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Suppose that 4, B, and T are matrices of order r X r, s X s, and r X s respectively over a field F. We prove that
A T A 0
[0 B ] is similar to [0 B] iff AX—XB=T, for some matrix X. We also give some corollaries and a simple

generalization.
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Suppose that A, B, and T are matrices of order rXr, s Xs, and r X s respectively over a com-

mutative ring ®. Let I, denote the identity matrix of order n. If there is a matrix X of order rXs
over @ such that AX —XB=T, then it is a simple computation that

[Ir X]“ A 0] [lr X]:[Ir —-X] [A O] [Ir-X]:[A T )
0 I 0 B 0 I 0 I 0 B 0 I’ 0 B
Thus[g g]is similar to[g OB] over O.

The main result in this paper (Theorem 6) is the converse to the above statement in the case
. Lo[A T, . . A 0
when @ is a field F, namely, if [ 0 B] is similar to [ 0 B
that AX—XB=T. We also give some corollaries and a simple generalization of the theorem.
This result has been proven independently in [2], ! and special cases of it have been established
in[3], [4], and [6].

] over F, then there is a matrix X such

At this point we record some notation used throughout the paper. For integers r and s, let Frs
denote the collection of r X s matrices over F' and let ', denote the group of nonsingular matrices
of order r. For M, NeF,,, MSN (MEN) represents the statement that M is similar (equivalent) to
N over F. We denote the minimal polynomial of M by fu(x), and the companion matrix of fy (x)
by C(fu(x)). The rational canonical form of M is represented by RF (M), and the minor obtained
by deleting row i and column j is represented by (M);;. When the matrix M under discussion is
understood, we let R; denote the ith row of M and C; denote the jth column. The elementary row
operation of adding o times row jto row i is represented by R; = R; + aR;.

See [5]for a good reference on matrices.

Let us note from the onset that in proving the main result we may assume w.l.o.g. (without
loss of generality) that A=RF(A) and B=RF(B). Supposing that UeF,, and V' eF), are such
that UAU '=RF (A) and VAV-'=RF(B), then
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o sl5[o sl =% wriw [5[%0" o]

and

AX—XB=T < RF(A) (UXV-')— (UXV-')RF (B)=UTV-.

Let us note also that we may assume w.l.o.g. that both 4 and B are nonzero. If both 4 and B
are zero, the result is trivially true. If one of 4 and B is zero and the other is a multiple of the ident-
ity, the result is again trivially true. If A is zero and B is not a multiple of the identity, set A=A+
I=1I, B=B+1. Then both 4 and B are nonzero,

[3 5155 sle=ld 515 Bl

and AX —XB=T &= AX —XB=T. We obtain a similar result when the assumptions on A and B are
interchanged. Hence in all cases we may assume w.l.o.g. that both 4 and B are nonzero.

It is now convenient to present the following well-known result. For an outline of the proof see
[5, Ch. III, ex. 6 and 7.

LEMMA O: Suppose A€F,,, BeF, and that A and B have no eigenvalues in common. Then for
all Tek ¢ there is an XeF ¢ such that T=AX —XB.

Later on we will note a converse to this lemma.

We begin towards the proof of Theorem 6 by recording three technical lemmas. They contain
essentially all the hard work. ,

LEMMA 1: Suppose A€, y,, 1 <is<m, BjeFVjVj, l<j<n, Ti’HjeFuivj, l<is<m,l<j<n.

Then
4, Timmer - Tromen | 4, 7]
RN z - 0
Am Tm,mH L Tm,m+n g Am
B, B,
0 B 0
| Bn__ L_- Bll-
Sforl<ism,1<j<n,
|:Az Ti,rn+j] S [Az 0 :l
0 B 0 B
PRroOOF: Let
r )\I—Al _T].m+l . e . _Tl,m+n 7
M: }\I_Am — Tm,m+1 o e . _Tm,m+n
}\I_Bl
0
i M-—B, |
and D=diag[A\[—A4,, . . ., Nl—Au,\N—B,, . . ., \I—B,], so that M and D are matrices over

the principal ideal domain F[A]. The hypotheses, together with the fundamental theorem on
similarity over a field, imply that M and D are equivalent over F[A].
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Now let M, be obtained from M by replacing Ty w1, . . ., Ti.msn with blocks of 0’s. Note
that to obtain a minor of M, with nonzero determinant, it is necessary that the number of rows
deleted which pass through the block ANl —4, equal the number of columns deleted which pass
through this block. It follows from this that every determinantal minor of M, is a determinantal
minor of M also. Since MED, we obtain that M,ED as well. Write M,as (\[—A,)+ M, and D as
(M —A,) + D.. It then follows from [5, Ch. 2, ex. 1] that M,ED,. Repeating this process m times,
we obtain that M,,ED,,, where

}\I_Am |_Tm,m+1 . e . _Tm,m+n
AN — B, .

