SYSTEM CaO-Na₂O-Al₂O₃

By L. T. Brownmiller and R. H. Bogue

ABSTRACT

A part of the system CaO-Na₂O-Al₂O₃, in the region low in Na₂O, has been investigated by the methods of phase equilibria. The stability fields, boundary curves, and invariant points have been defined. Optical and X-ray data are presented and ternary diagrams introduced to indicate the composition and temperature relations and the course of crystallization in the system.

CONTENTS

		Page
I.	Introduction	289
TT	Experimental method	200
TTT.	D:	200
111.	binary systems of the components	292
	1. System CaO-Na ₂ O \sim	292
	2. System $CaO-Al_2O_3$	292
	3. System $Na_2O-Al_2O_3$	295
IV.	Ternary compounds	296
v.	Stability fields	299
VI.	Quintuple points	300
VII.	Boundary curves	300
VIII.	Binary systems within the ternary diagram	302
	1. System $3CaO.5Al_2O_3-3CaO.2Na_2O.5Al_2O_3$	302
	2. System CaO.Al ₂ O ₃ -3CaO.2Na ₂ O.5Al ₂ O ₃	302
	3. System $5CaO.3Al_2O_3-3CaO.2Na_2O.5Al_2O_3$	302
	4. System $3CaO.2Na_2O.5Al_2O_3-Na_2O.Al_2O_3$	302
	5. System CaO-Na ₂ O.Al ₂ O ₃	303
	6. System 8CaO, Na ₂ O, $3Al_2O_3$ - $3CaO, 2Na_2O, 5Al_2O_3$ + Na ₂ O, Al_2O_3	303
	7. System 5CaO.3Al ₂ O ₂ -8CaO.Na ₂ O.3Al ₂ O ₂	303
	8. System 3CaO.Al2O3-8CaO.Na2O.3Al2O3	303
IX.	Course of crystallization	303
X.	Significance of the system CaO-Na ₂ O-Al ₂ O ₂ in Portland cement	305
XL	Summary	306
VII	Ashpowledgments	306
VIII.	Dibliomen by	207
лш.	Dibilography	307

I. INTRODUCTION

The studies reported in this paper are in continuation of a series begun several years ago to determine the constitution of Portland cement clinker and the part played by each of the compounds in the manufacture and utilization of that product. To-day those studies are fairly complete for the principal constituents of Portland cement, namely, for CaO, SiO₂, Al₂O₃, Fe₂O₃ and MgO; and from them the modern ideas on the constitution of cement have been evolved (1).¹ Besides these components, there are many others occurring in small

amounts in cements. Of the minor components, soda is one of the

¹ The figures given in parentheses here and throughout the text relate to the reference numbers in the bibliography at the end of this paper.

more important, since it is common to practically all cements. Therefore a continuation of those studies has been made to determine the combinations which soda is capable of forming with the other constituents of the cement.

The system CaO-Na₂O-Al₂O₃ has now been examined and constitutes the subject of this report. This system, however, was not explored completely. Not only would special methods have to be adopted to solve it entirely, but, in cements, the concentration of soda is small; hence, the studies in the system could be confined to compositions low in Na₂O. Apparently only one compound of CaO and Al₂O₃, 3CaO.Al₂O₃, occurs in normal Portland cements; accordingly, that region of the diagram CaO-Na₂O-Al₂O₃ in which 3CaO.Al₂O₃ occurs is the field of greatest importance. Nevertheless, because of the complexity of the system, other portions of the diagram had to be investigated to understand fully the relations in that region.

II. EXPERIMENTAL METHOD

Because of the volatility of Na₂O at temperatures above 900°,² somewhat special methods had to be used in preparing the samples. Base compositions of CaO and Al_2O_3 were weighed in various proportions, thoroughly mixed by stirring in a small amount of water and then burned in a platinum resistance furnace. A portion of about 5 g of this base composition was weighed and to it the third component, Na₂O, was added in the form of Na₂CO₃. The compositions of the raw materials are indicated in Table 1.

Partis	l analysis l	Partial analysis by J. T. Baker Chemical Co.			
CaO MgO RaO RaO SiO ₂ Loss	Calcium carbon- ate <i>Per cent</i> 56.04 .07 .06 .05 .01 43.71	Al2O3 SiO2 Fe2O3 CaO Cl SO3 Loss	Alumina Per cent 94.48 .01 .002 Nil. Trace. Trace. 1.42	Insoluble Cl S04 R203 SiO2	Sodium carbon- ate <i>Per cent</i> 0.02 .005 .004 .005 .005

TABLE 1

An excess of the sodium carbonate over that desired in the final sample was required since some Na_2O is volatilized on heating. After dry mixing of the components of the ternary composition, it was burned at a temperature of about 1,400°, pulverized and reburned at a higher temperature. Burning was done in an open platinum boat in a platinum-resistance furnace. After cooling in a desiccator, the sample was weighed and from the difference in weight the amount of Na_2O remaining in the mixture was calculated.

Relatively low temperatures were used for the first burning because this procedure resulted in less loss of Na_2O by volatilization than obtained with high initial burning temperatures.

290

² Temperatures are given in °C.

The amount of Na₂O lost on subsequent heatings at $1,400^{\circ}$ to $1,500^{\circ}$ was found to vary from less than 1 per cent of the total weight in samples low in soda to somewhat larger percentages in samples high in soda. In making up the compositions for these studies, an excess of about 25 per cent of sodium carbonate above the theoretical amount required was weighed into the base compositions; but this percentage excess could be reduced somewhat if the first burning were made at temperatures as low as about 1,100°. On twice burning such a mixture at 1,400° to 1,500° the composition was found usually to be within 1 per cent of that desired. Further adjustments could then be made to give the precise compositions required.

The second heating of the samples was necessary before final weighing because frequently not all of the carbon dioxide was evolved during the first burning, as evidenced by effervescence on treating with hydrochloric acid. Before final weighing, all samples were heated at least once to temperatures of about 1,500°. Table 2 gives a few data on the amount of Na₂O volatilized from

Table 2 gives a few data on the amount of Na_2O volatilized from these samples heated in an open platinum container. The loss usually was less than 1 per cent after the Na_2O was once combined, but the amount of the loss was found to depend somewhat on the composition, the temperature, and the time of heating.

TABLE 2.—Data showing the per cent loss in Na₂O following several heat treatments

and the second second	Sample HU			Sample HT			Sample HS		
	Temper- ature	Na ₂ O	Loss	Temper- ature	Na2O	Loss	Temper- ature	Na ₂ O	Loss
Na ₂ O added (per cent) Na ₂ O after first heating Na ₂ O after second heating Na ₂ O after third heating	1,450 1,425 1,525	9.0 6.3 5.9 5.0	2.7 .4 .9	1,450 1,400 1,475	20, 0 13, 8 13, 3 12, 6	6.2 .5 .7	1,450 1,425 1,425	17.0 12.5 11.8 11.5	4.5 .7 .3

These samples were then finely ground and portions taken for determining the temperature relations in the system. Heating curves were not obtained because the thermoelements are attacked by the Na₂O. Hence, the quenching method was used exclusively. In this method a small charge is inclosed in pure platinum foil and suspended in a quenching furnace (2) capable of reaching 1,630°. The samples were usually held in the furnace at desired temperature for 20 minutes, which was sufficient time for the attainment of equilibrium in most cases. Samples were then quenched in mercury or water and examined under a petrographic microscope. Samples dropped in mercury float on the surface and in some regions of the diagram cooling is not rapid enough to prevent quench growths; hence, water was frequently used. Crystallizations during quenching were troublesome in the regions in which the ternary compound 8CaO.Na₂O.3Al₂O₃ crystallized. They can usually be recognized by wavy extinction under crossed nicols and by a brown color in ordinary light; also the refractive indices of such growths are slightly higher than those of the glass, but never as high as those of the true crystals. Often these growths form concentric bands around the primary phase.

