca l S by eliminat in g th e 
superscript "a" (and with it the equations thus re ndered s uperfluous) . 

TABLE 2. Antenna pairinf{s 

5 "" 5" 5=5" 

T-" R T -" R 
FOf "cofe" pfoblem: 5 -" R 5" -" R 

T -"5" T-"5 

_F'_'f_ '_'S_u_p_,,_le_" _,e_n_l a_f_Y'_' _p_f'_,b_lc_n_,·_, --l-_5_"_-"_ R_1 5 -" R 

For the tra ns mi ss ion from T to R, we have 

(4.3-3 ) 

These equations are an ins ta nce of (4.1 - 8) (except that here c harac te ri s ti cs of both antennas are 
unknown). For the trans miss ion from 5 to R, we have 

(4 .3-4) 
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These equations are similarly an instance of (4. 1- 8). For the transmission from T to sa, we have 

(4.3-5) 

The receiving antenna, sa, is here treated in th e sa me way as was the receiving antenna in the two­
antenna technique described in the preceding subsec tion (cf. (4.2-10)). This completes the formula­
tion of the "core" problem. The solution is conveniently accomplished with the aid of circular 
polarization components, which are defin ed as in (4. 1- 9). Equations (3), (4), and (5) transform by 
pair to 

LR - = ~(D;{T + iD~T) 

T +R+ = ~(D~T - iD~T) 

T+S+ = -~ '1)O(D~T - iD~T)/Yo "'" - '1)ol:i.ST/YO, t 
LS - = -~ '1)o(D~1' + iD~T)/YO "'" - '1)02. ST/YO• ) 

(4.3-6) 

(4.3-7) 

(4.3-8) 

For the squares of the individual circular polarization components one finds without difficulty 
(but note that neither this set of equations nor the preceding sets can be generated by straight­
forward advancement of subscripts) 

. Yu 2./{'/'2.f{S 
(LS _ ¥ 0) R2_= --

2.81' 
, 

1 
'1)0 

R2 = _ Yo 1:i./i1ll lls 
(T +S+ ¥ 0) 

+ '1)0 l:i. ST 
, 

(4.3-9) 

S2 = _ '1)0 l:i.f{Sl:i.ST (T+R+ ¥O) 
+ Yo I:i.}{,/, 

, 

1 S2 = _ '1)0 2.f{S2. .ST 
; (LR _ ¥O) - Yo 2./{'/' 

(4.3-10) 

]'2 = _ '1)0 1:i./{'/'l:i.ST 
(S +R+ ¥O) 

+ Yo l:i. us 
, 

1 . '1)0 2.UT2.S'T (S _R _ ¥ 0) ]'2 =-----. 
- Yo 2.f{S 

(4.3-ll) 

The inequalities shown in parentheses (which in effect prohibit circular polarizations) must be in 
force if indeterminacy in the respective associated equations is to be avoided. If circular polari­
zations do occur, then obviously many special cases are possible. For example, if the transmitting 
characteristic of antenna S is (very nearly) right circularly polarized (Sy = iS x), then (very nearly) 
S _ = 0, 2. us = 0, 2.ST = 0, and R _ and T _ become experimentally indeterminate. However, the 
determination of the other circular components of Rand T, and the determination of the trans­
mitting characteristics of antenna S itself. would present no special difficulty. In practice , if a par-
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tial so lution suc h as thi s is not suffi c ie nt , one might includ e additiona l a nte nnas in the sche me. 
Antennas capable of being switc hed between ri ght a nd left c ircular pol a rizations have been used 
[or s imilar reasons, usuall y in less co mpli cated circum stances. 

