JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 80B, No. 1, January–March 1976

Nonnegative Sums of Roots of Unity

Morris Newman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(July 9, 1975)

Let q, n be integers > 1, and let $\rho_1, \rho_2, \ldots, \rho_n$ be distinct qth roots of unity. It is shown that $\rho_1^k + \rho_2^k + \ldots + \rho_n^k \ge 0$ for all integral k if and only if n is a divisor of q and the set $\{\rho_1, \rho_2, \ldots, \rho_n\}$ coincides with the set $\{1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}\}$, where $\zeta_n = \exp(2\pi i/n)$.

Key words. Algebraic numbers; conjugates, roots of unity.

The theorem proved in this note has its origins in problems concerning the characterization of the spectrum of a nonnegative matrix which have been studied by S. Friedland (as yet unpublished). The question answered by the theorem was posed to the author by Dr. Friedland. THEOREM: Let q,n be integers > 1, and let $\rho_1, \rho_2, \ldots, \rho_n$ be distinct qth roots of unity. Then $\rho_1^k + \rho_2^k + \ldots + \rho_n^k \ge 0$ for all integral k if and only if n is a divisor of q and the set $\{\rho_1, \rho_2, \ldots, \rho_n\}$ coincides with the set

$$\{1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}\}, where \zeta_n = \exp(2\pi i/n).$$

PROOF. We first assume the nonnegativity of the sums. Then after a suitable renumbering we may put $\rho_r = \zeta^{a_r}$, where $\zeta = \zeta_q = \exp(2\pi i/q)$ is a primitive qth root of unity, and

(1)
$$0 \le a_1 < a_2 < \ldots < a_n \le q - 1.$$

Put

$$\alpha_k = \zeta^{a_1k} + \zeta^{a_2k} + \ldots + \zeta^{a_nk}.$$

Then by the hypotheses of the theorem,

(2)
$$\alpha_k \ge 0$$
 for all integral k.

It is of course sufficient to consider only those k such that $0 \le k \le q-1$, since $\alpha_{k+q} = \alpha_k$.

AMS Subject Classification: 12A35, 12A45.

We have

$$\sum_{k=0}^{q-1} \alpha_k = \sum_{r=1}^n \sum_{k=0}^{q-1} \zeta^a r^k = \begin{cases} 0, & a_1 \neq 0 \\ q, & a_1 = 0. \end{cases}$$

Thus if $a_1 \neq 0$, $\alpha_0 + \alpha_1 + \ldots + \alpha_{q-1} = 0$, which implies by (2) that $\alpha_0 = \alpha_1 = \ldots = \alpha_{q-1} = 0$. This is not possible, since $\alpha_0 = n$. It follows that $a_1 = 0$, and that

(3)
$$\alpha_0 + \alpha_1 + \ldots + \alpha_{q-1} = q.$$

The proof will be by induction on $\Omega(q)$, the total number of prime factors of q. Consider first $\Omega(q) = 1$, so that q is prime. Since q is prime, the algebraic integers $\alpha_1, \alpha_2, \ldots, \alpha_{q-1}$ form a complete set of conjugates; and since an algebraic number is zero if and only if every one of its conjugates is zero, there are just two possibilities:

(a)
$$\alpha_k \neq 0, \quad 1 \leq k \leq q-1.$$

$$\alpha_k = 0, \qquad 1 \le k \le q - 1.$$

Assume first that (a) holds. Then (2) implies that $\alpha_k > 0, 1 \le k \le q-1$. We have from (3) that

$$l = (\alpha_0 + \alpha_1 + \ldots + \alpha_{q-1})/q \ge (\alpha_0 \alpha_1 \ldots \alpha_{q-1})^{1/q},$$
$$\alpha_0 \alpha_1 \ldots \alpha_{q-1} \le l,$$
$$\alpha_1 \alpha_2 \ldots \alpha_{q-1} \le l,$$

since $\alpha_0 = n < 1$. It follows that $0 < \alpha_1 \alpha_2 \dots \alpha_{q-1} < 1$, which is a contradiction, since $\alpha_1 \alpha_2 \dots \alpha_{q-1}$ is the norm of the algebraic integer α_1 and so a rational integer.