AN —B,

and D=diag[N\[—Aw, \I—B., . . ., \I—B.].

Arguing analogously on the columns of M,,, we obtain finally that

[}\I*Am I _Tm,nHI:|.E|:}\I_Am l 0 :|
0o | -8 o | x—B,

from which it follows that

I:Am I Tm,m+l:| §|:Am I 0:|
o | B o | B.J

This establishes the lemma in the case when i=m and j=1.
To prove the lemma for arbitrary (i, j)e[1, m] X [1, n], note that by simultaneous row and

column permutation we may obtain

4, ] [ B

. A"l ‘ . . AIII
Ai|Ti, m+j . . 5| = A;

B, B

B pt

Running the above argument on this new pair of matrices, we get finally that

{Ai l Ti,nnj] = I:AI I 0:|
IS 5
Q.E.D. o | B o | B
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LEMMA 2: Suppose A€F ., BeF, and T €F s, where both A and B are nonderogatory and in
rational canonical form. Then (a) 4 X TeF such that T has nonzero entries only in its first column

0 B 0 B

only in its last row and T —'f‘=A):( ——):( B. Also, [ :l [ jI

Proor: By assumption,

_ - AT|.TAT - =
and T—T=AX—XB. Also, S . (b) A X, TeF, such that T has nonzero entries

— -

0 1
0 0 1
Al =C(f4(%))
0 0 0 1
—Yo - Ay S = Yr=1
and - =
0 1 B
0 0 1
St =C(falx)),
0O 0 0...1
[~ To-" — Ms—1_|
where
fa@)=yotyix+ . . .y g
and
fB(X)='T]()+7}1x+ o o o YT arad

Write T= (ti,r+j)1sisr.

1sj<s

. ) T
(a) Perform the following s —1 sequences of elementary row and column operations on [ 0 B] R

obtaining a sequence of matrices

Sequence I: For1 <i=<r,
Ri—> Ri—ti,r+sRris-1
Cris-12Cris_1tti,risCi
These operations are effected by the similarity
o sl=lo ] 6] [¢2]=[0 #]
0 B 0 I 0 B 0 I 0 B )’

for an appropriate X,€F ;. Note that the last column of T; = (¢} ,.,) 1<k<r consists entirely of 0’s.

1<is<s
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Sequence j(2<j<s—1): Forl<i=<r
) e i) .
Ri— R; tij,r+s—(j—l)R"+""’J
Crﬂs—j_’Cr+s—j'+'”_l G

i, r+8—(j-1)

These operations are effected by the similarity

O e R I Il B o I et

for an appropriate X;€F ;. Note that the last j columns of Tj= (¢] .. ,)1<k<r consist entirely of 0’s.
_ 8—1 - _ 1<is<s
Now let X= 3 X; and let T=T;_,. Then T has nonzero entries only in its first column and
j=1

oo 05 [0 7]
S LT R N

It follows from this that T—T=AX — XB, also that
[A T] - [A T]
0 B 0 Bl
(b) Perform the following r—1 sequences of elementary row and column operations on [g ;],

e . A U; 7=
obtaining a sequence of matrices 0 B g
i=1

Sequence 1. For 1 <j=<s,
C:'+j_)Cr+j_t|,r+jC:£
Rz_)R2+tl,r+er+j-

These operations are effected by the similarity

[AT_)IrYl A T [IT—YI___AUI

0 B 0 I 0 B 0 I,] [0 B)

for an appropriate Y,€F ;. Note that the firstrow of U; = (&' ) | < x < , consists entirely of 0’s.
k,r+1 1<i<s

Sequencei 2<i<r—1). For1 <j<s,

Cr+j—)Cr+j_u;:,_r'+j (G

Risi=»Rii+ul7l. Ry,

L)
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These operations are effected by the similarity

A Ui| |1 Y A U;_, I, =Y |_|4 U
0 B 0 I 0 B 0 I, | |0B |
for an appropriate Y ;e F,;. Note that the first i rows of U; = (u’j,r+l)1</.~<r consist entirely of 0’s.
1<l=<s

