JOURNAL OF RESEARCH of the National Bureau of Standards - B. Mathematical Sciences Vol. 79B. Nos. 3 and 4. July- December 1975

Similarity of Partitioned Matrices*

Robert B. Feinberg**

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(June 12, 1975)

Suppose that A, B, and T are matrices of order $r \times r$, $s \times s$, and $r \times s$ respectively over a field F. We prove that $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ is similar to $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ iff $AX - XB = T$, for some matrix X. We also give some corollaries and a simple generalization.

Key words: Matric equation; partitioned matrix; rational canonical form; similarity.

Suppose that A, B, and T are matrices of order $r \times r$, $s \times s$, and $r \times s$ respectively over a commutative ring Φ . Let I_n denote the identity matrix of order n. If there is a matrix X of order $r \times s$ over Φ such that $AX - XB = T$, then it is a simple computation that

$$
\begin{bmatrix} I_r & X \\ 0 & I_s \end{bmatrix}^{-1} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & X \\ 0 & I_s \end{bmatrix} = \begin{bmatrix} I_r & -X \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & X \\ 0 & I_s \end{bmatrix} = \begin{bmatrix} A & T \\ 0 & B \end{bmatrix}.
$$

Thus $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ is similar to $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ over Φ .

The main result in this paper (Theorem 6) is the converse to the above statement in the case when Φ is a field F, namely, if $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ is similar to $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ over F, then there is a matrix X such that $AX-XB=T$. We also give some corollaries and a simple generalization of the theorem.

This result has been proven independently in $[2]$, and special cases of it have been established in [3], [4J, and [6].

At this point we record some notation used throughout the paper. For integers r and s, let F_{rs} denote the collection of $r \times s$ matrices over F and let F'_{rr} denote the group of nonsingular matrices of order *r.* For *M, NEF rr, MSN (MEN)* represents the statement that *M* is similar (equivalent) to N over F. We denote the minimal polynomial of M by $f_M(x)$, and the companion matrix of $f_M(x)$ by $C(f_M(x))$. The rational canonical form of M is represented by $RF(M)$, and the minor obtained by deleting row *i* and column *j* is represented by $(M)_{ij}$. When the matrix M under discussion is understood, we let R_i denote the *i*th row of *M* and C_j denote the *j*th column. The elementary row operation of adding α times row *j* to row *i* is represented by $R_i \rightarrow R_i + \alpha R_j$.

See [5] for a good reference on matrices.

Let us note from the onset that in proving the main result we may assume w.l.o.g. (without loss of generality) that $A=RF(A)$ and $B=RF(B)$. Supposing that $U\epsilon F'_{rr}$ and $V'\epsilon F'_{ss}$ are such that $UAU^{-1}=RF(A)$ and $VAV^{-1}=RF(B)$, then

¹ Figures in brackets indicate the literature references at the end of this paper.

AMS Subject Classifu;ation: Primary 15A21. 15A24.

^{*}This paper was prepared while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards. Washington. D.C. 20234. He would like to thank Dr. Morris Newman for several heJpfui comments.

^{**}Present address: Department of Mathematics, Clarkson College of Technology. Potsdam, New York 13676.

$$
\quad \text{and} \quad
$$

$$
\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Longleftrightarrow \begin{bmatrix} RF(A) & UTV^{-1} \\ 0 & RF(B) \end{bmatrix} \tilde{S} \begin{bmatrix} RF(A) & 0 \\ 0 & RF(B) \end{bmatrix}
$$

$$
AX - XB = T \Longleftrightarrow RF(A) (UXV^{-1}) - (UXV^{-1})RF(B) = UTV^{-1}.
$$

