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Using the criterion that vertex u of a graph C is "more central" than vertex v if there are more 
vertices closer to u than to v, the security center and security centroid of a graph are defined. Several 
results, including the fact that the security center of a tree is the centroid, are presented. A simple 
algorithm to find the security center (centroid) of a tree is presented. The problem of finding the 
security center of C is shown reducible to a search over a single block of C. 
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1. Introduction 

Consider a finite, connected, undirected graph C with vertex set V and edge set E. If eEE , 
then L(e) will denote the length of edge e (L(e) > 0), and if P is a path, then L(P) = k eE P L(e) 
denotes the length of P. The distance between vertices u and v, denoted d(u, v), is the length 
of the shortest path from u to v. 

Several mathematical problems arise from different instances of the question of what is an 
optimal location for a facility in a graph. Hakimi [3]1 posed and considered two such optimizatiori' 
problems. The first problem is to determine a vertex UE V so as to minimize 

(1 ) 

where w(v) is a nonnegative weight given for each VEV. The second problem is to determine a 
vertex UEV so as to minimize 

D2(U) = max{w(v)d(u, v) :VEV}. (2) 

Interpretations of these problems [2] include minimizing transportation cost to a central facility 
for (1), and minimizing a maximum response time from an emergency facility, such as a hospital, 
for (2). While a more general treatment is presented in the third section, it is assumed for now 
that w(v) = 1 for every VEV. Until section four, it is assumed that each edge has length equal 
to one. 

For each UE V, let S u denote the family of distances from U to the other vertices in V. That 
is, Su = {d(u, v) :VEV - {u}}. Note that one allows repetitions in Suo For example , for the graph 
G1 of figure 1, SUI = {l, 1,2,2, 3} and Su, = {I, 1, 1, 1, 2} . 

Hakimi's first problem involves finding a vertex u for which the sum of all the elements of Su 
is a minimum. This sum will be called the distance of u in G, denoted d(u). The set of all vertices 
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FIGURE 1. Graph Ct. 

with minimum distance in G is called the centroid, and Zelinka [6] has shown that for trees this 
agrees with the "branch weight" definition of centroids (see sec. 2). The maximum value in Su 
will be called the eccentricity of u, denoted e(u), and Hakimi's second problem is to find a point 
of minimum eccentricity. The se.t of all vertices with minimum eccentricity is called the center. 

Another set of numbers will now be associated with u, and paralleling the previous definitions, 
the security centroid and security center will be defined for G. Consider two players X and Y 
(e .g., two companies or two countries), each of which is to locate a facility at a vertex of G (e.g., 
a store or a military base), say at vertices x and y(x ~ y). If d(v, x) < d(v, y) thenx will be said 
to have more "influence" over v than y does (customers usually shop at the nearer of two otherwise 
equal stores, a location is more easily protected by the closer of two bases). The player who 
must choose a location first desires to have more influence than his competitor over as many 
vertices as possible. 

If u and v are distinct vertices in V, let Vuv be the set of vertices which are closer to u than 
to v. That is, 

V uv = {s E V : d (s, u) < d (s, v)}. 

Note that u E Vuv. Let 1 S 1 denote the cardinality of a set S, and let f (u, v) = 1 Vuv 1 - 1 Vvu I. That 
is, f(u, v) equals the number of vertices closer to u than to v minus the number of vertices closer 
to v than to u. One is now interested in maximizing the functions 

f(u) = min{f(u, v) :VEV - u}, (3) 

g(u) = lv<v-uf(u, v). (4) 

Label the vertices of G as u., U 2, ••. , Up. One can form an array M with mij = f (Ui, Uj) 

(l ",:; i, j",:; p, i ~ j). Now f (Ui) is the smallest element in the ith row, and g(Ui) is the sum of 
the ith row. Examples of graphs and some of the rows from the corresponding arrays are given 
in figures 2, 3, and 4. 