The samples finally obtained as described above were too small for analysis, but the examination of other samples treated at corresponding temperatures indicated that the amount of soda lost due to volatilization from these especially prepared specimens was considerably less than that shown in Table 2. The samples listed in Table 2 were burned in open platinum boats whereas the samples for quenching were always carefully inclosed in platinum foil. Further-more, in working with samples just above (by one-half per cent of Na₂O) the boundary between the fields of 3CaO.2Na₂O.5Al₂O₃ and 5CaO.3Al₂O₃, the primary phase always was 3CaO.2Na₂O.5Al₂O₃, whereas, if the amount of Na₂O lost were appreciable, the composition, after heating different samples of the same original composition for varying periods, would have been shifted to throw it into the field of $5CaO.3Al_2O_3$. It is felt that if such were the case different quenches of the same composition should have shown different primary phases. Such irregularities did not occur.

Because of the reaction of soda with the thermoelements, frequent calibration was necessary. It is believed that the reaction is principally with the rhodium and not with the platinum. Fused samples containing Na₂O were frequently colored pink or brown and in such cases the samples showed reaction with the metal. No such discoloration was noticed in samples wrapped in the pure platinum foil and the foil could usually be pulled from melted samples leaving a charge with a smooth surface and no indication of reaction.

The optical properties were determined with a petrographic microscope and the powder X-ray diffraction apparatus was employed to obtain the interplanar spacings of the compounds and for the identification of the phases in the samples. The radius of the cassettes is 8 inches and the effective wave length of the rays is 0.712 A.

The principal results of the study are shown diagrammatically in Figure 1.

III. BINARY SYSTEMS OF THE COMPONENTS

1. SYSTEM CaO-Na₂O

No evidence was obtained of the existence of any binary compound in this system. When samples made of these components were heated, the Na₂O was nearly completely volatilized and the optical properties of the CaO were apparently unchanged.

2. SYSTEM CaO-Al₂O₃

This system was studied by Rankin and Wright. The relations are given in their report, The Ternary System CaO-Al₂O₃-SiO₂. (3).

Four compounds were found: 3CaO.Al₂O₃, which dissociates at $1,535^{\circ}\pm5^{\circ}$ into CaO and liquid; $5CaO.3Al_2O_3$, which melts at $1,455^{\circ} \pm 5^{\circ}$; CaO.Al₂O₃, which melts at $1,600^{\circ} \pm 5^{\circ}$; and 3CaO.5Al₂O₃, which melts at $1,720^{\circ} \pm 10^{\circ}$. The 3CaO.Al₂O₃ does not form a eutectic with CaO, but the composition CaO 57, Al₂O₃ 43, is the quadruple point at which the two compounds are stable in contact with liquid and vapor, the equilibrium temperature being $1,535^{\circ} \pm 2^{\circ}$. 3CaO.-Al₂O₃ forms a eutectic with 5CaO.3Al₂O₃ having the composition CaO 50, Al₂O₃ 50 which melts at $1,395^{\circ} \pm 5^{\circ}$. 5CaO.3Al₂O₃ forms a eutectic with CaO.Al₂O₃ having the composition CaO 47, Al₂O₃ 53 which melts at $1,400^{\circ} \pm 5^{\circ}$. CaO.Al₂O₃ forms a eutectic with 3CaO.-5Al₂O₃ of the composition CaO 33.5, Al₂O₃ 66.5 which melts at

FIGURE 1.—Diagram showing fields of primary crystallization and the binary systems within the ternary system CaO-Na₂O-Al₂O₃

 $C = CaO; A = Al_2O_3; N = Na_2O.$

and 78 of the same paper to be from CaO 50, Al_2O_3 50 to CaO 57, Al_2O_2 43.

The interplanar spacings of the X-ray diffraction pattern of CaO.-Al₂O₃ and $3CaO.5Al_2O_3$ are given in Tables 3 and 4, respectively. Those of CaO, $3CaO.Al_2O_3$, and $5CaO.3Al_2O_3$ have been reported previously from this laboratory (4), but, as more satisfactory patterns of the latter two compounds have recently been obtained, these are given also in Tables 5 and 6.

						the second se		
Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1
1 2 3 4	3. 70 3. 40 3. 31 3. 18	m w w m	13 14 15 16	2. 080 2. 025 1. 963 1. 925	W M W S	25 26 27 28	1.461 1.450 1.410 1.363	m m m wwb
5 6 7 8	2, 96 2, 85 2, 68 2, 52	ss m w s	17 18 19 20	1.835 1.750 1.681 1.656	w ww w m	29 30 31 32	1, 341 1, 295 1, 278 1, 255	wwb wwb ww ww
9 10 11 12	2. 41 2. 335 2. 195 2. 140	s w m m	21 22 23 24	1.605 1.578 1.523 1.481	ww m sb w	33 34 35	1. 181 1. 153 1. 069	m m ww

TABLE 3.—Interplanar spacings of CaO.Al₂O₃

1 ss=very strong; s=strong; m=medium; w=weak; ww=very weak; b=broad.

Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity ¹
1 2 2 3 4 5 5 7 7 8 9 9 10	3. 62 3. 50 3. 09 2. 97 2. 87 2. 75 2. 75 2. 59 2. 59 2. 52 2. 43 2. 32 2. 32	m ss s s s s s s s s s mb m	15. 16. 17. 18. 20. 21. 22. 23. 24. 25. 96.	2.055 1.998 1.960 1.923 1.900 1.866 1.836 1.800 1.759 1.679	mb w m ww m ww m m w w m	29 30 31 32 33 34 35 36 37 38 39	$\begin{array}{c} 1.451\\ 1.368\\ 1.322\\ 1.306\\ 1.284\\ 1.252\\ 1.178\\ 1.153\\ 1.134\\ 1.025\\ .962\\ .967\end{array}$	wb m w w w w w w w w w w w w w w
13 14	2. 185 2. 125	m ww	27 27 28	1. 533 1. 533 1. 479	sb ww	40	. 893 . 875	ww ww

TABLE 4.—Interplanar spacings of 3CaO.5Al₂O₃

¹ss=very strong; s=strong; m=medium; w=weak; ww=very weak; b=broad.