Let us note also that we may assume w.l.o.g. that both *A* and *B* are nonzero. If both *A* and *B* are zero, the result is trivially true. If one of A and B is zero and the other is a multiple of the identity, the result is again trivially true. If *A* is zero and *B* is not a multiple of the identity, set $\tilde{A} = A +$ $I=I, \tilde{B}=B+I$. Then both \tilde{A} and \tilde{B} are nonzero,

$$
\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Longleftrightarrow \begin{bmatrix} \tilde{A} & T \\ 0 & \tilde{B} \end{bmatrix} \tilde{S} \begin{bmatrix} A & 0 \\ 0 & \tilde{B} \end{bmatrix},
$$

and $AX - XB = T \Longleftrightarrow \tilde{A}X - X\tilde{B} = T$. We obtain a similar result when the assumptions on *A* and *B* are interchanged. Hence in all cases we may assume w.l.o.g. that both Λ and Λ are nonzero.

It is now convenient to present the following well-known result. For an outline of the proof see [5, eh. III, ex. 6 and 7].

LEMMA 0: Suppose $A \epsilon F_{rr}$, $B \epsilon F_{ss}$, and that A and B have no eigenvalues in common. Then for *all* $T \epsilon F_{rs}$ *there is an* $X \epsilon F_{rs}$ *such that* $T = AX - XB$.

Later on we will note a converse to this lemma.

We begin towards the proof of Theorem 6 by recording three technical lemmas. They contain essentially all the hard work.

LEMMA 1: *Suppose* $A_i \in F_{u_i u_i}$,, $1 \le i \le m$, $B_j \in F_{v_i v_i}$, $1 \le j \le n$, $T_{i,r+j} \in F_{u_i v_i}$, $1 \le i \le m$, $1 \le j \le n$.

Then

 \Rightarrow for $1 \le i \le m, 1 \le j \le n,$

$$
\left[\begin{array}{cc} A_i & T_{i,m+j} \\ 0 & B_j \end{array}\right] \widetilde{S} \left[\begin{array}{cc} A_i & 0 \\ 0 & B_j \end{array}\right].
$$

PROOF: Let

$$
M = \begin{array}{c|c|c|c} & -T_{1,m+1} & \cdots & -T_{1,m+n} \\ \hline & \ddots & & \vdots \\ \hline & \lambda I - A_m & -T_{m,m+1} & \cdots & -T_{m,m+n} \\ \hline & \lambda I - B_1 & & \ddots & \vdots \\ & & & \lambda I - B_n & \end{array}
$$

and $D = diag[\lambda I - A_1, \ldots, \lambda I - A_m, \lambda I - B_1, \ldots, \lambda I - B_n]$, so that M and D are matrices over the principal ideal domain $F[\lambda]$. The hypotheses, together with the fundamental theorem on similarity over a field, imply that *M* and *D* are equivalent over $F[\lambda]$.

Now let M_1 be obtained from M by replacing $T_{1,m+1}$, \ldots , $T_{1,m+n}$ with blocks of 0's. Note that to obtain a minor of M_1 with nonzero determinant, it is necessary that the number of rows deleted which pass through the block $\lambda I - A_1$, equal the number of columns deleted which pass through this block. It follows from this that every determinantal minor of M_1 is a determinantal minor of M also. Since MED, we obtain that $M_1\tilde{E}D$ as well. Write M_1 as $(\lambda I - A_1) + M_2$ and D as $(M - A_1) + D_2$. It then follows from [5, Ch. 2, ex. 1] that $M_2 \bar{E} D_2$. Repeating this process m times, we obtain that $M_m \tilde{E} D_m$, where

$$
M_m = \begin{bmatrix} \lambda I - A_m & -T_{m, m+1} & \ldots & -T_{m, m+n} \\ \lambda I - B_1 & \ddots & \ddots & \vdots \\ 0 & \lambda I - B_n & \lambda I - B_n \end{bmatrix}
$$

and $D = \text{diag} [\lambda I - A_m, \lambda I - B_1, \ldots, \lambda I - B_n]$.