= r_l ! = =
Now let X = 2 Yiand let T=U,_,. Then T has nonzero entries only in its last row and
i=1

I X AT L =X|_|=t|L U4 7| —-U||_|4
0 I, 0 B 0 I, ,EOL OBI.U]OIS 0
It follows from this that T—T=A4X —X B, also, that
A T|-lA T
BHEE

LEMMA 3: Suppose A€F, BeF, and TeF, where both A and B are nonderogatory and in
rational canonical form. Assume also that {, and fy are both powers of the same monic irreducible

Sy N
I__.___l

) A T{.[A 0
polynomial p(x) and that 0 B S o Bl Then T must be O if

(a) r <s and T has nonzero entries possibly only in its first column

or
(b) s<r and T has nonzero entries possibly only in its last row.
ProoF: By hypothesis,
0 1 ]
0 1
A=| . =C(fs)
0 0O o0... 1
—Yo —Vi —Yr-1
and —
0 1 ]
0 0 1
B=| . =C(fs)
0 0O 0... 1
“TNo T M <. T M
where
falx)=vot+tyix+ ... +y,_ix" 1+x"=p(x)e
and
fe(x)=mot+mnix+ ...+ xt ' +axs=p(x)/,

for some integers e and f. Write T'= (t;, r+j) 1<j<r"
1sjs<s
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Now let D=diag[AN[—A, N —BleF[\]¢is),0+5. For (D)i; any (r+s—1)X (r+s—1)
minor of D, it may be seen that det (D);; # 0=>i, j<ror i, j=r+1. Note also that for i, j<r,
det (D)ij=gij(N) fs(N), for some gi;(\) e F[A], where gri(N\)==1; and that for i, j =r+1, det (D)=
hij(N)fa(N), for some hij(N) eF[N], where by g, o1 (\)==+1.

Let A,.s_; be the (r+s—1) X (r+s—1)determinantal divisor of D. It then follows from the
above calculations that

Ar+s—| =g.C.d. {f4(}\)’f8(/\)}
:{f.,()\), ifr<s

B(N), if s<r.

A T| |40 N—A —-T
Note also that S > is equivalent over F[\] to D. Hence for
0 B 0 B 0 NM—B
alli,j=r+s,
M—A T
Al'+s—l ldet
0 N —B]|

We now prove (a) and (b).

0 N —B
where g(A) is a polynomial of degree <r—2 and E is an (r+s—1) X (r+s—1) determinantal
minor of D. It follows that

(a) It may be seen that for i <r, del([)\I_A —T] > =*tiro1 '+ q(N) +HE,

Ar¢s-|liti‘r¢1}\"71+Q(A)+E.

Since A, . s |E and since A, = fa(N\) is a'polynomial of degree r in this case, we obtain that
ti.;r+1=0, i<r, whence T =0.
N—A —T
(b) It may be seen that det <[ 0 )\I_B})r+g,]=itr‘r+]it’.".+2 )N AP T
Ftrris N1+ F, where F is an (r+s—1) X (r+s—1) determinantal minor of D. It follows that

Ar+s—1|itr,r+1itr,r+2 At ... Etr s ANTIEHF

Since A, . s_|F and since A,;s_ = fz(\) is a polynomial of degree s in this case, we obtain that
tror+1=tr,r+2= . . . =tr,r+s=0, whence T=0. Q.E.D.

It is now convenient to prove our main result in a simple special case.
Lemma 4: Suppose A €F,;,BeFg, and T € F s, where both A and B are nonderogatory. Assume
also that f4(x)=p1(x)? and fg(x) =p2|x(¢, where p1(x) and p2(x) are monic irreducible polyno-
A T] < [A 0

mials.
Then [0 B S 0 B

PROOF: As noted above, we may assume w.l.o.g. that 4 = RF(4) and B=RF(B). If
p1(x) # p2(x), then 4 and B have no eigenvalues in common, and hence we know from L2mma 0
that 41X € F';s such that AX —XB=T (the hypothesis on similarity is superfluous in this case.)

Assume now that p,(x) =p.(x). If r < s, use Lemma 2a to find X,T € F,; such that T has nonzero

entries only in its first column, T—T=AX — XB, and [g ;] S [/(;1 ;] Since [A T] g[A 0]

] => T=AX—XB, for some X € F.