It re main s to di s pose o[ what we ca ll ed th e supplementary proble m earli e r in this di scuss ion. 
If a ntenna 5 is rec iproca l, th e re is no supple me ntary problem; if 5 is not reciprocal, it remain s to 
dete rmine S\'o (0 ). As sugges ted in th e first column of table 2 , this can be done by measurement 

with the receiving antenna R, for whic h calibration is presumptively available as a result o[ the core 
probl e m. Equations (4. 1- 1l) are app li cab le; in notation adapted to the present context those equa­
tions become 

Here co mplete solvabi lity requires R+R_ rf O. 
Effec tive areas and powe r gain s [or antennas R, 5, 5 a , and T(as pertine nt) are readily ex pressed 

in ter ms of circ ular polarization compone nts, whic h by reference to (4. 1- 9), a re seen to be norm a l­
ized so that 

Thus. for example. we obtain for antenna 5 from (10) and (1.6-6) 

C I (0) = 4rr/,2 .) ( I t1 I1St1 .W I + I LIISL.w I)· 
1 - 15 001- t1/{'{' L /{'/' 

The corres ponding effec tive area is give n by (1.6- 21a) or (1.6- 21b), as appropriate . 
A lge brai c va lues [or the individual linear po la riza tion components may be 

(9). (10). or (11). as des ired. For example, for ante nna 5 

5.l' = ± i ~. () ( / LIISLS'l' ± / t1 I1S t1 S'l' ) , 
V~ V L/{'/' V t:..1I'1' 

S!I = ± frio (VLIISLS'I' + / t1I1St1 S'I') , 
YYo L/{'/' V t:../{,/, 

(4.3- 12) 

obtained from 

(4.3- 13) 

where the double signs are corre lated vertically but not horizontally. As far as sign ambiguities 
are concerned, these equations have the same algebraic structure as (4 .2- 17) and the earli e r di s­
cussion is again applicable. 

5. Appendices 

5.1 . Appendix A; Reciprocity Theorems 

The domain o[ the e lec tromagneti c fi e ld s under cons id e ration is the so urce-free region V 
bounded exte rnally by th e s urfaces FI and F't and internally by the c losed s u rface So + S /I, which 
encloses the source or de tector associated with the antenna cons id ered. (See sec. 1.1 and fig. 1.) A 
passive antenna is a scatterer (sometim es ca ll ed a "loaded scatte rer"); if th e s tructure is merely 
a scatterer, the surface 5 0+ S" is irrele vant and may be di sregarded. 

We shall write Maxwell 's equations in a form especially suited to the purposes of the present 
discussion. We assoc iate with the given system , described by the constitutive equations (1.5-1), 
the "Maxwellian" operator 

43 



M = ( 
iWE' 

-iwv ' +vX 

and place the vectors E and H in the column matrix 

iw'T' + V X) 
- ~wp.· 

so that Maxwell's equations for a possible field in the sys tem are expressed by 

M<P = O. (A- I ) 

Using the constitutive equations (1.5- 2) we similarly obtain for the Maxwellian operator associated 
with the adjoint system 

M-- ( iWE' 
- iWT' +V X 

where M is in a natural sense the transpose of the operator M. Maxwell's equations for the fields 
in the adjoint system take the form 

(A- 2) 

The adjoint system represents a possible physical embodiment of the mathematical concept 
of adjoint differential expression s, which may be defined as foIlows. Let 

(F') (FII) <P' = G' , <P" = Gil , (A-3 ) 

where F ', C' , F" , and Gil are arbitrary differentiable vector functions defined in V. Then we can 
associate a unique adjoint differential expression Ma with M by requiring that 

<P" ·M<P'- <p' . Ma<P" == D, (A- 4) 

where D is a divergence expression , be an identity in <P ' and <P". This leads to 

M((=M (A- Sa) 
and 

D=v '(F'x G"-F" x C '). (A- 5b ) 

Thus the adjoint operator turns out to be the transpose. I :) 

We may now easily obtain the basic theorem for our purposes. If we replace F ', G' and 
F", Gil by E', H' and E", H ", which satisfy (1) a nd (2), respectively , we have 

v· (E 'x H"-E" XH ')= O (A- 6) 

throughout the region V. This is a ge neralization of the well-known Lorentz relation. It may very 
eas ily be modified to include the e ffects of both electric and magnetic current sources embedded 
in V [37]. Here, however , we are interested in excitation of the systems by means of incident waves 

13'r o avoid poss ible confll s ion . we e mphas ize that the adjo int a ri s ing- he re is de finable essenti a ll y b y tra ns pos ition (witho ut co m plex conjuga ti on ); it is not the 
lI ermiti a n adjoint that is freqllentl y useful in othe r ph ys ical p ro ble ms. I:or d iscussion of the theory o f adjoin t differe nti al exp ress io ns see es pec ially I.unczos [491 or 
(for ord ina ry diffe rent ia l equa tions) Coura nt -Hi lbe rt [SO]. Equatio n (Sa) inc ide nt all y contains the non triv ia l res ult tha t the ope rato r v X is self-adjo in t. 
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(in s pace or wavegu ide). With or without current-source term s , (6) characterizes what may properly 
be ca lled adjoint reciprocity. 

