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Nonnegative Sums of Roots of Unity
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Let ¢. n be integers > 1, and let py, p2. . . ., p, be distinet gth roots of unity. It is shown that
ph+phi+. . .+ pk =0 forall integral £ if and only if n is a divisor of ¢ and the set {p\, po.. . ., pu}
coincides with the set {1, {u, 2. . . ., (" '}, where {, = exp(27i/n).
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The theorem proved in this note has its origins in problems concerning the characterization
of the spectrum of a nonnegative matrix which have been studied by S. Friedland (as yet un-
published). The question answered by the theorem was posed to the author by Dr. Friedland.
THEOREM: Let q,n be integers > 1, and let py, p>, . . ., pa be distinct qth roots of unity. Then
pitpk+ ... +pk=0 for all integral k if and only if n is a divisor of q and the set
{pi.p2, . . .., put coincides with the set

{1, &n, &, . . ., {8 '}, where £y = exp(27i/n).
Proor. We first assume the nonnegativity of the sums. Then after a suitable renumbering we
may put p, = (", where { = {,= exp(2mi/q) is a primitive qth root of unity, and
(1) O<sa<a<...<aps<q—1.
Put
a,‘_=§111k+cnzk+ L. _+_€a,,l\'.
Then by the hypotheses of the theorem,

(2) ar =0 for all integral £.

It is of course sufficient to consider only those £ such that 0 < £ < ¢—1, since ariq= a.
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We have

=1l n —1 0
o= 2 carl\—{ ’ Cl]jéo
k=0 r=1k=0 q, a;=0.
Thus if @ #0, ao+on+ . . . +ag_1=0, which implies by (2) that ap=01= . . . =a4_; =0. This

is not possible, since ay=n. It follows that ¢;=0, and that
(3) apta+. . . tag1=q.

The proof will be by induction on ) (q), the total number of prime factors of g. Consider first
Q (q) =1, so that g is prime. Since q is prime, the algebraic integers a;, as, . . ., a4 form a

complete set of conjugates; and since an algebraic number is zero if and only if every one of its
conjugates is zero, there are just two possibilities:

(a) a, #0, I<h=sgqg—1.

(b) a,=0, lsksgqg—1.

Assume first that (a) holds. Then (2) implies that «, >0, 1 </ < g—1. We have from (3) that

l=(aotai+. . .+tag-1)/qg= (xoas. . .aq_1)a,
(o770 T s PN I
. g <1,
since ap=n < 1. It follows that 0 < aja» . . . @g—1 <1, which is a contradiction, since Qo ... 01

is the norm of the algebraic integer a; and so a rational integer.
Now assume that (b) holds, and that n < ¢—1. Then we must have that

Thus
(4) k=0, 1<k<n
r=1

Because of (1), the matrix S= ({%*), 1 <r, k< n, must be non-singular, which contradicts (4).
Thus the assumption n<g—1 is not possible, and so n=g¢, and the integers a, must satisfy
ar=r—1,1=<r =< n. Thus the result follows in this case.

Now suppose the result proved for all ¢ such that Q(g) <N, N =2, and let g be any positive
integer such that ) (q) = N. Let ¢t be any integer such that 1 <t < n. We have

n
o= Z Cllrlx‘ R

r=1

n
C—u,kak — 2 é(u —ak,
r=1

o n oq—1
E g—u,l\'ah = 2 2 C("r_"t)k:q»

k=0 r=1k=0



sine (1) implies that @, — a; = 0 mod ¢ if and only if r = ¢.

Thus
q—1 —ack q—1
E C Qi = aip=4gq,
k=0 k=0
q-1

5) S (- ) a=0.
k=1

Now use the fact that « is real, take the complex conjugate of both sides of (5), and add the
resulting equations. The result is that

q-1
(6) E (2 _ g(!,/\‘ — C illl\') oy = 0.
k=0

Since 2 — {9k — -k = (), and ) = 0 by assumption, we conclude from (6) that
(2 — gu,l\' — g u,l.')a,‘_ = ()’
and since

P — é”’k — C agk = — g agk (1 - g””'.):s

we may also conclude that
(7) (1 —=C¢"%)ay =0, 1<t=n, all integral £.

Now the set {k:1=<k < q} coincides with the set {g//d: d|q, ([, d)=1}, where the notation
means that d runs over the positive divisors of ¢ and [ runs over the positive integers < d and rela-
tively prime to d. )

Suppose first that there is no value of d > 1 such that d divides a, for all . Then (7) and the de-
composition above easily imply that oy = 0 for 1 < k£ < ¢—1 (here we must use the fact that the con-
jugates of {4 are precisely ¢}, (I, d) =1, so that ayq vanishes if and only if agyq vanishes). Then it
follows as before that n=q, and that a,=r—1, 1 < r < n. Next suppose that there is a d > 1 such
that d divides a,for all t. Put a;, = db;, 1 <t < n.

Then

ar =Y Lot =% Loy = 0 for all integral £,
r=1 k=1
and
():bl <b2<. 5 o <bn$q/d_1
Since Q(g/d) < N, the induction hypothesis implies that n divides g/d. and that

b= q(r—1)/nd, 1<r<n.



It follows that n divides ¢ and that

ar=db,=q(r—1)/nd, 1<r<n.

Hence the result holds for any g such that ) (g) = N, and the proof (in this direction) is complete.
Finally, if n divides qand a,=q(r—1)/n, 1 < r < n,then

n
= 2 Llr-Dk = {
r=1

- n, nlk

Oékzgg

r=1

q(r—1)/n

0, otherwise

so that o), = O for all k.
This completes the proof of the theorem.
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