0 B 0 B
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it follows that [g g S [g OB] , and we then obtain from Lemma 3a that T=0. Thus T=A4X —XB

in this case. If s <r, use Lemma 2b to find j(, TeFrs such that T has nonzero entries only in its

T, A T A (A Ty .[A © .
last row, T—T=AX —XB, and [0 :;J S [0 g Again, [O B] S [0 B]’ and we then obtain
from Lemma 3b that T=0. Thus 7=AX —XB in this case as well.

Q.E.D.

We now drop the requirement that 4 and B be nonderogatory.

LEMMA 5: Suppose A€F ., BeF, and Te€F  Assume that both A and B are nonzero and that
fA®=pi(x)? and fy(x) =pyx)e, where pi(x) and ps(x) are monic irreducible polynomials. Then
[g ’;] S [g l(})] > T=AX —XB for some X¢€F .

PROOF: As before, we may assume that A=RF(A), B=RF(B), and that p,(x) =p»(x). We
then have that A=diag[C(p(x)91), C(p(x)?), . . ., C(p(x)®)], where d=d,=d.=> . . .

= dy, and B=diag[C(p(x)¢!), C(p(x)€2), . . ., C(p(x)¢?)], where e=e; =e.= . . . =e,.
Now write T'= (T, u+ ) 1<i<u, where T; .+ j has d; rows and e; columns. We then have by Lemma 1
1sj=<v

that for all (i, j)e[1, u] X [1, v],
[C(P(x)‘“) Tiju+j ]
0 C(p(x)©i)

[CE@H) 0 1
_S[ 0 C<p(x)ef)]

It then follows from Lemma 4 that there is a matrix X;, .+ j over F such that
Ti,ur j=C(p(2)%) Xi,usr j—Xi,usj C(p(x)€i).

Let X= (Xi,u+j )‘i;i’; €F 5. We then obtain by straightforward computation that 7= AX — XB.
e Q.E.D.

We now establish the main result.
AT
THEOREM 6: Suppose A€F,,, BeF, and TeF,,. Then[

0 B]§[A 0] = T=AX—XB,

0 B
for some XeF .

PROOF: As before, we may assume that both 4 and B are nonzero and in rational canonical
form. Assume also that

fa(x)=pi1(x)¥p2(x)? . . . pu(x)n
and
fe(x)=qi(x)eqa(x)€2 . . . gv(x)°%

where {pi(x)}?_, and {q;(x)}}_, are sets of distinct irreducible polynomials in F[x] We may then

write A=diag[G,, . . ., G.] and B=diag[H,, . . ., H,], where f;;(x) =p:(x)% and fu; (x)
=q; (x)¢. Now write T= (T, u+ ) 1<i<u, where T« j is conformable with G; and H;. We then have
1sjs<v

GiTiusi] [ G0
by Lemma 1 that for all (¢, j)e[l, u] X [1, v], [ 0 H,- “] S [ g H. ] It then follows from
J ]

Lemma 5 that there is a matrix X;,.+; over F such that T v, ;==GiX; y+j —Xi,u+jHj. Let X
= (Xi,u+j) 1<i<u €F ;. We then obtain by straightforward computation that 7= AX — XB. Q.E.D.

1sjs<v
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COROLLARY 6.1: Suppose A€l ., BeF, and T, TeF . Then

o SE Wl a] sl Y

PROOF: The hypotheses, together with Theorem 6, imply T—T=AX—XB,‘ for some XeF .
Itis then a simple computation that

v o) [s] [ sl

so that

o 53[5 5

Q.E.D.

Note that the converse to Corollary 6.1 fails. For example, let F'=the reals, R, A=B=(3),

T=(4), and T=(2). Then [3 g] S [(3) g} since [3336 3ix] is equivalent over R[x] to

[3—x 2] but [3 4—2] is not similar to [3 O] since there is obviously no x satisfying
0 27/ 0o 3 0 3/
4—2=x(3—-3).

We note two further consequences of the results and techniques developed thus far. First,
they may be used to prove the converse to Lemma 0, namely that if AeF',, and BeF i have the
property that for all TeF s there is an XeF,s such that T=A4X —XB, then 4 and B have no eigen-
values in common. Second, they may be used to find an explicit solution in X of the matric equation
T=AX—XB, at least in the case when 4 and B are in rational cononical form. See [1] for another
approach to solving this equation.

We conclude with a simple generalization of Theorem 6.

THEOREM 7: SupposeUiel ;.1 <i <k, and Nk, 1 <i <j=<k.Then

— — —

U, U,

Ni;

w2

. . |le=
U, 9,
L 4L |

fOr each l,_] = k E[ Xij eFrirj such that UiXij_ XijUj= Nij'
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