If the con st itutive tensors obey the symmetry relations 

and T=- V (A- 7) 

then (as may be seen from (1.5- 1, - 2)) the adjoint system and the original system are id enti ca l (and 
M" = AI = M). In this case we say that the linear differential operators and the systems are se lf­
adjoint - and ordinary reciprocity obtains. Equation 6 still holds; E I, H ' and E ", H " may be in­
terpre ted as distinct e lectromagnetic fields in one and the same system. 

To apply the generalized Lorentz relation , we first take the volume integral of the express ion 
over the region V and use the divergence theorem. This yields 

1. L ' n o d5 = 2: r ~'n"dR , 
" 0 " J /'" 

(A- B) 

where L = E' x H "- E" x H ' and th e unit normals are inward on So and outward on /<' ,/ (as 
prescribed in subsections 1.1 and 1.2). Next we s ubs titute th e modal re prese ntation s of th e fi e ld s 
E ', H ' and E" , H" on 51), Fl and F~, using s in gle and doubl e prim es to di stin gui sh th e s pectral 
variab les associated with the res pective fi e lds. One obtains after so me ana lysis the ge ne ralized 
reciprocity le mma 

=2:j 2: [a;: ( 1I , - L ) b;,( II , L) - {/;,( I1 , L ) b~)(II, - L)J y/,,(t)rlL. 
/' I. 1/ 

(A- 9) 

From thi s le mm a, by making suitab le s pec ia l choi ces of exci tation, we sha ll obtain the dcs ired se t 
of re la tions between th e e le ments of the sca tt ering matrix of the original systc m and the corres­
ponding e leme nts of the scatterin g matrix of the adjo int system. 

For immediate reference we write down th e scatt e ring equations for th e original system 

b;) = 5000 ;) + 2: J 2: 5o,,( n, L ) (/;,(II, L ) dL, 
J) I. 1/ 

b;/m . K ) = 5"o(m, K ) a~ + 2: J 2: 5,/,, (111. K; 11, L) 0 ;,( 11 , L ) dL. 
fJ L 1/ 

(A-lO) 

and those for the adjoint system 

b;; = SHoO ;; + 2: J 2: 5i1,,( I1. L ) 0';,(11 , L ) dL, 
jJ I. " 

b;;( II1 , K ) = 5;;0(111, K ) a;; + 2: J 2: 5::/,(111, K; II . I.) <;( 11. L) riL-
l ) L 11 

(A-ll) 

The superscript "0" dist in gui shes quantities charactpri sti c of till ,'; '1., . y~le m. The above sets 
of equations are instances of (1.3-2); each set is defined relati ve to tilt HII'" ha,;i~ fie ld s a nd refer­
ence surfaces. 

To find the relationships between transmitting and receiving ch arac teristics. we le t E I, H ' 
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and E", H " be the fi e lds corresponding to excitation of the respective systems by the incident waves 
represented by the following set of s pectral vari a bles: 

a~ = 1, a;J( n , L ) == 0, 

a~ = 0, a;;(n , L) = Opq 011111 o(L - K). 

From (9) we find 
- b;;TJo = b~ (rn , - K ) TJ III (K ) 

and from (10) and (11) 

b~(rn , K ) = Sqo(rn, K), b~ = S'h,J rn, K). 

Hence [observing that TJIII( - K ) = TJIII(!()] we obtain 

(A-12a) 

Similarly, by interchanging the patterns of excitation (or by interchanging the designations of the 
original and the adj oint system), we obtain 

(A-12b ) 

To obtain the scattering reciprocity relations, we consider each system to be excited by an 
incide nt plane wave. as represe nted in the followin g sche me. 

a;; = O, 

From (9) we find 

and from (10) and (ll) 

b~(rn , K ) = S"fJ,(rn, K; n', L '), b~(tn , K ) = SqfJ,,( m, K; n", L "). 

