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Induced matrix norms N. defined consistently for all orders up to a given order. which have the 
property : 

N(A)~N(A) 

for all principal submatrices A of an arbitrary m x m complex matrix A are characterized. Conditions 
are also given which insure that 

N(AffiB) = max {N(A). N(B)} 

Key words: Consistency: matrix norm; monotonicity; princ ipal submatrix; spectral radius . vector norm. 

It is well known that for AeMdC), the kx/.: complex matrices, 

p (A) ~ II A II (1) 

where p (A) is the spectral radius of A and II . II is any vector-norm-induced matrix norm. However, 
if A is a principal submatrix of A, it is not in general the case that 

p (A) ~ p(A), (2) 

nor is it the case that 
p (A) ~ II A II . (3) 

EXAMPLE 1: Let II· II '" be the infinity vector norm on C~, II x II '" ==. max {I xII, IX21} and 
define 

II x 11 s == II SX II 00 

where 

S= G ~). 
Then the vector norm II . II s induces a matrix norm II . II son M2 (C) which is related to the matrix 
norm 

11(; ~)ll oo ==max{lal+lbl, Icl+ldl} 

by 
II A II s= II SAS - I 1100' 

A~S Sllbjf',I't (.'f(j .~ .~(liffJljon : 15A60. 15A42. 6SF:\S. 
,.. Pn:fltml mtdn'!'!c I II !'I I il Ult, rur Fluid Dynijmic ~ und Applit'd MathcnHttks. Unive rsity uf M~ryland . CuJleMt" Park. Md. 20742. 
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Now,if 

A= (a a) 
-a -a ' 

where a > 0 then 
p (A) =0 

while 

where A is either principal submatrix of A. However, 

so that 

1 
II A II.\'= '2 a 

p(A) {p(A) andp(A) { IIA lis. 

Also, the spectral radius enjoys the property that 

p (A EB B) = Illax {p (A), p (Bn (4) 

whereas not all matrix norms II . II satisfy 

II A EB B II = max { II A II ' II B II }. (5) 

For example, the Euclidean matrix norm II A II = (~Iaij 12) 1/2 fails condition (5). However, the matrix 
norms induced by the /I-norms 

II x II p= (± lXii/i) I /p 

,= I 

(6) 

on 'vectors do satisfy (3) and (5). I t i~ the goal of this note to point (lut general characteristics of 
classes of induced matrix norms which insure the validity of (3) or (5). 

By a vector norm we mean a map 11·11' C"~ R, the real numbers, which satisfies for all 
x, yeC'; 

II x ll""O,and=O~x=O: 

II cx II = Ie I II x II for any complex number c: 
and 

II x+y II ~ II x II + II y II· 

By a matrix norm we mean a map II . II : MdC)"'" R, which satisfies for all A, BeMdC) 

II A II "" 0, and=O~A=O: 

II cA II = I c III A.II for any complex number c: 

IIA+BII~IIAII+IIBII 

II AR II ~ II A II II B II . 

Any vector norm II . II on C" uniquely illduee~ a lllatrix norm II · II on Md C) by 

II A II =" max II Ax II 
11 ' 11= I. 
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Finally, because of the homogeneity (8) it is clear that a vector norm II . II is precisely determined 
by its unit ball 

8 11 ,1 1 = {XEC": II x II ~ I} (15) 

which is well known to be a convex, compact set oontaining the origin. 
Since we compare the norm of a matrix to norms of principal submatrices, we need to consider 

classes of norms defined for all orders less than or equal to a given order. 
Let 

n = {n ... k= 1, ... , m : nk is a vector norm on Ck} (16) 

and if XEC''', k .. m, we abbreviate ndx) by n (x). Also let N, .. be the matrix norm which n" induces 
on M d C) via (14) and 

N={N,,:k=I, ... ,m}. (17) 

If AEM..{C), k ~ m, we abbreviate N,,(A) by N(A). 
DEFINITION 1 : We say that n is consistent if for each k = 2, , . ., m and each j = 1, ., k 

(18) 

t 

Wefurthersay that n is strongly consistent iffor all k= 2,. ., m and all XIECkl, L kl = k, we have 
1= 1 

(19) 

REMARK 1: The norm set n is consistent if and only if Bltk is the intersection of any k·dimen
sional coordinat~ plane with Bn,,+h k= 1, ... , m-1. 