Line No.	daki	Inten- sity ¹	Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1
1 2 3 4 5 5 6 - 7 - 8 9 9 - 10	4.07 3.32 3.03 2.83 2.77 2.69 2.57 2.46 2.400 2.375	m w w w ss ww ww w w w w	19	$\begin{array}{c} 1.821\\ 1.785\\ 1.731\\ 1.693\\ 1.669\\ 1.640\\ 1.611\\ 1.554\\ 1.512\\ 1.486\end{array}$	W WW M WW WW W SS WW W W	37	$\begin{array}{c} 1.\ 204\\ 1.\ 165\\ 1.\ 155\\ 1.\ 099\\ 1.\ 053\\ 1.\ 034\\ 1.\ 017\\ .\ 998\\ .\ 966\\ .\ 897\end{array}$	S W WW WW WW S WW WW MW M
11 12 13 14 15 16 17 18	$\begin{array}{c} 2.\ 270\\ 2.\ 200\\ 2.\ 135\\ 2.\ 085\\ 2.\ 033\\ 1.\ 981\\ 1.\ 947\\ 1.\ 905 \end{array}$	W M W W W S	29	1. 449 1. 426 1. 404 1. 360 1. 345 1. 315 1. 262 1. 231	W WW W S S WW WW WW	47 48 50 51 52 53 54	. 850 . 811 . 777 . 746 . 726 . 694 . 652 . 620	ww ww ww ww ww ww

TABLE 5.—Interplanar spacings of 3CaO. Al₂O₃

¹ss=very strong; s=strong; m=medium; w=weak; ww=very weak.

Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1	Line No.	dnes	Inten- sity 1
1 2 3 4	3. 77 3. 18 2. 98 2. 67	m m s ss	18 19 20 21	1.269 1.599 1.554 1.520	m s ₩ m	35 36 37 38	1.140 1.110 1.091 1.084	ww m w w
6 7 8 9	2. 33 2. 44 2. 34 2. 180 2. 055	s m s w	23 24 25 26	1. 493 1. 472 1. 390 1. 353 1. 336	m s ww w	40. 41. 42. 43.	1. 057 1. 048 1. 031 1. 017	w ww w
10 11 12 13	1. 943 1. 906 1. 846 1. 800	s w w ww	27 28 29 30	1. 305 1. 290 1. 274 1. 260	m ww w	44 45 46 47	. 989 . 968 . 927 . 916	ww ww w
14 15 16 17	1.764 1.728 1.694 1.660	W M W S	31 32 33 34	1. 234 1. 207 1. 187 1. 171	w w ww w	48 49 50 51	. 900 . 890 . 857 . 848	ww w ww ww

TABLE 6.—Interplanar spacings of 5CaO.3Al₂O₃

1 ss=very strong; s=strong; m=medium; w=weak; ww=very weak.

3. SYSTEM Na₂O-Al₂O₃

Matignon (5) found that there exists in the system $Na_2O-Al_2O_3$ one compound, $Na_2O.Al_2O_3$, which has a melting point at 1,650°. No optical properties were given.

The system $Na_2O-Al_2O_3$ was only partially investigated by the present authors due to the difficulties of working with compositions high in Na_2O and to the high melting temperatures in the region approaching Al_2O_3 .

On heating a mixture of the composition $Na_2O + Al_2O_3$ (37.8 per cent Na_2O ; 62.2 per cent Al_2O_3) to 1,630°, a homogeneous phase was obtained; there was no melting or dissociation at that temperature. The melting point could not be determined because of the temperature limitations of the furnace.

The compound $Na_2O.Al_2O_3$ was found to crystallize as colorless rounded grains. It is biaxial negative with indices of refraction: $\alpha = 1.566 \pm 0.003$, $\beta = 1.575 \pm 0.003$, $\gamma = 1.580 \pm 0.003$. The optic axial angle is medium small, about 30°. Twinning commonly occurs. The interplanar spacings of the X-ray diffraction pattern are given in Table 7.

No other binary compounds were detected in the system but, on heating a sample containing 3.5 per cent Na₂O and 96.5 per cent Al₂O₃ for short periods at 1,100°, corundum and β Al₂O₃ were identified. On heating such samples at 1,500°, β Al₂O₃ and Na₂O.Al₂O₃ crystallized while corundum was absent. β Al₂O₃ was found to be the stable modification in the system Na₂O.Al₂O₃-Al₂O₃ at high temperatures in samples containing as large an amount as 96.5 per cent of Al₂O₃.

 βAl_2O_3 was found to be uniaxial negative and to crystallize as plates with the optic axis parallel to the *c*-crystallographic axis. It belongs to the hexagonal crystal system. Determination of the indices of refraction on a sample of the compound furnished by the Norton Co. gave values: $\omega = 1.678 \pm 0.003$; $\epsilon = 1.635 \pm 0.003$. This sample which was made by fusion of Al_2O_3 with Na_2CO_3 appeared under the microscope to be practically pure βAl_2O_3 . The crystals

Bureau of Standards Journal of Research

were large and well developed, whereas in the sample referred to above containing 3.5 per cent Na₂O, the small size of the crystals of the β Al₂O₃ prevented satisfactory measurement of the indices of refraction. However, the X-ray diffraction pattern of this sample of β Al₂O₃ and that of the sample furnished by the Norton Co. (6) were identical.

IV. TERNARY COMPOUNDS

Two ternary compounds were found in the system $CaO-Na_2O-Al_2O_3$ —one of a molecular composition $3CaO.2Na_2O.5Al_2O_3$ and the other $8CaO.Na_2O.3Al_2O_3$.

Line No.	dhki	Inten- sity ¹	Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity ¹
1	2. 94 2. 68 2. 60 2. 55 2. 38 2. 22 2. 145 1. 983 1. 980 1. 869 1. 805 1. 762	s s ss ss w w w w w m m m m	13	$\begin{array}{c} 1.599\\ 1.523\\ 1.497\\ 1.471\\ 1.458\\ 1.415\\ 1.362\\ 1.302\\ 1.283\\ 1.176\\ 1.119\\ 1.065\\ \end{array}$	s w s w s m s w w w w w w w w w w w	25	1.048 1.028 1.010 .980 .975 .955 .918 .910 .880 .805 .782 .762	m ww ww ww ww ww ww ww ww ww ww

1 ss=very strong; s=strong; m=medium; w=weak; ww=very weak.

By weight percentages the compound $3\text{CaO.2Na}_2\text{O.5Al}_2\text{O}_3$ contains 20.9 per cent CaO; 15.5 per cent Na₂O; 63.6 per cent Al₂O₃. This compound does not dissociate or melt at any temperature up to 1,630°. Optically it is biaxial positive; the mean refractive index is 1.592 ± 0.005 ; the birefraction is very weak, about 0.005; and it crystallizes as rounded grains. The interplanar spacings of the X-ray diffraction pattern of this compound are given in Table 8.

The compound 8CaO.Na₂O.3Al₂O₃, having a composition of 54.9 per cent CaO, 7.6 per cent Na₂O, and 37.5 per cent Al₂O₃, dissociates into lime and liquid at 1,508°. Its composition lies outside the field in which it occurs as a primary phase. It is biaxial negative with a medium optic angle; indices of refraction are $\alpha = 1.702 \pm 0.003$, $\gamma = 1.710 \pm 0.003$. When the compound crystallizes as a primary phase, well-formed crystals are readily obtained. They often appear as polyhedrons with hexagonal or octagonal outline. When crystallization of the melt is rapid the compound separates as extremely fine crystalline material. In slowly cooled samples twinning is characteristic.