Arguing analogously on the columns of M_m , we obtain finally that

$$
\left[\frac{\lambda I - A_m \quad | \quad -T_{m, m+1} }{0} \right] \tilde{E} \left[\begin{array}{c|c} \lambda I - A_m \quad | \quad 0 \\ \hline 0 \quad | \quad \lambda I - B_1 \end{array} \right]
$$

from which it follows that

$$
\left[\begin{array}{c|c} A_m & T_{m, m+1} \\ \hline 0 & B_1 \end{array}\right] \widetilde{S} \left[\begin{array}{c|c} A_m & 0 \\ \hline 0 & B_1 \end{array}\right].
$$

This establishes the lemma in the case when $i = m$ and $j = 1$.

To prove the lemma for arbitrary $(i, j) \in [1, m] \times [1, n]$, note that by simultaneous row and column permutation we may obtain

Running the above argument on this new pair of matrices, we get finally that

Q.E.D.
$$
\left[\begin{array}{c|c} A_i & T_{i, m+j} \\ \hline 0 & B_j \end{array}\right] \tilde{S} \left[\begin{array}{c|c} A_i & 0 \\ \hline 0 & B_j \end{array}\right].
$$

LEMMA 2: Suppose $A \in F_{rr}$, $B \in F_{ss}$, and $T \in F_{rs}$, where both A and B are nonderogatory and in rational canonical form. Then (a) $\overline{X}, \overline{T} \in F_{rs}$ such that \overline{T} has nonzero entries only in its first column and $T - \overline{T} = A\overline{X} - \overline{X}B$. Also, $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}$. (b) $\overline{X} \times \overline{X} \times \overline{T} \in F_{rs}$ such that \overline{T} has nonzero entries only in its first column and $T - \overline{T} = A\overline{X} - \overline{X}B$. Al PROOF: By assumption,

$$
A = \begin{bmatrix} 0 & 1 & & & & \\ 0 & 0 & 1 & & & \\ \cdot & \cdot & & & & \\ \cdot & \cdot & & & & \\ 0 & 0 & 0 & \ldots & 1 \\ -\gamma_{0} & \lambda_{1} & \ldots & -\gamma_{r-1} \end{bmatrix} = C(f_{A}(x))
$$

$$
B = \begin{bmatrix} 0 & 1 & & & \\ 0 & 0 & 1 & & \\ \cdot & \cdot & & & \\ -\eta_{0} & \eta_{1} & & -\eta_{s-1} \end{bmatrix} = C(f_{B}(x)),
$$

and

where

and

$$
f_A(x) = \gamma_0 + \gamma_1 x + \ldots + \gamma_{r-1} x^{r-1} + x^r
$$

$$
f_B(x) = \eta_0 + \eta_1 x + \ldots + \eta_{s-1} s^{s-1} + x^s
$$
.

Write $T = (t_{i, r+j})_{1 \le i \le r}$. $1 \leq i \leq s$

(a) Perform the following $s-1$ sequences of elementary row and column operations on $\begin{bmatrix} A \\ 0 \end{bmatrix}$ $\begin{bmatrix} T \\ B \end{bmatrix}$ obtaining a sequence of matrices

$$
\left\{\left[\begin{array}{cc}A & T_j \\ 0 & B\end{array}\right]\right\}_{j=1}^{s-1}:
$$

Sequence 1: For $1 \le i \le r$,

$$
R_i \rightarrow R_i - t_{i,r+s}R_{r+s-1}
$$

$$
C_{r+s-1} \rightarrow C_{r+s-1} + t_{i,r+s}C_i.
$$

These operations are effected by the similarity

$$
\left[\begin{array}{cc} A & T \\ 0 & B \end{array}\right] \rightarrow \left[\begin{array}{cc} I_r & X_1 \\ 0 & I_s \end{array}\right] \qquad \left[\begin{array}{cc} A & T \\ 0 & B \end{array}\right] \qquad \left[\begin{array}{cc} I_r & -X_1 \\ 0 & I_s \end{array}\right] \equiv \left[\begin{array}{cc} A & T_1 \\ 0 & B \end{array}\right],
$$

for an appropriate $X_1 \in F_{rs}$. Note that the last column of $T_1 \equiv (t_{k,r+l}^1)_{1 \leq k \leq r}$ consists entirely of 0's.