Hence (after changing variables to get rid of the primes) , we ob tain the set of scattering reciprocity 
relations 

(A-l3) 

In thi s case interchanging 5 and 5" yields no further information. 
If the reader has followed through anyone of the above exercises. h e will have no trouble in 

showing 

(A-14) 

If we introduce the reciprocity dyadic 

(A-IS) 
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L 

and use the definitions (1.3-3), th e n (for example) (12b) beco mes 

(A-16) 

and (13 ) is umm ed up in 

(A-l7) 

where lJ (K) de notes lJ as a fun ction of K and the superscript "T" denotes the transposed dyadic 
(obtained by transposing the elem entary dyads involved). It is worth noting that the minus sign 
appearing between the members of (12b) does not appear in (16). The reciprocity dyadic is 
manifestly diagonal in the KJ , K~ basis; (4.2-3) shows what happens when 'YJ is presented in the 
e x, e y basis. 

The Lorentz reciprocity relation see ms to have been the quite generally preferred basis for 
the derivation of transmi ssion or coupling equations (similar , at least in func tion , to our (2-15)) 
[19 , 21, 25, 26]. There is, however, no good reason why reciprocity should be invoked for that 
purpose: receivi ng charac teri stics can be defined analytically a nd operationally, inde pe nde nt of 
tran sm itting charac teri sti cs (as is done in thi s paper). Nevertheless, it is of so me interes t that th e 
genera li zed Lorentz relation (8) . or, more conve nie ntly in th e plane· wave fra me work, the lem ma (9), 
can be used to derive transmission eq uations without invoking (ordinary ) reciprocity. 

5.2. Appendix B: Dissipative Characteristics of Media; Comparison for Mutually Adjoint Media 

The conce pt that a medium may be " lossy," " loss less," or eve n "gain y" at a give n point is 
familiar. We first need to give the mathematical exp ress ion of th ese qualita tive properties of 
media. The n it wi ll be easy to show that these properti es a re point-wise identi cal for mutually 
adjoint media. 

Acco rdin g to properties of the complex Poynting's vector. dissipation or power loss per unit 
volume. q( r ), is given by 

1 -
q (l') = - - Re \l . (E X H ) 2 . (B - 1) 

In the medium described by (1.5 -1 ), Maxwell's equations require 

\l X E = iW(/-t . H + v . E) , 
(B-2) 

\l X H =-iw(E' E + T' H ). 

(Note that these equations are source·free in the sense that they are sati s fi ed by E == H == 0.) 
Using a s tandard vector ide ntit y, we combin e (1) a nd (2) to obtain 

1 - - - -
q(r) = -2 Re {iw[H· /-t. H - E · E' E + H· (V - T*) . E]} , (B-3) 

where the superscript "*,, de notes the Hermitian conjugate. For our purpose it is convenient to 
rearrange thi s ex press ion to read 

W - -. (i (E * - E) 
q(r) = "4 [E -iH] V - T* (B-4) 
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The dissipative properties of the medium are thus seen to be determined by properties of the 
Hermitian matrix 

( £( t' * - to ) 
A(r) = * v - 'T' 

v* - 'T ) 
i(lJ-* - IJ-) , (B -5) 

which we call the loss matrix for the medium. For the present purpose the characteristics of the 
medium at a given point are appropriately classified according to the values assumable by q (r) 
as E and H, considered indepe ndent and arbitrary, vary. All possibilities are listed and named 
in table B-1. 

There is no well-established terminology precisely fitting the physical properti es being dis­
cussed. Terms generally chosen, and indeed the term "loss matrix," are biased by the tacit assump­
tion that a medium normally is lossy. Thus if the loss matrix happens to be the zero matrix, we 
would ordinarily say that the medium is 10ssless at the point in question. But the medium would 
also be gainless at the same point. Neither physical nor technological restrictions prevent the 
occurrence of negative energy loss, which might be called gain (cf. Brand [51]). 