296

Line No.	daar	Inten- sity 1	Line No.	d x b 2	Inten- sity 1	Line No.	d h k k k	Inten- sity ¹
1 2 3 4	4. 20 3. 91 3. 41 2. 97 2. 84	s s m w	22 23 24 25 26.	$1.660 \\ 1.600 \\ 1.575 \\ 1.544 \\ 1.499$	w w m s	43 44 45 46 47.	$ \begin{array}{c} 1.058\\ 1.051\\ 1.025\\ 1.014\\ 1.000 \end{array} $	W m WW WW
6 7 8 9 10	2. 67 2. 58 2. 49 2. 43 2. 34	W SS WW W W	27 28 29 30 31	1.485 1.425 1.391 1.363 1.333	s m m m ww	48 49 50 51 52	. 975 . 951 . 926 . 906 . 854	W WW WW WW W
11 12 13 14 15	2. 25 2. 20 2. 14 2. 06 1. 990	н н н н н н н н н	32 33 34 35 36	1. 302 1. 288 1. 263 1. 240 1. 214	w m ww ww ww	53 54 55 56 57	.841 .837 .815 .812 .787	ww ww ww ww
16 17 18 19 20 21	1.9341.8631.8421.8051.7381.697	m m s m w	37 38 39 40 41 42	1. 188 1. 161 1. 144 1. 162 1. 102 1. 080	ww m m w w wwb	58 59 60 61 62	. 782 . 744 . 739 . 734 . 728	WW WW WW WW

TABLE 8.—Interplanar spacings of 3CaO.2Na₂O₅Al₂O₃

1 ss=very strong; s=strong; m=medium; w=weak; ww=very weak; b=broad.

The compound $8CaO.Na_2O.3Al_2O_3$ was never obtained as a perfectly homogeneous phase. Fairly well-crystallized samples were obtained by heating preparations for about two hours just below the dissociation temperature. Longer heating periods were avoided because of possible loss of soda due to volatilization. Neither could the compound be obtained by annealing a glass of its own composition for such a glass could not be prepared since all of the CaO did not go into solution at the temperatures obtainable.

The interplanar spacings of the X-ray diffraction pattern of this compound are given in Table 9.

A consideration of the composition and structure of $8CaO.Na_2O.$ $3Al_2O_3$ is of some interest.

Before the structure of the 8CaO.Na₂O.3Al₂O₃ had been determined, it was noted that the X-ray diffraction pattern of the new compound was closely similar to that of 3CaO.Al₂O₃. This suggested that the composition of the compound might lie on the line joining 3CaO.Al₂O₃ and Na₂O and hence be represented by 3CaO.Al₂O₃ plus some multiple of Na₂O, just as the ternary compound 3CaO.2Na₂O.5Al₂O₃ may be represented by a composition 3CaO.5Al₂O₃ plus 2Na₂O. Accordingly, a mixture of 3CaO.Al₂O₃ and Na₂O was prepared and heated at 1,400°; a temperature well below the dissociation temperature of the ternary compound. Following this heat treatment the sample was examined and found to contain considerable free CaO. If the compound were merely an addition product of Na₂O and 3CaO.Al₂O₃ or a solution of Na₂O in 3CaO.Al₂O₃, no lime should have been displaced at that temperature. The displacement of CaO in the mixture indicated that the new compound was not such an addition product.

Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1	Line No.	dhki	Inten- sity 1
1	3, 37 3, 03 2, 68 2, 60 2, 53	W W SS W W	10 11 12 13 14	$\begin{array}{c} 2.\ 03\\ 1.\ 915\\ 1.\ 888\\ 1.\ 840\\ 1.\ 797 \end{array}$	W S S WW WW	19 20 21 22 23	1. 492 1. 347 1. 235 1. 210 1. 103	w m w . m
6 7 8 9	2. 41 2. 37 2. 20 2. 10	W W S W	15 16 17 18	$1.746 \\ 1.692 \\ 1.628 \\ 1.558$	w wb w ss	24 25 26 27	1. 101 1. 055 1. 019 . 899	w w m ² w

TABLE 9.—Interplanar spacings of 8CaO.Na₂O.3Al₂O₃

1 ss=very strong; s=strong; m=medium; w=weak; ww=very weak; b=broad. 2 Very broad.

If we consider the composition $8CaO.Na_2O.3Al_2O_3$, we observe that it may be represented as $3(3CaO.Al_2O_3)$ in which one CaO has been replaced by Na₂O. Bragg (7) has shown that in the silicates and associated compounds, the X-ray configuration is dependent upon the framework of the oxygen atoms; that is, when packed as closely as possible, the oxygen atoms form the basis of the structure of the compound whereas the other atoms lie between them. One criterion for such close packing is that the index of refraction of a compound with that structure lies above 1.70; $3CaO.Al_2O_3$ and $8CaO.Na_2O.3Al_2O_3$ both have indices above 1.70. The other atoms merely expand this oxygen lattice.

From the similarity of the X-ray diffraction patterns it would seem that the above conditions fit the case here. It might further be remarked that the crystal structure is a function of the unit cell and not of the chemical molecule; that is, the unit cell is some integral multiple of the chemical molecule and hence there is no difficulty encountered in the consideration of the replacement of one Na₂O for one CaO from three molecules of $3CaO.Al_2O_3$. Thus the unit cell of $3CaO.Al_2O_3$ may contain three times as many molecules as the unit cell of $8CaO.Na_2O.3Al_2O_3$. A solution of the structure of both of these compounds to the end of allocating the exact positions of all of the atoms should be of interest.

In its field of primary crystallization, $3CaO.Al_2O_3$ often crystallizes as well-formed polyhedrons with hexagonal or octagonal outline. In ordinary light these crystals appear similar to the well-formed crystals of $8CaO.Na_2O.3Al_2O_3$. Yet $3CaO.Al_2O_3$ is reported as belonging to the isometric system whereas $8CaO.Na_2O.3Al_2O_3$ does not belong to that system, since it is clearly birefracting.

Rankin and Wright (3) have reported that $3CaO.Al_2O_3$ is faintly birefracting, which birefraction they attribute to strain. In this study, the compound $3CaO.Al_2O_3$ showed a distinct but weak birefraction when large grains were available; this was noticeable both in the binary system CaO-Al_2O_3 and in the ternary system CaO-Na₂O-Al_2O_3.

Furthermore Harrington (4) found that his X-ray diffraction patterns of $3CaO.Al_2O_3$ did not altogether conform to the cubic structure and he assigned the compound to a pseudo-cubic system. His samples of $3CaO.Al_2O_3$ were carefully prepared and annealed for long periods in order to avoid strain in the crystals. Such treatment, however, did not alter the X-ray diffraction patterns. Hence, from these structural considerations, it is suggested that $3CaO.Al_2O_3$ does not belong to the isometric system and only because of its extremely low birefraction has it been so classified.

The nature of the compound 3CaO.2Na₂O.5Al₂O₃ will be discussed more fully below.

V. STABILITY FIELDS

The fields of stability of the various compounds in the ternary diagram are shown in Figure 1. Each of the components as well as all of the binary and ternary compounds which were found have stability fields in the system.