Sequence $j(2 \le j \le s-1)$: For $1 \le i \le r$.

$$
R_i \to R_i - t_{i, r+s-(j-1)}^{j-1} R_{r+s-j}
$$

$$
C_{r+s-j} \to C_{r+s-j} + t_{i, r+s-(j-1)}^{j-1} C_i.
$$

These operations are effected by the similarity

$$
\left[\begin{array}{cc} A & T_{j-1} \\ 0 & B \end{array}\right] \rightarrow \left[\begin{array}{cc} I_r & X_j \\ 0 & I_s \end{array}\right] \qquad \left[\begin{array}{cc} A & T_{j-1} \\ 0 & B \end{array}\right] \qquad \left[\begin{array}{cc} I_r & -X_j \\ 0 & I_s \end{array}\right] \equiv \left[\begin{array}{cc} A & T_j \\ 0 & B \end{array}\right],
$$

for an appropriate $X_j \in F_{rs}$. Note that the last *j* columns of $T_j \equiv (t_{k, r+l}^j)_{1 \leq k \leq r}$ consist entirely of 0's.

Now let $\bar{X} = \sum_{j=1}^{s-1} X_j$ and let $\bar{T} = T_{s-1}$. Then \bar{T} has nonzero entries only in its first column and

 $\begin{bmatrix} I_r & \bar{X} \\ 0 & I_s \end{bmatrix}$ $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ $\begin{bmatrix} I_r & -\bar{X} \\ 0 & I_s \end{bmatrix}$ $=\left\{\begin{matrix} s-1 \ \Pi \end{matrix}\begin{bmatrix} I_r & X_{s-j} \ 0 & I_s \end{bmatrix}\right\}\begin{bmatrix} A & T \ 0 & B \end{bmatrix}\begin{Bmatrix} s-1 \ \Pi \end{Bmatrix}\begin{bmatrix} I_r & -X_j \ \Pi \end{bmatrix}\right\}=\begin{bmatrix} A & \overline{T} \ 0 & B \end{bmatrix}$

It follows from this that $T - \bar{T} = A\bar{X} - \bar{X}B$, also that

$$
\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}.
$$

(b) Perform the following $r-1$ sequences of elementary row and column operations on $\begin{bmatrix} A & I \\ 0 & B \end{bmatrix}$, obtaining a sequence of matrices $\left\{ \begin{bmatrix} A & U_i \ 0 & B \end{bmatrix} \right\}_{i=1}^{r-1}$:

Sequence 1. For $1 \leq j \leq s$,

$$
C_{r+j} \to C_{r+j} - t_{1, r+j} C_2
$$

$$
R_2 \to R_2 + t_{1, r+j} R_{r+j}.
$$

These operations are effected by the similarity

$$
\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \rightarrow \begin{bmatrix} I_r & Y_1 \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & -Y_1 \\ 0 & I_s \end{bmatrix} \equiv \begin{bmatrix} A & U_1 \\ 0 & B \end{bmatrix},
$$

for an appropriate $Y_1 \in F_{rs}$. Note that the first row of $U_1 \equiv (u^1)_{1 \leq k \leq r}$ consists entirely of 0's. $k, r+1 \quad 1 \leq l \leq s$

Sequence i $(2 \le i \le r-1)$. For $1 \le j \le s$,

$$
C_{r+j} \to C_{r+j} - u_{i,r+j}^{i-1} C_{i+1}
$$

$$
R_{i+1} \to R_{i+1} + u_{i,r+j}^{i-1} R_{r+j}
$$

These operations are effected by the similarity

$$
\begin{bmatrix} A & U_{i-1} \\ 0 & B \end{bmatrix} \rightarrow \begin{bmatrix} I_r & Y_i \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & U_{i-1} \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & -Y_i \\ 0 & I_s \end{bmatrix} \equiv \begin{bmatrix} A & U_i \\ 0 & B \end{bmatrix},
$$

for an appropriate $Y_i \in F_{rs}$. Note that the first *i* rows of $U_i \equiv (u_{k, r+1}^i)_{1 \leq k \leq r}$ consist entirely of 0's. $1 \leq l \leq s$.

