JOURNAL OF RESEARCH of the National Bureau of Standards — B. Mathematical Sciences
Vol. 79B, Nos. 3 and 4, July-December 1975
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Induced matrix norms N, defined consistently for all orders up to a given order, which have the
property:

N(A) <N(A)

for all principal submatrices A of an arbitrary m X m complex matrix A4 are characterized. Conditions
are also given which insure that

N(A®DB) = max {N(4), N(B)}
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It is well known that for AeM . (C), the kXk complex matrices,
pd)< | 4] (1)

where p (4) is the spectral radius of A and || - || is any vector-norm-induced matrix norm. However,
if A is a principal submatrix of A4, it is not in general the case that

p(d) <p(4), (2)

nor is it the case that

pA)<|4]. (3)
EXAMPLE 1: Let | ‘|| . be the infinity vector norm on C?, || x || » = max {|x:|, |%2|} and

define
[ xfs=1Sx|-

5=(z 5)

Then the vector norm || - || s induces a matrix norm | * | s on M (C) which is related to the matrix
norm

where

1(& )= max{lal+ 8], le]+1d]}

by
[Alls=1S4S" || «.
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NOW,if
]

p(4)=0

where a > 0 then

while

p(d)=a
where A is either principal submatrix of 4. However,

1
“A ||S= 5@
so that R 2.
p(A)£p(4) andp(4) £ || 4] 5.

Also, the spectral radius enjoys the property that

p(A® B)=max{p(4), p(B)} (4)

whereas not all matrix norms || - || satisfy
[A® B [|=max{ || 4] .[B]?} (5)
For example, the Euclidean matrix norm || 4 || = (¥ |ai; |*) V2 fails condition (5). However, the matrix

norms induced by the p-norms
"
lxls= (S faale) (6)
i=1

on vectors do satisfy (3) and (5). It is the goal of this note to point out general characteristics of
classes of induced matrix norms which insure the validity of (3) or (5).

By a vector norm we mean a map | - ||:C*— R, the real numbers, which satisfies for all
x, yeCF
|| x| =0,and=0 &= x=0: (7)
| ex||=le| || x| for any complex number c: (8)
and
Ixt+yl<lxli+lyl. (9)
By a matrix norm we mean a map | - ||: M4 (C) = R, which satisfies for all 4, BeM (C)
| 4] =0,and=0&> A=0: (10)
[ eA|=[c| | A]l  for any complex number c: (11)
l4+Bl<|4l+]8] (12)
lAB <4l IIBI. (13)
Any vector norm || + || on C* uniquely induces a matrix norm ||+ || on M, (C) by
|4 = i | Ax || (14)
Tij=I%
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Finally, because of the homogeneity (8) it is clear that a vector norm || - || is precisely determined
by its unit ball
By j={xeCt: | x| <1} (15)

which is well known to be a convex, compact set containing the origin.
Since we compare the norm of a matrix to norms of principal submatrices, we need to consider
classes of norms defined for all orders less than or equal to a given order.
Let
n={ny, k=1, . . ., m:n is a vector norm on C*} (16)

and if xeC", k < m, we abbreviate n;(x) by n(x). Also let N, be the matrix norm which n, induces
on M (C) via (14) and

N={N;:k=1, .. ., m}. (17)
If AeM, (C), k < m, we abbreviate N, (4) by N(A4).
DEFINITION 1: We say that n is consistent if for each k=2, . . ., mand each j=1, . . .,k
nelxe, ooy Xpmgs Oy Xpuy o oy X)) = o (X, « oy Xyogy Xjpgs - vy Xi) (18)
We further say that n is strongly consistent if for all k=2, . . ., mand all x'e C*, i k;=k, we have
=1
n(x', . . ox)=n( ]| x ], ... [ X]) (19)

REMARK 1: The norm set n is consistent if and only if B,, is the intersection of any k-dimen-

sional coordinate plane with By .+, k=1, .. .,m—1
DEFINITION 2: We say that ny is monotone if for x=(x1, . . ., xx) and all j=1, . . ., k
nk(X|, o eoey Xy-1y 0, Xj+1y + o oy xk)Snk(xl, . e ey Xk). (20)
We say that n is monotone if and only if ny is monotone, k=2, . . ., m.

REMARK 2: From the convexity of B,,k it follows that if n, is monotone then
Pe(Zis o oy Xjmta OXgy Xjats + o» Xe)S AR(X1, o - 4y Xk) (21)
for0<a=<]I.

