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Using the Monte Carlo method in statistical mechanics, we have simulated high density metastable
states. We find that nucleation from a three dimensional fluid array to a crystalline solid is possible,
but that periodic boundary conditions and the small size of the system inhibit the formation of perfect
crystals. Evidence for the existence of an amorphous solid state has also been observed, and the pair
correlation function of this state exhibits some of the features associated with random close-packed
arrays of hard spheres. The possible relation between these simulations and the formation of glassy

states in real systems is briefly discussed.
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1. Introduction

Thermal and structural properties of metastable
fluid states associated with subcooling are of interest
in several problems, including glass formation, nuclea-
tion and crystal growth, and disordered alloys.

We report briefly on Monte Carlo [1]' simulations of
metastable states in systems of 108 and 256 particles
interacting through the Lennard-Jones 6—12 potential
function. The energy and length parameters are de-
noted by € and o, respectively. With N, the Avogadro
constant and kg the Boltzmann constant, the following
reduced units are used: volume, o3; pressure, €/o3;
energy, Nie; and temperature, €/kp. We report
simulations at temperatures of 77=0.80, 1.17, and 2.74
for densities between 1.05 and 1.38. Pressures for
these states are well into the kilobar range.

The computations proceed as follows. The co-
ordinates of a disordered fluid array, obtained from an
equilibrated simulation at a liquid-like density, are
scaled to a high density at a temperature at which the
lowest energy state is that of a crystalline (fcc) solid
[2]. (The initial configuration thus has the character
of a metastable fluid state, which can be realized in a

! Figures in brackets indicate the literature references at the end of this paper.
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real fluid by undercooling or overcompression.) We
then determine whether the simulation converges to
particular values of the pressure and internal energy,
and whether, on the molecular level, it converges to a
state which is not noticeably labile.

We find that the thermodynamic properties do
in fact converge, after runs of the order of 107 con-
figurations, but that the resulting pressures and
energies are higher than those of the crystalline solid
at the same density and temperature. Examination
of the molecular structure indicates that some of these
runs converged to distorted fcc crystals, while others
converged to comparatively amorphous states, with
structures similar to the random close-packed struc-
tures studied by Finney [3] and Bernal [4]. Such struc-
tures have been discussed by Turnbull [5] as a possible
model for the ideal glass state.

Although the sequence of configurations generated in
a Monte Carlo simulation is produced by a random
process, each configuration differs from the preceding
one by at most a small displacement of a single parti-
cle. Hence it is not unreasonable to consider that the
progress of the simulation bears an approximate rela-
tion to the progress of real time. Examination of the
molecular structures resulting from these simulations
may therefore provide some insight into crystal nuclea-



tion and glass formation in metastable fluids composed
of simple molecules. Nucleation phenomena similar to
those reported here have recently been observed in
molecular dynamics simulations of the same model
[6]. Previous work on soft-sphere systems [7] also
indicates similar results for repulsive potentials which
vary as the inverse twelfth power of the internuclear
separation.

2. Results and Discussion

The results for the pressure and energy at p=1.375
and T7=2.74 are shown in figure la; this density is
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FIGURE la. The pressure and energy (in Lennard-Jones units) as a

Jfunction of the number of configurations at p=1.375 and T =2.74.

The dashed curves are averages over the most recent 10° configurations and the solid
curves is the cumulative average. The breaks in the solid curve indicate that the particle
coordinates at these points were used to initiate a new simulation.

about 30 percent beyond the freezing density which
was reported [2] for the T=2.74 isotherm. The solid
curves are the cumulative averages and the dashed
curves are the averages over the most recent 10°
configurations. The breaks in the solid curve at
9Xx 10¢ and 16 X 10¢ configurations indicate that the
particle coordinates at these points were used to
initiate a new simulation. The very close agreement
between the solid and dashed curves beyond 17 X 106
clearly indicates convergence. (The corresponding
results for the internal energy behave similarly.) The
nearly horizontal curves at the left of figures la and 2a
were characterized by extensive displacements of the
particles from their initial positions—in other words
“liquid-like” behavior. As the pressure and energy
decreased, the net particle displacements over each
10° configurations likewise decreased. At the horizontal
portion of the curves at the end of each run, the
molecular structure was no longer labile; that is, the
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particles appeared to be locked into a fixed array
undergoing only small displacements from their mean
positions as the computation proceeded. The pressure
and energy converged to values of 80 and —O0.5,
respectively. The pressure and energy obtained from a
simulation of an fcc array at the same density and
temperature are 72 and — 1.9, respectively.