Now let
$$
\bar{\bar{X}} = \sum_{i=1}^{r-1} Y_i
$$
 and let $\bar{\bar{T}} = U_{r-1}$. Then $\bar{\bar{T}}$ has nonzero entries only in its last row and

$$
\begin{bmatrix} I_r & \overline{X} \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & -\overline{X} \\ 0 & I_s \end{bmatrix} = \left\{ \prod_{i=1}^{r-1} \begin{bmatrix} I_r & U_{r-i} \\ 0 & I_s \end{bmatrix} \right\} \begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \left\{ \prod_{i=1}^{r-1} \begin{bmatrix} I_r & -U_i \\ 0 & I_s \end{bmatrix} \right\} = \begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}.
$$

It follows from this that $T - \bar{T} = A\bar{X} - \bar{X}B$, also, that

$$
\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}.
$$
 Q.E.D.

LEMMA 3: Suppose $A \in F_{rr}$, $B \in F_{ss}$, and $T \in F_{rs}$, where both A and B are nonderogatory and in *rational canonical form. Assume also that* f_A *and* f_B *are both powers of the same monic irreducible*

 $[$ polynomial $p(x)$ and that $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ $\tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$. Then T must be 0 *if*

 (a) **r** \leq *s and* Γ *has nonzero entries possibly only in its first column*

 (b) s \leq *r and T has nonzero entries possibly only in its last row.* PROOF: By hypothesis,

$$
A = \begin{bmatrix} 0 & 1 & & & & \\ 0 & 0 & 1 & & & \\ . & & & & & \\ . & & & & & \\ . & & & & & \\ 0 & 0 & 0 & \dots & 1 \\ -\gamma_0 & -\gamma_1 & & & -\gamma_{r-1} \\ . & & & & & \\ . & & & & \\ . & & & & \\ . & & & & \\ 0 & 0 & 1 & & \\ . & & & & \\ -\eta_0 & -\eta_1 & & & \dots & -\eta_{s-1} \end{bmatrix} = C(f_{\beta})
$$

where

and

and

or

$$
f_A(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{r-1} x^{r-1} + x^r = p(x)^e
$$

$$
f_B(x) = \eta_0 + \eta_1 x + \dots + \eta_{s-1} x^{s-1} + x^s = p(x)^f,
$$

for some integers *e* and *f*. Write $T = (t_i, r+j)_{\substack{1 \le i \le r \\ 1 \le j \le s}}$.

Now let $D = \text{diag}[\lambda I - A, \lambda I - B] \in F[\lambda]_{(r+s),(r+s)}$ For $(D)_{ij}$ any $(r+s-1) \times (r+s-1)$ minor of *D*, it may be seen that det $(D)_{ij} \neq 0 \Rightarrow i, j \leq r$ or $i, j \geq r+1$. Note also that for $i, j \leq r$, det $(D)_{ij} = g_{ij}(\lambda) f_B(\lambda)$, for some $g_{ij}(\lambda) \in F[\lambda]$, where $gr_i(\lambda) = \pm 1$; and that for $i, j \ge r+1$, det $(D)_{ij} =$ $h_{ii}(\lambda) f_A(\lambda)$, for some $h_{ij}(\lambda) \in F[\lambda]$, where $h_{r+s, r+1}(\lambda) = \pm 1$.