Now assume that (b) holds, and that $n \leq q-1$. Then we must have that

$$\alpha_k = 0, \quad 1 \leq k \leq n.$$

Thus

(4)
$$\sum_{r=1}^{n} \zeta^{a} r^{k} = 0, \qquad 1 \le k \le n.$$

Because of (1), the matrix $S = (\zeta^{a_rk})$, $1 \le r$, $k \le n$, must be non-singular, which contradicts (4). Thus the assumption $n \le q-1$ is not possible, and so n=q, and the integers a_r must satisfy $a_r=r-1, 1\le r\le n$. Thus the result follows in this case.

Now suppose the result proved for all q such that $\Omega(q) < N$, $N \ge 2$, and let q be any positive integer such that $\Omega(q) = N$. Let t be any integer such that $1 \le t \le n$. We have

$$\alpha_{k} = \sum_{r=1}^{n} \zeta^{a_{r}k},$$

$$\zeta^{-a_{t}k} \alpha_{k} = \sum_{r=1}^{n} \zeta^{(a_{r}-a_{t})k},$$

$$\sum_{k=0}^{q-1} \zeta^{-a_{t}k} \alpha_{k} = \sum_{r=1}^{n} \sum_{k=0}^{q-1} \zeta^{(a_{r}-a_{t})k} = q,$$

sine (1) implies that $a_r - a_t \equiv 0 \mod q$ if and only if r = t. Thus

(5)
$$\sum_{k=0}^{q-1} \zeta \quad \overset{-a_{t}k}{\alpha_{k}} = \sum_{k=0}^{q-1} a_{k} = q,$$
$$\sum_{k=1}^{q-1} (1 - \zeta^{-a_{t}k}) \ \alpha_{k} = 0.$$

Now use the fact that α_k is real, take the complex conjugate of both sides of (5), and add the resulting equations. The result is that

(6)
$$\sum_{k=0}^{q-1} \left(2 - \zeta^{a_t k} - \zeta^{-a_t k}\right) \, \alpha_k = 0.$$

Since $2 - \zeta^{a_l k} - \zeta^{-a_l k} \ge 0$, and $\alpha_k \ge 0$ by assumption, we conclude from (6) that

$$(2-\zeta^{a_tk}-\zeta^{-a_tk})\alpha_k=0;$$

and since

$$2 - \zeta^{a_t k} - \zeta^{-a_t k} = - \zeta^{-a_t k} (1 - \zeta^{a_t k})^2,$$

we may also conclude that

(7)
$$(1 - \zeta^{a_l k})\alpha_k = 0, \quad 1 \le t \le n, \quad \text{all integral } k.$$

Now the set $\{k: 1 \le k \le q\}$ coincides with the set $\{ql/d: d|q, (l, d) = 1\}$, where the notation means that *d* runs over the positive divisors of *q* and *l* runs over the positive integers $\le d$ and relatively prime to *d*.

Suppose first that there is no value of d > 1 such that d divides a_t for all t. Then (7) and the decomposition above easily imply that $\alpha_k = 0$ for $1 \le k \le q-1$ (here we must use the fact that the conjugates of ζ_d are precisely ζ_d^l , (l, d) = 1, so that $\alpha_{q/d}$ vanishes if and only if $\alpha_{q/d}$ vanishes). Then it follows as before that n = q, and that $a_r = r-1$, $1 \le r \le n$. Next suppose that there is a d > 1 such that d divides a_t for all t. Put $a_t = db_t$, $1 \le t \le n$.

Then

$$\alpha_k = \sum_{r=1}^n \zeta_q^{a_r k} = \sum_{k=1}^n \zeta_{q/d}^{b_r k} \ge 0 \text{ for all integral } k,$$

and

$$0 = b_1 < b_2 < \ldots < b_n \le q/d - 1.$$

Since $\Omega(q/d) < N$, the induction hypothesis implies that *n* divides q/d, and that

$$b_r = q(r-1)/nd, \quad 1 \le r \le n.$$

It follows that n divides q and that

$$a_r = db_r = q(r-1)/nd, \quad 1 \le r \le n.$$

Hence the result holds for any q such that $\Omega(q) = N$, and the proof (in this direction) is complete. Finally, if n divides q and $a_r = q(r-1)/n$, $1 \le r \le n$, then

$$\alpha_{k} = \sum_{r=1}^{n} \zeta^{q(r-1)/n} = \sum_{r=1}^{n} \zeta_{n}^{(r-1)k} = \begin{cases} n, n/k \\ 0, \text{ otherwise} \end{cases}$$

so that $\alpha_k \ge 0$ for all k.

This completes the proof of the theorem.

 $(Paper \, 80B1{-}430)$