REMARK 3: Geometrically, it'is clear that ny is monotone if and only if B, satisfies ''xe bound-
ary (Byn,) implies that the projection of x onto any #—1 dimensional coordinate plane is in By,"".
Moreover, if n is consistent, then n is monotone if an only if xe boundary (B,,) implies that the
projection of x onto any & dimensional coordinate plane, A < m,is in By,),.

ExAMPLE 2: Each of the p-norms defined by (6) is consistent, strongly consistent and monotone.

EXAMPLE 3: If || ‘|| is the p-norm with p=1 in (6) on C* and we define

Gy 9) 1l 7= ||T(’;)||.

where



then B || .||, is

y

In this case || (0,1) || r=2<% 1= | (1,1) | ~.and || - || 7is not monotone. Visually, the projection
of (1, 1) from the boundary of B| . |, onto the y axis leaves B . ,.

Our first main result concerns norms of principal submatrices.
THEOREM 1: Ifn is consistent and A denotes any principal submatrix, we have:

N(A)< N(A) (22)

for all AeM(C), 2 < k < m, if and only if n is monotonic.

ProoF: First of all, suppose n is consistent and monotonic. Because of the consistency it
suffices to suppose A=A, that principal submatrix determined by deleting the first row and column
of A. (The argument for any other case would be entirely analogous.) We then have

N(4,)= max n(A4x) by (14)
n(xr)=1
= max (o 5 )(3)) by 19
e ((3 21)y) by (20)
=~((0 2. )=7((2 7)4( o 1)
=¥((5 1) ¥on((5 1)) by 13
=1N(A4) 1 by (20)
=N(4),

which completes the first portion of the proof.

100



Conversely, suppose that n is consistent and that N (A) < N(A)forall AeM, (C),2<ksm.

This implies that
1 0
v(( 0 7)) 2

since

which by definition means that

n(xi, . ., xj-1, 0, xj41, . . x%)
n(x)

=<1 (24)

or, equivalently, that n is monotonic (20). This completes the proof.
COROLLARY 1: If n is consistent and monotonic, then for any AeM,,(C)

p(A) < N(A) (25)

JSor all principal submatrices A of A.
PROOF: That p(A4) =< N(A) is always the case if N is induced. From theorem 1, N(A)<N(A).
THEOREM 2: [Ifn is strongly consistent and monotone, and AeM ,, (C), BeM ,,,(C), m + m,=
m, then

N(A® B) = max {N(4), N(B) }. (26)

PRrOOF: Suppose xeC™, and yeC™: satisfy n(x)=n(y)=1 and n(4dx) = a, n(By)=28.
Then tx @ (1 —t)yeC™ and (4 ® B) (tx+ (1 —t)y) = tAx D (1 —t) By so that

n((ADB)(tx® (1 =t)y)) _ n((te, (1 =¢)B)) 27)
n(tx® (1—1)y) n((¢, (1 —1)))

since n is strongly consistent. Since n is monotone, it follows from remark 2 that, for 0 < ¢t < 1,
the maximum attained by the right-hand side of (27) is the greater of a and 8 (when either t = 1
or t =0). We may thus conclude that

max (AP B)z=N(4D B)

n(z)=1
is attained when z is of the form either
z2=21® 0orz=0 22,

z'eC™, z2eC™2. Then N(A @ B) is either N(A) or N(B), whichever is larger, as was to be shown.
By an entirely similar approach, Theorem 2 may be generalized to:

COROLLARY 2: If n is strongly consistent and monotone, and AieM,,;(C),i=1, . . ., [ where
m;+ . . .+ m;=m, then
N(A; D ...D A)= max N(A;). (28)
1<i<l
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As noted previously, the p-norms (6) are consistent, strongly consistent and monotone. It
would be of further interest to determine which vector norms of the type (16) are consistent,
strongly consistent and/or monotone.

Author’s Note (added in proof):

Theorem 2 of our note should be compared with a result of a similar nature (theorem 2) con-
tained in “Norms on Direct Sums and Tensor Products,” Math. Comp. 26, 401-414 (1972). In
fact it follows from the present work together with that paper (whose definitions we follow for new
terms) that the following conditions on a consistent vector norm n are equivalent:

(i) nis monotone;

(ii) n is absolute;
(iii) the matrix norm /N induced by n satisfies (22); and
(iv) the matrix norm N induced by n satisfies (26).

(Paper 79B3 &4-424)
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