The pair correlation function, g(r) at 5 X 10¢ and at
27 X 108 is shown by the solid curves in figure 1b and
figure lc, respectively. For comparison, the correlation
function for a simulation of an fcc array at the same
density and temperature is shown by the dashed curve
in figure lc. The local maxima in this curve occur
approximately at the first, second, third, etc., nearest
neighbor distances of the fcc solid. The results in
figures 1b and lc suggest that nucleation has occurred
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FIGURELb. The pair correlation function, g(r), for the simulation in
figure la at 5 X 10° configurations.
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FIGURE lc. The same as figure 1b except solid curve is at 2.7 X 107
configurations and the dashed curve is from the simulation begun
from fcc array.

and that the initially metastable fluid has converged
to an imperfect crystalline array. Visual inspection
of three-dimensional structure at 27 X 106 configura-
tions by means of stereoscopic pairs of 35 mm photo-
graphs confirms the existence of distorted crystalline
planes.



More striking evidence for nucleation to a crystalline
array was obtained at p=1.105 and 7=0.80, which
is less than one-half the freezing temperature [2] at
this density. The results for the pressure and the
average root mean square displacement of a particle
(rms) from its initial position are shown in figure 2a.
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FIGURE 2a. The pressure and average root mean square displace-
ment (rms) for p=1.105 and T = 0.80.

The rms (open circles) is in units of the distance parameter, o.

The pressure over the most recent 10° configuration
converged to 8.93 and the result for a run begun from
fce positions was 9.03. The internal energy for both
runs converged to the same value, —7.17. The behavior
of the rms suggests that as the system equilibrates
the positions of the atoms are not particularly labile.
This can be qualitatively interpreted as restricted
diffusion.

The pair correlation for the runs are shown in figure
2b, as before the dashed curve is for the run begun
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FIGURE 2b. The pair correlation function, g(r), at 2.0 X 107 con-

figurations for the simulation shown in figure 2a.

The result for the simulation begun from fcc array is given by dashed curve.
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from fce coordinates and the solid curve is for the run
begun from a random array. Both curves are identical
to radial distances comparable to the second nearest-
neighbor distance and the close similarity for larger
interatomic separation clearly indicates crystalline
order. These results should be compared with figure
2¢ which shows the pair correlation function at
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FIGURE 2¢.  The pair correlation function at 2.0 X 10° configurations

for the simulation in figure 2a.

2.0 X 108 configurations in the course of the run begun
from the random array. Evidently the local order in the
random system underwent distinct changes between
2.0 and 20 X 108 configurations.

The formation of a perfect crystalline lattice in these
simulations is greatly hindered by the periodic bound-
ary conditions which are used to avoid surface effects.
Unless the crystal nucleates with its principal axes
parallel to the axes of the reference coordinate system,
it will necessarily undergo a severe strain at the
boundaries of the cube in which the particles are
confined. It therefore seems likely that homogeneous
nucleation has occurred in these runs but that the
failure to reach a perfect crystalline structure is an
artifact of the periodic boundary conditions and
perhaps of the small size of the system.

Similar computations on the 7= 2.74 isotherm were
performed at p=1.30 which is approximately 20
percent beyond the freezing density [2]. The results
are given in figures 3a and 3b. The general behavior of
the pressure and energy is similar to the previous
simulation. (The pressure and energy after convergence
are 59 and —2.4, respectively, compared to 53 and
—3.3 for a simulation of an fcc array at the same
temperature and density.) The molecular order, how-
ever, suggests different features. The pair correlation
function in figure 3b shows no evidence of the fcc
ordering indicated by the solid curve in figure 2b.
Visual inspection of the atomic coordinates at 19 X 106
configurations by means of stereoscopic pairs of photo-
graphs indicated an amorphous structure, with little
evidence of distorted crystalline planes. During the
same sequence of configurations, the molecular
structure gradually ceased to be labile and the particles
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FIGURE 3a. The same as figure la except p=1.30.
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FIGURE 3b. The pair correlation function, g(r), for the simulation
shown in figure 2a at 1.9 X 107 configurations.

became locked onto a disordered array. This was also
manifested in the pair correlation function which did
not change by more than +1 percent beyond 14 X 10¢
configurations.

We infer from this that the molecular order became
locally more close-packed as the pressure and energy
converged. The amorphous structure at convergence
is suggestive of the formation of a glassy state. In
figure 3b there is no evidence of the subdued second
nearest neighbor peak at r = 1.45, present in the solid

62

curve of figure 2b. In previous studies [2] we have
observed that the existence of fcc lattice structure
results in a subdued peak or ‘“‘step” in this region of
the pair correlation function. The pair correlation
shown in figure 3b exhibits some of the features found
in studies of random close-packed arrays of hard
spheres [3]. In particular, the broad second maximum
can be interpreted as two separate peaks, centered at
approximately r=1.75 and r=1.95. Bernal [4] at-
tributes the first of these to the presence of tetrahedra
which share a common base, and the second to the
collineation of three particles.