In the field of $3CaO.5Al_2O_3$ both the stable and unstable forms of that compound were formed. Usually the stable modification crystallized from the melt although occasionally the unstable modification appeared. No definite region of stability was found for either form.

The compound 5CaO.3Al_2O_3 does not crystallize as such in the presence of Na₂O but as a solid solution of soda, in some form, in 5CaO.3Al_2O_3 . Whenever reference is made in this paper to the compound 5CaO.3Al_2O_3 in the ternary diagram, this solid solution is indicated. As the amount of solid solution increases to its maximum, containing about 1 per cent of Na₂O, the index of refraction of 5CaO.3Al_2O_3 is lowered from 1.61 to 1.59. The X-ray diffraction pattern shows a regular shift of the position of its lines as the amount of soda taken up is increased.

Whenever $3CaO.Al_2O_3$ and $8CaO.Na_2O.3Al_2O_3$ crystallized from the melt, well-formed crystals of both of these compounds were found. The crystals showed considerable similarity in appearance, but there was no indication of any solid solution of the two at the liquidus and the boundary curve separating the two fields was easily located.

A boundary separating the fields in which Na₂O.Al₂O₃ and 3CaO.-2Na₂O.5Al₂O₃ appear as primary phases could not be located. The properties of the primary phase in the region bounded by the radial lines (fig. 1), but lying to the right of the boundary RPQ, varied from those of 3CaO.2Na₂O.5Al₂O₃ through insensible gradations to those of Na₂O.Al₂O₃. Throughout this region, also, the product of final crystallization consisted of two phases: 8CaO.Na₂O.3Al₂O₃ and a second phase which had properties intermediate between 3CaO.-2Na₂O.5Al₂O₃ and Na₂O.Al₂O₃. For these reasons it appears probable that a continuous series of solid solutions exists between those two compounds. The consideration may be simplified by regarding Na₂O.Al₂O₃ as taking up CaO.Al₂O₃ in solution to a limiting composition of $3(CaO.Al_2O_3) + 2(Na_2O.Al_2O_3)$. Since this limit can not be exceeded, it functions as a compound and may properly be regarded as such. The tie line $8CaO.Na_2O.3Al_2O_3-CaO.2Na_2O.5Al_2O_3$ may thus be considered as expanded to include all compositions up to the position $8CaO.Na_2O.3Al_2O_3-Na_2O.Al_2O_3$. From the phase-rule viewpoint, that whole area may be regarded as consisting of an infinite number of tie lines passing from the origin, $8CaO.Na_2O.3Al_2O_3$, to the solid solution line $3CaO.2Na_2O.5Al_2O_3-Na_2O.Al_2O_3$. It should be pointed out that these tie lines indicate the mean products of final crystallization, but can not be regarded as crystallization curves; that is, the precise composition of the crystals formed at any given temperature from any given composition of liquid, in this area, can be established only by experimentation (8) which has not been conducted in the present study.

No attempt was made to define a boundary separating the field in which the $Na_2O.Al_2O_3$ appears in solid solution with $3CaO.2Na_2O. 5Al_2O_3$ and the field in which $Na_2O_3Al_2O_3$ separates as primary phase.

VI. QUINTUPLE POINTS

Three quintuple invariant points were found in the system which represent ternary eutectics; that is, invariant compositions at which three solid phases coexist with liquid and vapor, occurring inside the triangle formed by the three solid phases (9).

The eutectic for 3CaO.5Al₂O₃, CaO.Al₂O₃, and 3CaO.2Na₂O.5Al₂O₃ (point B, fig. 1) occurs at a composition 27.5 per cent CaO, 6.0 per cent Na₂O, 66.5 per cent Al_2O_3 , and melts at 1,465°

The eutectic for 5CaO.3Al₂O₃, CaO.Al₂O₃, and 3CaO.2Na₂O.5Al₂O₃ (point E) occurs at a composition 38.0 per cent CaO, 4.0 per cent Na_2O , 58.0 per cent Al_2O_3 , and melts at 1,430°.

The eutectic for 5CaO.3Al₂O₃, 8CaO.Na₂O.3Al₂O₃, and 3CaO.- $2Na_2O.5Al_2O_3$ (point I), occurs at a composition 46.0 per cent CaO, 5.0 per cent Na_2O , and 49.0 per cent Al_2O_3 , and melts at 1,420°.

Three quintuple invariant points were found in the system which are not eutectics, that is, they are invariant compositions at which three solid phases coexist with liquid and vapor occurring outside the triangle formed by the three solid phases.

The invariant point for 3CaO.Al₂O₃, 5CaO.3Al₂O₃, and 8CaO.- $Na_2O.3Al_2O_3$ (point J) occurs at a composition 46.5 per cent CaO, 4.5 per cent Na₂O, and 49.0 per cent Al₂O₃. The melting temperature is 1,423°.

The invariant point for CaO, 3CaO.Al₂O₃, and 8CaO.Na₂O.3Al₂O₃ (point M) occurs at a composition of 50.0 per cent CaO, 6.0 per cent Na_2O_1 , and 44.0 per cent Al_2O_3 . The melting temperature is 1,490°.

The invariant point for CaO, 8CaO.Na2O.3Al2O3, and solid solutions of Na₂O.Al₂ \dot{O}_3 + 3CaO.2Na₂O.5Al₂O₃ (point P) occurs at a composition of 42.5 per cent CaO, 13.0 per cent Na_2O , and 44.5 per cent Al_2O_3 . The melting temperature is 1,475°.

In addition to the above, some evidence was obtained to indicate that an invariant point occurs along the boundary PI, which separates the fields of 8CaO.Na₂O.3Al₂O₃, and solid solutions of Na₂O.Al₂O₃ with $3CaO.2Na_2O.5Al_2O_3$, in the neighborhood of point S. This would then represent the composition at which the Na₂O.Al₂O₃ had taken up its maximum of CaO.Al₂O₃ in solid solution and simultaneously was in equilibrium with 8CaO.Na₂O.3Al₂O₃. It would thus be the origin of a boundary ST separating the field of 3CaO.2Na₂O.5Al₂O₃ from that in which increasing percentages of Na₂O.Al₂O₃ are present in the primary phase.

VII. BOUNDARY CURVES

Many of the boundary curves shown in Figure 1 are normal in all respects and need not be detailed. A few, however, are of especial interest.

At E a curve separating the fields of $5CaO.3Al_2O_3$ and $CaO.Al_2O_3$ leaves with temperatures increasing to point F, 1,460°, which is a

300

Brownmiller Bogue

maximum. From F the temperature again drops to G, $1,400^{\circ}$, the eutectic of $5\text{CaO.3Al}_2\text{O}_3$ and $\text{CaO.Al}_2\text{O}_3$. Thus the ternary eutectic E melts at a higher temperature $(1,430^{\circ})$ than the binary eutectic of $5\text{CaO.3Al}_2\text{O}_3$ and $\text{CaO.Al}_2\text{O}_3$ $(1,400^{\circ})$. It may be remarked that point F may be considered the point at which the boundary curve separating the fields of $5\text{CaO.3Al}_2\text{O}_3$ and $\text{CaO.Al}_2\text{O}_3$ and $\text{CaO.Al}_2\text{O}_3$ enters the ternary diagram because $5\text{CaO.3Al}_2\text{O}_3$ does not exist as such in this ternary system, but only as a solid solution of $5\text{CaO.3Al}_2\text{O}_3$ with the third component soda. Hence the binary eutectic to be considered in this case is not one of $\text{CaO.Al}_2\text{O}_3$ with pure $5\text{CaO.3Al}_2\text{O}_3$ but one of $\text{CaO.Al}_2\text{O}_3$ with the solid solution of $5\text{CaO.3Al}_2\text{O}_3 + \text{Na}_2\text{O}$ with a melting point of $1,460^{\circ}$ and falling at point F rather than point G.