Let Δ_{r+s-1} be the $(r+s-1) \times (r+s-1)$ determinantal divisor of *D*. It then follows from the above calculations that

$$
\Delta_{r+s-1} = g.c.d. \{f_A(\lambda), f_B(\lambda)\}
$$

= $\begin{cases} f_A(\lambda), & \text{if } r \leq s \\ f_B(\lambda), & \text{if } s \leq r. \end{cases}$

is equivalent over $F[\lambda]$ to D. Hence for $\lambda I-B$

all $i, j \geq r+s$,

$$
\Delta_{r+s-1} |\det \left(\begin{bmatrix} \lambda I - A & -T \\ 0 & \lambda I - B \end{bmatrix}_{ij} \right).
$$

We now prove (a) and (b).

(a) It may be seen that for $i \leq r$, $\det\left(\begin{bmatrix} \lambda I-A & -T \\ 0 & \lambda I-B \end{bmatrix}\right)_{r+s,i} = \pm t_{i,r+1} \lambda^{r-1} + q(\lambda) + E$, where $q(\lambda)$ is a polynomial of degree $\leq r-2$ and *E* is an $(r+s-1) \times (r+s-1)$ determinantal minor of D. It follows that

$$
\Delta_{r+s-1}|\pm t_{i,r+1}\lambda^{r-1}+q(\lambda)+E.
$$

Since $\Delta_{r+s-1} | E$ and since $\Delta_{r+s-1} = f_A(\lambda)$ is a polynomial of degree *r* in this case, we obtain that $t_{i,r+1} = 0$, $i \le r$, whence $T = 0$.

(b) It may be seen that det $\left(\begin{bmatrix} \lambda I - A & -T \\ 0 & \lambda I - B \end{bmatrix} \right)_{r+s, 1} = \pm t_{r, r+1} \pm t_{r, r+2} \lambda \pm t_{r, r+3} \lambda^2 \pm \dots$ $\pm t_{r,r+s}$ $\lambda^{s-1}+F$, where F is an $(r+s-1) \times (r+s-1)$ determinantal minor of D. It follows that

$$
\Delta_{r+s-1}|\pm t_{r,r+1}\pm t_{r,r+2}\lambda\pm\ldots\pm t_{r,r+s}\lambda^{s-1}+F
$$

Since $\Delta_{r+s-1} | F$ and since $\Delta_{r+s-1} = f_B(\lambda)$ is a polynomial of degree s in this case, we obtain that $t_r, r+1 = t_r, r+2 = \ldots = t_r, r+s = 0$, whence $T=0$. Q.E.D.

It is now convenient to prove our main result in a simple special case.

Lemma 4: Suppose $A \in F_{rr}$, $B \in F_{ss}$, and $T \in F_{rs}$, where both A and B are nonderogatory. Assume *also that* $f_A(x) = p_1(x)$ ^d *and* $f_B(x) = p_2 |x|^e$, *where* $p_1(x)$ *and* $p_2(x)$ *are monic irreducible polynomials.*

 $Then \begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Rightarrow T = AX - XB, for some X \in F_{rs}.$

PROOF: As noted above, we may assume w.l.o.g. that $A = RF(A)$ and $B = RF(B)$. If $p_1(x) \neq p_2(x)$, then *A* and *B* have no eigenvalues in common, and hence we know from Lemma 0 that $X \in F_{rs}$ such that $AX - XB = T$ (the hypothesis on similarity is superfluous in this case.)

Assume now that $p_1(x) = p_2(x)$. If $r \le s$, use Lemma 2a to find $\bar{X}, \bar{T} \in F_{rs}$ such that \bar{T} has nonzero entries only in its first column, $T - \bar{T} = A\bar{X} - \bar{X}B$, and $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$. Since $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$

it follows that $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$, $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$, and we then obtain from Lemma 3a that $\overline{T}=0$. Thus $T=A\overline{X}-\overline{X}B$ in this case. If $s \le r$, use Lemma 2b to find \overline{X} , $\overline{T} \in F_{rs}$ such that \overline{T} has nonzero entries only in its last row, $T-\overline{T}=A\overline{X}-\overline{X}B$, and $\begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}$ $\tilde{S}\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$. Again, $\begin{bmatrix} A & \overline{T} \\ 0 & B \end{bmatrix}$ $\tilde{S}\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$, and we then obtain from Lemma 3b that $\bar{\bar{T}}=0$. Thus $T=A\bar{\bar{X}}-\bar{\bar{X}}B$ in this case as well. Q.E.D.