DEFINITION 2 : We say that nk is monotone iffor x = (Xl. . . ., Xk) and all j = 1, ., k 

(20) 

We say that n is monotone if and only if nk is monotone, k = 2, ... , m. 
REMARK 2: From the convexity of Bn k it follows that if nk is monotone then 

(21) 

for 0 ~ a ~ 1. 
REMARK 3: Geometrically, itis clear that nk is monotone if and only if Bn k satisfies" XE bound

ary (Bnk ) implies that the projection of x onto any k - 1 dimensional coordinate plane is in Bit ,,". 
Moreover, if n is consistent, then n is monotone if an only if XE boundary (Bn m) implies that the 
projection of x onto any k dimensional coordinate plane, k < m, is in Bn m. ' 

EXAMPLE 2: Each of the p-norms defined by (6) is consistent, strongly consistent and monotone. 

EXAMPLE 3: If II . 111 is the p-norm with p = 1 in (6) on C~ and we define 

where 

T=(~ -1) 
1 ' 
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then B I I . I IT IS 

(1,1) 

--------~------~------~--------x 

y 

In this case II (0, 1) II T = 2 :{ 1 = II (1, 1) II T, and II . II T is not monotone. Visually, the projection 
of (1,1) from the boundary of B II . II T onto the yaxis leaves B II ·11 T' 

Our first main result concerns norms of.principal submatrices. 
THEOREM 1: lfn is consistent and A denotes any principal submatrix, we have: 

N(A) ~ N(A) (22) 

for all AeMdC), 2 ~ k ~ m, if and only if n is monotonic. 
PROOF: First of all, suppose n is consistent and monotonic. Because of the consistency it 

suffices to suppose A = At, that principal submatrix determined by deleting the first row and column 
of A. (The argument for any other case would be entirely analogous.) We then have 

N (At) = max n(Atx) 
n(x)= t 

(( 0 0 ) ) = max n y 
n(y) = t 0 At 

= 1 N (A) 1 

= N(A), 

which completes the first portion of the proof. 
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Conversely, suppose that n is consistent and that N (A) :,;,; N (A ) for all A EM k (C) , 2 :,;,; k :,;,; m. 
This implies that 

(23) 

smce 

which by definition means that 

n----'..( X....:.I.:...' _'--,' ,_x.d.J_- :..:.!,_0",,:,,--,-XCLJ+.c.:1....:.' ....:.--..:... --,-X~k-,-) :,;,; 1 
n(x) (24) 

or, equivalently, that n is monotonic (20). This completes the proof. 

COROLLARY 1: If n is consistent and monotonic, then for any AEMm(C) 

peA) :,;,; N(A) (25) 

for all principal sub matrices A of A. 
PROOF: That peA) :,;,; N(i) is always the case if N is induced. From theorem 1, N(i) :';'; N(A). 
THEOREM 2: If n is strongly consistent and monotone, and AEMm. (C) , BEM m2(C), m I + mt = 

m, then 

N(A EB B) = max {N(A), N(B)} . 

PROOF: Suppose XECIII . and YECIII 2 satisfy n(x) = n(y) = 1 and n(Ax) = a, 
Then tx $ (l - t)YECIII and (A $ B) (tx + (1 - t)y) = tAx EB (l - t) By so that 

n((A E9 B)(tx EB (1- t)y)) _ n((ta, (1- t){3)) 
n(tx EB (1- t)y) - n((t, (1- t))) 

(26) 

n(By) = {3. 

(27) 

since n is strongly consistent. Since n is monotone, it follows from remark 2 that, for ° :,;,; t :,;,; 1, 
the maximum attained by the right·hand side of (27) is the greater of a and {3 (when either t = 1 

or t = 0). We may thus conclude that 

max (A E9 B)z == N(A EB B) 
n(z) = 1 

is attained when z is of the form either 

z = Z I E9 0 or z = ° E9 Z2, 

ZIECm., ztECm,. Then N(A E9 B) is eitherN(A) or N(B), whichever is larger, as was to be shown. 
By an entirely similar approach, Theorem 2 may be generalized to: 
COROLLARY 2: If n is strongly consistent and monotone, and AjEMmj(C), i = 1, ... , l where 

ml + ... + ml=m, then 

N(AI E9 ... EB A l ) = max N(AJ. (28) 
l :S; j:S= 1 
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As noted previously, the p·norms (6) are consistent, strongly consistent and monotone. It 
would be of further interest to determine which vector norms of the type (16) are consistent, 
strongly consistent and/or monotone. 

Author's Note (added in proof): 

Theorem 2 of our note should be compared with a result of a similar nature (theorem 2) con· 
tained in "Norms on Direct Sums and Tensor Products," Math. Compo 26,401-414 (1972). In 
fact it follows from the present work together with that paper (whose definitions we follow for new 
terms) that the following conditions on a consistent vector norm n are equivalent: 

(i) n is monotone; 
(ii) n is absolute; 

(iii) the matrix norm N induced by n satisfies (22); and 
(iv) the matrix norm N induced by n satisfies (26). 
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