From I the curve separating the fields of $8CaO.Na_2O.3Al_2O_3$ and $5CaO.3Al_2O_3$ leaves with temperatures increasing to point J, 1,423°, the quintuple point at which $3CaO.Al_2O_3$, $8CaO.Na_2O.3Al_2O_3$, and $5CaO.3Al_2O_3$ are in equilibrium. The temperatures of melting of points I and J are so close as to be practically indistinguishable with the control available. Yet a little consideration will show that point I is the eutectic rather than J, for the eutectic composition must be within the triangle joining the compounds taking part in the eutectic melting. The three solid phases in equilibrium with liquid and vapor at J are $3CaO.Al_2O_3$, $8CaO.Na_2O.3Al_2O_3$, and $5CaO.3Al_2O_3$; but J lies in the triangle $5CaO.3Al_2O_3-8CaO.Na_2O.3Al_2O_3-3CaO.2Na_2O.-5Al_2O_3$; hence it can not be the eutectic. At point I, $5CaO.3Al_2O_3$, $8CaO.Na_2O.3Al_2O_3$ are in equilibrium with liquid and vapor, and since I lies in the triangle joining those compounds it must be the eutectic.

From J the boundary curve separating the field of 5CaO.3Al₂O₃ from 3CaO.Al₂O₃ leaves with temperatures increasing to a maximum at point K, 1,435°, and then falling to L, the binary eutectic of 5CaO.3Al₂O₃ and 3CaO.Al₂O₃ at 1,395°. This behavior is similar to that discussed above along the boundary curve E-F-G and is due to the existence of a solid solution of Na₂O in this system. Hence point K is the quadruple point at which 3CaO.Al₂O₃ and solid solution 5CaO.3Al₂O₃ + Na₂O are at equilibrium with liquid and vapor, and from which the boundary curve separating the fields of crystallization enters the ternary diagram.

From M the boundary M-O leaves with temperatures increasing to $O, 1,508^{\circ}$, which is the maximum on the curve M-O-P separating the field of CaO and 8CaO.Na₂O.3Al₂O₃.

Since O is the maximum on this curve, the compound which is dissociating must lie on a line joining O with the primary phase which separates when the compound dissociates. Inasmuch as O lies on the boundary separating the field of CaO from the field of 8CaO.Na₂O.- $3Al_2O_3$, the composition of the compound must lie on the line joining O with CaO. While the compound 8CaO.Na₂O. $3Al_2O_3$ was never obtained as a perfectly homogeneous phase, yet it was in the neighborhood of this composition that the best samples of the compound were obtained. Final decision as to the composition was then made when the point O was located and O-CaO drawn.

From O the temperatures drop to point P, 1,475°, the quintuple point at which CaO, 8CaO.Na₂O.3Al₂O₃, and solid solutions of Na₂O.Al₂O₃+3CaO.2Na₂O.5Al₂O₃ are in equilibrium. The tempera-

94173-32-10

tures of melting then rise along the boundary separating the fields of CaO and Na₂O.Al₂O₃ to point Q, 1,565°±10°, the binary eutectic of CaO and Na₂O.Al₂O₃.

From P the temperatures drop along the boundary separating the field of $8CaO.Na_2O.3Al_2O_3$ from the field of solid solutions of $Na_2O.Al_2O_3 + 3CaO.2Na_2O.5Al_2O_3$ toward S.

Point R represents the binary eutectic of $8CaO.Na_2O.3Al_2O_3$ with $3CaO.2Na_2O.5Al_2O_3$ which falls at 1,465°. However, at S melting occurs at a temperature of 1,455°. At 1,465° there are still two crystalline phases with liquid and vapor.

If $3\text{CaO.2Na}_2\text{O.5Al}_2\text{O}_3$ and $\text{Na}_2\text{O.Al}_2\text{O}_3$ form a continuous series of solid solutions, as seems probable, then melting might be characterized by a minimum, such as found at $1,455^\circ$ in the region of point S. Until the system $3\text{CaO.2Na}_2\text{O.5Al}_2\text{O}_3$ -Na $_2\text{O.Al}_2\text{O}_3$ is fully established, the boundary curve P-S-R must remain only partially explained.

VIII. BINARY SYSTEMS WITHIN THE TERNARY DIAGRAM

1. SYSTEM 3CaO.5Al₂O₃-3CaO.2Na₂O.5Al₂O₃

These two compounds form a true binary system with a eutectic (point A) at a composition: 22.8 per cent CaO; 8.0 per cent Na₂O; 69.2 per cent Al₂O₃. This eutectic melts at 1,550°. The unstable modification of $3CaO.5Al_2O_3$ appeared in some of the samples in this system, but no definite region of stability of this modification was found.

2. SYSTEM CaO.Al₂O₃-3CaO.2Na₂O.5Al₂O₃

The eutectic of these two compounds (point D) lies at a composition 30.3 per cent CaO, 5.4 per cent Na₂O, and 64.3 per cent Al₂O₃. It melts at 1,515°.

3. SYSTEM 5CaO.3Al₂O₃-3CaO.2Na₂O.5Al₂O₃

There is a eutectic formed in this system (point H) at a composition 40.4 per cent CaO, 4.3 per cent Na₂O, and 55.3 per cent Al₂O₃. It melts at 1,450°. The melting temperatures do not decrease regularly from the melting point of 5CaO.3Al₂O₃ but increase from 1,455°, the melting point of 5CaO.3Al₂O₃, to 1,480° when about 1 per cent of Na₂O is present. This increase is due to solid solution formation of soda, as previously described, in 5CaO.3Al₂O₃.

4. SYSTEM 3CaO.2Na₂O.5Al₂O₃-Na₂O.Al₂O₃

No melting was observed in this system up to temperatures of $1,630^{\circ}$. On examination of three samples in the system, a homogeneous phase was found with refractive indices which varied between those of Na₂O.Al₂O₃ and 3CaO.2Na₂O.5Al₂O₃. These samples were plainly striated with an appearance somewhat as exsolid solutions; that is, crystalline material which existed as a solid solution at high temperatures, but, due to reduced solubility at lower temperatures, separated into two phases on cooling. The X-ray patterns of these samples showed a structure similar but not identical to that of 3CaO.2Na₂O.5Al₂O₃. The system can not be defined with precision from the data at hand as equipment permitting the employment of higher temperatures is required. The correlation of all of the data

indicates, however, that the system consists of a series of solid solutions of $CaO.Al_2O_3$ in $Na_2O.Al_2O_3$ with the end member at the composition $3CaO.2Na_2O.5Al_2O_3$.