We now drop the requirement that A and B be nonderogatory.

LEMMA 5: *Suppose* $A \epsilon F_{rr}$, $B \epsilon F_{ss}$, and $T \epsilon F_{rs}$ *Assume that both* A and B are nonzero and that $f_A(x) = p_1(x)$ ^d and $f_B(x) = p_2(x)$ ^e, *where* $p_1(x)$ *and* $p_2(x)$ *are monic irreducible polynomials. Then* $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ $\tilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ \Rightarrow $T = AX - XB$ for some $X \in F_{rs}$.

PROOF: As before, we may assume that $A = RF(A)$, $B = RF(B)$, and that $p_1(x) = p_2(x)$. We then have that $A = diag[C(p(x)^{d_1}), C(p(x)^{d_2}), \ldots, C(p(x)^{d_u})]$, where $d = d_1 \geq d_2 \geq \ldots$ $\geq d_u$, and $B = \text{diag}[C(p(x)^{e_1}), C(p(x)^{e_2}), \ldots, C(p(x)^{e_v})]$, where $e = e_1 \geq e_2 \geq \ldots \geq e_v$. Now write $T = (T_{i,\,u+j})_{\substack{1 \leq i \leq u\ i \leq j}}$, where $T_{i,\,u+j}$ has d_i rows and e_j columns. We then have by Lemma 1

that for all $(i, j) \in [1, u] \times [1, v]$,

$$
\begin{bmatrix} C(p(x)^{d_i}) & T_{i, u+j} \\ 0 & C(p(x)^{e_j}) \end{bmatrix}
$$

$$
\tilde{S} \begin{bmatrix} C(p(x)^{d_i}) & 0 \\ 0 & C(p(x)^{e_j}) \end{bmatrix}.
$$

It then follows from Lemma 4 that there is a matrix $X_{i, u+j}$ over F such that

$$
T_{i, u+j} = C(p(x)^{d_i}) X_{i, u+j} - X_{i, u+j} C(p(x)^{e_j}).
$$

Let $X = (X_{i, u+j})_{1 \leq i \leq v \atop 1 \leq j \leq v} \in F_{rs}$. We then obtain by straightforward computation that $T = AX - XB$. Q.E.D.

We now establish the main result.

and

THEOREM 6: Suppose $A \in F_{rr}$, $B \in F_{ss}$, and $T \in F_{rs}$. Then $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Rightarrow T = AX - XB$, *for some* $X \in F_{rs}$.

PROOF: As before, we may assume that both *A* and *B* are nonzero and in rational canonical form. Assume also that

$$
f_A(x) = p_1(x) d_1 p_2(x) d_2 \dots p_u(x) d_u
$$

$$
f_B(x) = q_1(x) e_1 q_2(x) e_2 \ldots q_v(x) e_v
$$

where ${p_i(x)}_{i=1}^u$ and ${q_j(x)}_{j=1}^v$ are sets of distinct irreducible polynomials in $F[x]$ We may then write $A = diag[G_1, \ldots, G_u]$ and $B = diag[H_1, \ldots, H_v]$, where $f_{G_i}(x) = p_1(x)^{d_i}$ and $f_{H_i}(x)$ $q_j(x)$ e_j . Now write $T=(T_{i, u+j})_{\substack{1 \leq i \leq u \\ 1 \leq j \leq v}}$, where $T_{i, u+j}$ is conformable with G_i and H_j . We then have

by Lemma 1 that for all $(i, j) \in [1, u] \times [1, v], \begin{bmatrix} G_i T_{i, u+j} \\ 0 H_j \end{bmatrix} \tilde{S} \begin{bmatrix} G_i & 0 \\ 0 H_j \end{bmatrix}$. It then follows from Lemma 5 that there is a matrix $X_{i, u+j}$ over *F* such that $T_{i, u+j} = G_i X_{i, u+j} - X_{i, u+j} H_j$. Let X $=(X_{i,u+j})$ $\underset{1 \leq j \leq v}{\lim_{i \leq j \leq v}} \epsilon F_{rs}$. We then obtain by straightforward computation that $T = AX - XB$. Q.E.D.