The relation between the structure of a random
close-packed system and that of an ideal glass has been
discussed in detail by Turnbull [5]. It is sufficient to
remark here that the structure of the glass state in
macroscopic systems is still an important unresolved
problem.

We have investigated the reproducibility of the
simulations in the metastable region by repeating the
calculations with initial coordinates obtained trom a
random number generator. The results for p=1.30
and T=2.74 are shown in figure 4a. These should be
compared to the results shown in figure 3a which, as
we have noted, are for a simulation begun with the
coordinates of an equilibrated run at liquid-like
densities [2]. The dashed curves indicate the simula-
tions are reproducible to within 4 percent and we
conjecture that the differences would be smaller if the
simulation in figure 4a had been continued to the same
number of configurations as that in figure 3a.
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FIGURE 4a. The pressure for simulation at p=1.30 and T=2.74

begun from coordinates obtained from a random number generator.

The pair correlation function obtained from the
simulation in figure 4a at 15X 108 is quite similar to
that shown in figure 3b. In particular the function
shows no evidence of the crystallinity shown in
figures 1b and 2b.

The constant pressure heat capacity for the Lennard-



Jones system can be computed in terms of pressure
and energy fluctuations, AP and AU respectively, by
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The first term on the right is the constant volume heat
capacity and the second term represents the ratio of
the square of the compressibility to the expansivity.
For potentials of the Lennard-Jones type (integer power
law function) the ratio can be written in terms of pres-
sure and energy fluctuations [8].

The results for the configurational heat capacity
for the simulation shown in figure 4a are given in
figure 4b. Since the pressure and energy fluctuations
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FIGURE 4b. The constant pressure heat capacity in units of the gas
constant for the simulation shown in figure 4a.

are large, the heat capacity also has large fluctuations.
For reference, we note that the heat capacity of the
crystalline solid was estimated to be 3.4 which is close
to the result for the glassy state shown in figure 4b.
Size effects have been studied by performing simula-
tions on 108 particle systems. There is one noticeable
difference between the 108 and 256 particle systems:
the convergence is not as complete in the smaller
system. That is, the converged values of the pressure
and energy in the smaller system are higher than those
in the larger system at the same density and tempera-
ture. This is shown in figure 5 where we have plotted
results from both the 108 (denoted by triangles) and
the 256 (denoted by solid circles) particle systems on
the T=1.17 isotherm [2]. The circled crisscross
denotes the density at which both size systems were
initially prepared in a fluid array. After the systems
had reached convergence in pressure and energy, the
density in each system was successively decreased and
the coordinates from each preceding simulation were
used to begin a new run. From figure 5 we note that
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FIGURE 5. Results on the T=1.17 isotherm with 108 (/\) and 256
(*) particle systems.

The circled crisscross denotes the density. The density was successively decreased and
the coordinates of each preceding state were used to initiate a new simulation.

data points for both size systems form smooth curves
which give higher pressures than those of the fcc
crystalline phase. As with the results on the 7'=2.74
isotherm, the data in figure 5 show that nucleation is
possible but that the periodic boundary conditions and
small size prevent complete crystallization. Below
densities of approximately p=1.05, the systems
“melt” and, as expected, the pressures join to the fluid
branch.

In summary, we have shown that nucleation from a
fluid to a crystalline array is possible in a small three
dimensional system with periodic boundary conditions.
The results indicate that there is an amount of over-
compression or supercooling which must be exceeded
to-observe the characteristic decrease in pressure and
internal energy. That is, unless the overcompression is
of a certain magnitude, the thermodynamic properties
of the initially random arrays appear to fluctuate about
values which are typical of a smooth extension of the
equilibrium fluid phase. For the isotherms we have
investigated the lower limit of overcompression ap-
pears to be 15—20 percent. For a given density, the
investigations suggest that even a larger amount of
supercooling may be required. We have examined the
role of size in determining the completeness of the
observed crystallization. In addition, we have found
evidence for the existence of an amorphous close-
packed array which has some of the characteristics of



a model proposed [5] for the glass state in macroscopic
systems. If the existence of this state is confirmed in
additional studies, it may prove useful in the study of
the molecular structure of the glass state. Since we
have seen that the small systems can undergo nuclea-
tion to a crystal, this suggests that the amorphous
solid state may be a well defined metastable state
between the fluid and crystalline phases.

The computations suggest further investigations at
high densities and lower temperatures. We have
preliminary results for several states which are con-
sistent with those reported here.
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