5. SYSTEM CaO-Na₂O.Al₂O₃

These two compounds form a true binary system with a eutectic (point Q) at 20 per cent CaO, 30 per cent Na₂O, and 50 per cent Al₂O₃. It melts at $1,565^{\circ} \pm 10^{\circ}$. Samples of Na₂O.Al₂O₃ in this system are highly twinned; polysynthetic twinning is common.

Since the lines connecting the following compositions do not lie wholly within the fields of primary crystallization they do not form true binary systems. The following three systems are of that type:

6. SYSTEM 8CaO.Na₂O.3Al₂O₃-3CaO.2Na₂O.5Al₂O₃+Na₂O.Al₂O₃

At the point (R) where the tie line of the limiting composition of the solid solution series cuts the boundary separating the fields of primary crystallization, a eutectic appears to be formed having the composition 43.7 per cent CaO, 10.2 per cent Na₂O, and 46.1 per cent Al₂O₃. It melts at 1,465°. SCaO.Na₂O.3Al₂O₃ appears along the liquidus in this system from the composition of the eutectic (R) to a composition U, 46.0 per cent CaO, 9.7 per cent Na₂O, and 44.3 per cent Al₂O₃ where the tie line joining the compounds intersects the boundary MP. On the lime side of that region, the SCaO.Na₂O.-3Al₂O₃ dissociates into CaO and liquid; between R and 3CaO.2Na₂O.-5Al₂O₃ the latter compound is the primary phase. This binary system may be regarded as extending from SCaO.-

This binary system may be regarded as extending from $8CaO.-Na_2O.3Al_2O_3$ to any point on the line $3CaO.2Na_2O.5Al_2O_3-Na_2O.Al_2O_3$, but compositions along the line $8CaO.Na_2O.3Al_2O_3-Na_2O.Al_2O_3$ were not examined.

7. SYSTEM 5CaO.3Al₂O₃.-8CaO.Na₂O.3Al₂O₃

The compound 8CaO.Na₂O.3Al₂O₃ does not appear on the liquidus in this system.

8. SYSTEM 3CaO.Al₂O₃-8CaO.Na₂O.3Al₂O₃

In spite of the similarity in structure and habit of these compounds, no evidence of solid solution formation between them was found at the liquidus. The line joining these compositions merely represents one boundary of the limiting areas which determine the final products of crystallization in the adjacent triangles.

The systems $CaO-8CaO.Na_2O.3Al_2O_3$ and $Na_2O.Al_2O_3+3CaO.-2Na_2O.5Al_2O_3-Al_2O_3$ were not investigated.

IX. COURSE OF CRYSTALLIZATION

Three types of crystallization are found in this system. These will be discussed with the use of the diagram of Figure 2, which shows only a part of the field.

1. The crystallization proceeds to a boundary curve along which one solid phase partially disappears while the other crystallizes, the process becoming complete at the quintuple point for that boundary curve. This type of crystallization may be represented by a composition at point a. The primary phase to separate on cooling a melt of that composition is $8CaO.Na_2O.3Al_2O_3$. As that compound separates, the composition of the liquid follows the line *a b*. When *b* is reached, $3CaO.2Na_2O.5Al_2O_3$ appears with the $8CaO.Na_2O.3Al_2O_3$. These two phases separate together, the mean composition of the solid following the line $8CaO.Na_2O.3Al_2O_3-3CaO.2Na_2O.5Al_2O_3$ and that of the liquid following the line *b I*. When *I* is reached the mean composition of the solid phase is represented by point *c*. $5CaO.3Al_2O_3$ then separates with the other crystalline phases and the mean composition of the solid phase follows the line *c a*, ending at *a*.

2. The crystallization curve proceeds to a quintuple point but at that point one solid phase entirely disappears and the crystallization curve proceeds along a boundary to another quintuple point. The primary phase at point d is CaO which separates until the liquid

FIGURE 2.—Diagram showing course of crystallization in a part of the system CaO-Na₂O-Al₂O₃

reaches the composition e. Tricalcium aluminate then crystallizes with CaO along the line CaO-3CaO.Al₂O₃ until the mean composition of the solid phases arrives at point f when the composition of the liquid will be at M. 8CaO.Na₂O.3Al₂O₃ then appears and the composition of the solid phase follows the line fg while the liquid remains at M. When the mean composition of the solid phases is represented by point g, the CaO disappears, having been dissolved during the simultaneous crystallization of 3CaO.Al₂O₃ and 8CaO.Na₂O.3Al₂O₃. The mean composition of the solid then follows the line gh while the liquid changes from M to J. At J, 5CaO.3Al₂O₃ appears and the composition of the solid follows the line hd, and ends at d.

If the original composition had been located within a restricted area above the line connecting 8CaO.Na₂O.3Al₂O₃ and 5CaO.3Al₂O₃,

as at i, the crystallization curve would not have ended at J, but would have proceeded to the ternary eutectic at I.

3. The crystallization curve proceeds to a boundary along which one solid phase entirely disappears before a quintuple point is reached; it then leaves the boundary and crosses a field to another boundary curve along which it proceeds to a quintuple point. The primary phase at point *m* is CaO which separates until the liquid has the composition of point *n*. 8CaO.Na₂O.3Al₂O₃ then appears and the mean composition of the solid phase passes along the line connecting CaO and 8CaO.Na₂O.3Al₂O₃ until the composition of 8CaO.Na₂O. 3Al₂O₃ is reached. The liquid then has the composition of point *o*. On further cooling, 8CaO.Na₂O.3Al₂O₃ separates alone while the composition of the liquid changes from *o* to *p*. At *p*, 3CaO.2Na₂O.5Al₂O₃ appears and the mean composition of the solid changes from 8CaO.-Na₂O.3Al₂O₃ to point *q* while the liquid follows *p I* to *I*. At *I*, 5CaO.-3Al₂O₃ appears and the mean composition of the solid changes from *q* to *m*, where the crystallization ends.

X. SIGNIFICANCE OF THE SYSTEM CaO-Na₂O-Al₂O₃ IN PORT-LAND CEMENT

As stated in the introduction of this paper, that portion of the CaO-Na₂O-Al₂O₃ system in the neighborhood of 3CaO.Al₂O₃ and low in soda is the region which is directly concerned with Portland cement. From this work alone, however, we can not predict the combinations of soda in cement; to do so a study must be made of systems involving the other components of cements with soda. However, we are able to say the following: Of the compounds of CaO, Na₂O, and Al₂O₃ which are important in solving the final status of the Na₂O in cement, 8CaO.Na₂O.3Al₂O₃ alone is of significance. This is due to the existence in Portland cement of 3CaO.Al₂O₃ alone, of the compounds of lime and alumina, and the finding in this study that the field of 3CaO.Al₂O₃. The stability of 8CaO.Na₂O.3Al₂O₃ with the other constituents of cement, 3CaO.SiO₂, 2CaO.SiO₂, 4CaO.Al₂O₃.Fe₂O₃, and MgO, must, therefore, be determined before the composition of the compounds of soda in cements can be defined.