Mathematical criteria for decidin g the value class of Hermitian matrices are given by Mirsky 
[52]. In the lossless case, which is physically important but not counted as defining a value class 
by Mirsky, the loss matrix must be the zero matrix; this in turn requires t' = t' *, T= v *, and IJ- = IJ- *_ 

TABI.E l\- I . Clrtssificatioll 0/ dissipative characteristics 

Valu es assumed 
by q(,'), 
,. fixed 

> 0 

"' 0 

= 0 

", 0 

< 0 

> -0 
< 

Value c lass of loss 
matrix at point r 

Positive definite 

Positive sem idefin ite 

Zero 

Negative semidefinite 

Negative definit e 

Inde finit e 

Dissipat ive c haracter i, t iC' s 

of medium a t point ,. 

unconditionallY} 
lossy or passive 

Cond itiona ll y 

Lossless. gain less or neutral 

Condit ionall y }. . 
gamy or act ive 

Unconditionally 

Indefin ite 

Note: In the semidefinite cases both the zero and the nonzero values a re to be as· 
sumabl e. and in the indefinit e case both positive an d negative values are to be assumable. 

The medium adjoint to that described by (1.5-1) is defined and described by (1.5-2), according 
to which the adjoint expressions can be obtained by the replacements t' --i> E, T --i> - V, V --i> - T, 
and IJ- --i> it. For the loss matrix this yields 

A"(r) = l\( r) (B -6 ) 

i.e., lV (r) is the transpose of A (r) . This relation is sufficient to insure that the corresponding loss 
fun c tions, q (r) and qa (r) , belong to the same value class (this can be seen, e .g., from the criteria 
given in Mirsky). We may say that the dissipative characteristics of a medium and its adjoint are 
the same. point by point. Whatever distribution of characteristics, including regions of active 
media (as in some antennas), is realized in one system will be realized in the adjoint system. 

5.3. Appendix C: Two-Dimensional, Spatial Sampling or Interpolation Theorem 

A vari e ty of two-dime nsional sampling theorems may be found in the literature [42, 53J. The 
methods of derivation often used are unnecessarily complicated for our purposes. For the 
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convenience of the reader we sketch a simple derivation of the simple des ired result. 
With the abbreviation S;,~ ( K) . SII)(l<) exp ( iyd) = f(K), the equation under discuss ion . 

(3.1-1), becomes 

b~(P) = (loF' f I(K ) e' K · Pdt<. (C-1) 

We have already noted that the mathematical requirem ent that f(Kl [be " band limited" may Iw 
fulfilled extraordinarily and almost arbitrarily we ll. Let us therefore assume that nonze ro valu e s 
of f(K) occur onl y in a finite region J( of wavenumber space. For sim plici ty . we take K to be 
rectangular. bounded by the lines /'J' = ± /'[ ' j'lI = ±k2• Then (1) may be written 

(C-2) 

Further. I( K ) presumptive ly can be represented in K by a double Fourier series. with periods 

2/'1 and 2/,~: 

x 

/(K) = L (C-3) 

where the coefficients are given by the usual formula 

If"" f '" (;rs = - I ' / I( K) (' ," I'rs rlkJd/'!f 
I'l l j:! J. t /" 1 

(C-4) 

with 

rrr s rr 
Prs=- e.,.-t - e!f. 

/, 1 /"2 
(C-.'1) 

Comparing (4) and (2). we see that the Crs are proportional to h,: (P) evaluated for P = PI's. so 

that (3) may be written 

(C-6) 

T hu s I( K ) is completely determi ned by the sampling of data at the discrete points PI'S' This is 

the result used in (3.1-4). 
T he us ual objective in sampling theo ry is the reconstruction of the sampled function. In the 

present instance this is easily accomplished by substituting (6) in (2) and integrating. Th e resu lt 
is a n expression involving cardinal fun ctions and expressing h;)(P) at a ll points in terms of its values 

at the lattice poi nt s. 
One should observe the rec iprocal relation be tween Ihe ~iz(' of the region J( in wavenumber 

space and the s ize of the cleme ntary cell in x, y s pace. The sma ll er the former. the larger the lat· 
ter-and the sma ll er the required de ns ity of samp ling po ints in x, y space. 
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