COROLLARY 6.1: Suppose A ϵ F_{rr}, B ϵ F_{ss}, and T, T ϵ F_{rs}. Then

$$
\begin{bmatrix} A & T - \widetilde{T} \\ 0 & B \end{bmatrix} \widetilde{S} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Rightarrow \begin{bmatrix} A & \widetilde{T} \\ 0 & B \end{bmatrix} \widetilde{S} \begin{bmatrix} A & \widetilde{T} \\ 0 & B \end{bmatrix}.
$$

PROOF: The hypotheses, together with Theorem 6, imply $T - \tilde{T} = AX - XB$; for some $X \in F_{rs}$. It is then a simple computation that

$$
\begin{bmatrix} I_r & -X \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & \widetilde{T} \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & X \\ 0 & I_s \end{bmatrix} = \begin{bmatrix} A & T \\ 0 & B \end{bmatrix},
$$

so that

$$
\begin{bmatrix} A & \widetilde{T} \\ 0 & B \end{bmatrix} \widetilde{S} \begin{bmatrix} A & T \\ 0 & B \end{bmatrix}.
$$

Note that the converse to Corollary 6.1 fails. For example, let $F =$ the reals, $R, A = B = (3)$, $T=(4)$, and $\tilde{T}=(2)$. Then $\begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix} \tilde{S} \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$, since $\begin{bmatrix} 3-x & 4 \\ 0 & 3-x \end{bmatrix}$ is equivalent over $R[x]$ to $\begin{bmatrix} 3-x & 2 \\ 0 & 2 \end{bmatrix}$, but $\begin{bmatrix} 3 & 4-2 \\ 0 & 3 \end{bmatrix}$ is *not* similar to $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, since there is obviously no x satisfying $4-2=x(3-3)$.

We note two further consequences of the results and techniques developed thus far. First, they may be used to prove the converse to Lemma 0, namely that if $A\epsilon F_{rr}$ and $B\epsilon F_{ss}$ have the property that for all $T \epsilon F_{rs}$ there is an $X \epsilon F_{rs}$ such that $T = AX - XB$, then A and B have no eigenvalues in common. Second, they may be used to find an explicit solution in X of the matric equation $T = AX - XB$, at least in the case when A and B are in rational cononical form. See [1] for another approach to solving this equation.

We conclude with a simple generalization of Theorem 6.

THEOREM 7: Suppose $U_i \in F_{r_i r_i}$, $1 \le i \le k$, and $N_{ij} \in F_{r_i r_i}$, $1 \le i \le j \le k$. Then

for each i, $j \le k$ $\exists X_{ij} \in F_{r_ir_i}$ such that $U_iX_{ij} - X_{ij}U_j = N_{ij}$.

References

- [1] Bartels, R., and Stewart, G. W., Solution of the matrix equation $AX + XB = C$, Comm. ACM 15, 820-827 (1972).
- Gustafson, W., On the matrix equations $AX YB = C$ and $AX XB = C$.
- [3] Johnson, C. R., and Newman, M., A Condition for the diagonalizability of a partitioned matrix, J. Res. Nat. Bur. Stand. (U.S.) 79B, (Math. Sci.) Nos. 3 & 4, (1975).
- Kucera, V., The matrix equation $AX + XB = C$, Siam J. Appl. Math. 26, 15-25 (1974). $[4]$
- Newman, M., Integral matrices (Academic Press, New York, 1972).
- [6] Roth, W., The equations $AX YB = C$ and $AX XB = C$ in Matrices, Proc. AMS 3, 392-396, (1952).

(Paper 79B3 & 4-427)