Any direct attempt to identify $SCaO.Na_2O.3Al_2O_3$ in a commercial or laboratory cement probably would be unsuccessful. Identification by the microscope would be extremely difficult, since the compound must necessarily be present only in small amounts and the similarity of optical properties of $SCaO.Na_2O.3Al_2O_3$ and the other cement compounds makes difficult its differentiation from them by microscopic means. Likewise, the X-ray method can not be used to advantage because the principal lines of the diffraction pattern of $SCaO.-Na_2O.3Al_2O_3$ coincide with those of $3CaO.Al_2O_3$, and only if $SCaO.-Na_2O.3Al_2O_3$ were present in excessive amounts could we hope to establish its presence in cements. Hence thermal studies alone furnish the basis for establishing the nature of the soda compounds in cement. If thermal studies show that $SCaO.Na_2O.3Al_2O_3$ is stable in the presence of $3CaO.SiO_2$, $2CaO.SiO_2$, $4CaO.Al_2O_3.Fe_2O_3$, and MgO we are assured that Na_2O may exist in cement in the form of that ternary compound. In that case the Na_2O may replace some of the CaO from $3CaO.Al_2O_3$ and form the new combination $SCaO.Na_2O.3Al_2O_3$. Former studies in this laboratory have indicated that Na₂O replaces CaO when the former is added to cement compositions, but this does not necessarily mean that the replacement must be in $3CaO.Al_2O_3$. It might be a replacement in $4CaO.Al_2O_3$.-Fe₂O₃ or the silicates. All of these questions can be solved only by further study of the soda systems with the other components of cement.

XI. SUMMARY

A part of the system CaO-Na₂O-Al₂O₃ has been investigated by the method of phase equilibria and the results presented.

Two ternary compounds were found in the system, having the compositions: $3CaO.2Na_2O.5Al_2O_3$ and $8CaO.Na_2O.3Al_2O_3$.

The stability fields of the phases in the system have been defined, the boundary curves indicated and the invariant points located. The compositions and melting points of the compounds and of the invariant points are summarized in Table 10. The optical properties of the ternary compounds and of Na₂O.Al₂O₃ and β Al₂O₃ are given in Table 11. The interplanar spacings of the X-ray diffraction patterns are listed for the ternary compounds and for the binary compounds which have not previously been reported. Diagrams are presented which indicate the stability fields, temperature relations, and course of crystallization in the system.

XII. ACKNOWLEDGMENTS

The authors gratefully acknowledge their indebtedness to Dr. W. C. Hansen, formerly of this staff, for his contributions to this study. The investigation was begun by Doctor Hansen and brought by him to partial completion in the region of the compound $3CaO.2Na_2O.5Al_2O_3$. Both for this important contribution and continued interest and advice in the final solution of the system the authors take pleasure in giving full recognition and thanks.

		1			
Composition	CaO	Na2O	Al ₂ O ₃	Melting point	Authority
C3A C5A3 C3A5 NA C3N2A5 C8NA3	62. 2 47. 8 35. 4 24. 8 20. 9 54. 9	37. 8 15. 5 7. 6	37. 8 52. 2 64. 6 75. 2 62. 2 63. 6 37. 5	°C. ¹ 1,535 1,455 1,600 1,720 1,650 >1,630 ¹ 1,508	Rankin et al. Do. Do. Matignon. Brownmiller. Do.
BINARY	EUTEC	TICS			
C3A-C5A3 C5A-2CA CA-CAA5 C3A5-A C-NA C3N3A5-C3A5 C3N2A5-CAA5 C3N2A5-CAA2 C3N2A5-CAA3 C3N2A5-C5A3 C3N2A5-C5NA3	$50.0 \\ 47.0 \\ 33.5 \\ 24.0 \\ 20.0 \\ 23.0 \\ 30.5 \\ 40.0 \\ 43.2$	30.0 8.0 5.0 4.5 10.3	$50.0 \\ 53.0 \\ 66.5 \\ 76.0 \\ 50.0 \\ 69.0 \\ 64.5 \\ 55.5 \\ 46.5$	1, 395 1, 400 1, 590 1, 700 1, 565 1, 550 1, 515 1, 450 1, 465	Rankin et al. Do. Do. Brownmiller. Do. Do. Do. Do.

TABLE 10.—Compositions and melting points

COMPOUNDS

Dissociation temperatures.

Brownmiller]

Bogue

TABLE 10.—Compositions and melting points—Continued QUADRUPLE POINTS NOT EUTECTICS

	Compositions	CaO	Na₂O	Al_2O_3	Melting point	Authority		
C-C3A C-C8NA	.3	57. 0 46. 8	9. 0	43. 0 44. 2	°C. 1,535 1,508	Rankin et al. Brownmiller.		
TERNARY EUTECTICS								
C3A5-CA CA-C5A C5A3-C8	A-C3N2A5 5-C3N2A5 N A3-C3N2A5	27.5 38.0 46.0	6. 0 4. 0 5. 0	66.5 58.0 49.0	1, 465 1, 430 1, 420	Brownmiller. Do. Do.		
QUINTUPLE POINTS NOT EUTECTICS								
C5A3-C3. C3A-C-C C-C8NA	A-C8NA3 D8NA3 -C3N2A5+NA	46. 5 50. 0 42. 5	4.5 6.0 13.0	49.0 44.0 44.5	1, 423 1, 490 1, 475	Brownmiller. Do. Do.		

TABLE 11.—Optical properties of some of the compounds examined

Refractive indices, ± 0.003	Optic axial angle	Character	Appearance	
NA $\alpha = 1.566; \beta = 1.575; \gamma = 1.580$ $\beta Al_2O_3 \omega = 1.678; \epsilon = 1.635$ $C_3N_2A_5$ Mean index 1.592; weak birefraction. $C_6NA_3 \alpha = 1.702; \gamma = 1.710$	About 30° Optic axis parallel to c- crystallographic axis. Medium angle	Biaxial nega- tive. Uniaxial nega- tive. Biaxial posi- tive. Biaxial nega- tive.	Colorless, rounded grains; twining common. Plates; hexagonal sys- tem. Rounded grains. Polyhedrons with hexag- onal or octagonal out- line.	

The authors are indebted also to Dr. Herbert Insley, of the Bureau of Standards, who gave assistance in the microscopical identification of the phases, and to Dr. Frank C. Kracek, of the Geophysical Laboratory, for his advice and suggestions in the interpretation of data.

XIII. BIBLIOGRAPHY

- Brownmiller and Bogue, Am. J. Sci., vol. 20, p. 241; 1930. B. S., Jour. Research, vol. 5, p. 813; 1930.
 Shepherd, Rankin, and Wright, Am. J. Sci., vol. 28, p. 308; 1909.
 Rankin and Wright, Am. J. Sci., vol. 39, p. 1; 1915.
 Harrington, Am. J. Sci., vol. 13, p. 467; 1927.
 Matignon, Compt. rend., vol. 177, p. 23; 1920.
 Hansen and Brownmiller, Am. J. Sci., vol. 15, p. 225; 1928.
 Bragg, Trans. Faraday Soc., p. 291; 1929.
 Bowen, Am. J. Sci., vol. 40, p. 161; 1915.
 Fenner, J. Geology, vol. 38, p. 159; 1930.

WASHINGTON, April 20, 1931.