If there is a point U such that f(u) ~ 1, then, since f(v, u) =- f(u, v) ",:; -l,f(v) ",:; -1 for 
every VEV - U (as in fig. 2), and so u is the unique maximizer of f. There may be several points 
u 1, . . ., Uk such that f( u;) = 0 for 1 ",:; i ",:; k (as in fig. 3); then these points are the maximizers off. 
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7 

~ UI U2 U 3 U4 U5 U6 U7 Us U9 UIO UII UI2 UI3 

UI - 3 3 3 3 3 3 1 1 1 1 4 4 

U 2 -3 - 0 0 0 0 0 -1 -1 -1 -3 3 3 

Us -'-1 1 1 1 1 1 1 - 0 0 -5 3 3 

UII -1 3 3 3 3 3 3 5 5 5 - 11 11 

UI 2 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -11 - 0 
-' 

FI GURE 2. Graph C, with f(utl > O. 

Finally (as in fig. 4) it is possible thatf(u) .s; -1 for every ueV. For this last case, "follow the leader 
is optimal," that is, the player who chooses a location after the other player has chosen has the 
advantage. In the first case, the first moving player has the advantage, while in the second case, 
the order of moving is immaterial. 

Let r(G), the radius of G, and s(G) be defined as follows. 

r(G) =minuEv (maxvEvd(u, v)) (5 ) 

s (G) = maxUEV (minvEv- uf( u, v)) (6) 

The center of G consists of all vertices u for which e (u) equals r( G). The security center of G is the 
set of all vertices u for which f(u) equals s(G) , and it will be denoted by C(G) . The security 
centroid of G, denoted C 1 (G), is the set of all vertices at whic h function g is a maximum. Referring 
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~ UI U2 U3 U4 Us U6 U7 Us U9 UIO Ull UI2 U13 

UI - -6 -11 -5 -5 -5 -3 -3 -3 -3 -3 -4 -I 

U2 6 - 1 3 3 1 2 2 1 1 1 0 3 

UI2 4 0 1 1 1 2 3 3 3 5 5 - 11 

UI3 1 -3 -2 -2 -2 -I -I -I -4 -3 -3 -11 -

FIGURE 3. Graph G3 with f(Ut )=f(u.t )=0. 

to figures 1,2,3, and 4, C(GI)=CI(~)={U2}, C(G2)={ud, CI (G2) = {UII}, C(~)={U2' ud, 
G (G3) = {UI2}, C (G4) = {UI' U4, Us, U6, U7, UII, U12, U13}, and CI (G4) = {U7}. 

2. Security Centers and Security Centroids of Trees 

It is reasonable to think that if U is closer to more vertices of G than v is, then U is "more 
central" than v. However, as for G4 (fig. 4), it is possible to find a set of vertices {u), U2, . . ., Uk} , 

for example vertices U4, U5, UI:J, and UI2 in G4, such that Ui is "more central" than Ui+ 1 (I ~ i~k-I) 
and Uk is "more central" than UI. Despite this, tile next theorem is a strong indication that the 
security center truly is a set of "central" vertices. 

Suppose G is a tree and veV. Label the components of G-v as B I , B 2 , ••• , Bt (where the 
degree of v is t). The weight at point v is the maximum cardinality of a Vi where Vi is the set of 
vertices in B i (I ~ i ~ t ). A vertex v is called a branch weight centroid vertex of the tree G if v has 
minimum weight, and the branch weight centroid of G consists of all such vertices. As noted 
previously, Zelinka has shown the branch weight centroid of a tree to be identical with its centroid. 

THEOREM I: If G is a tree, then the security center of G is the centroid. 
PROOF: Jordan [5] has shown that the centroid of a tree consists of one vertex or two adjacent 

vertices. 
First, suppose the centroid consists of one point, say v, with branches B I , B 2 , ••• , B t whose 

vertex sets satisfy IVd ~ 1V21 ~ ... ~lVtl· Let Ut be the vertex of Vt adjacent to v. If IVII > IVII 
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I~ UI U2 Ua U4 U5 U6 U7 Us U9 UIO UII UI 2 UI3 UI4 UI 5 

UI - 11 5 - 1 0 1 1 3 3 3 1 0 -1 5 11 

U4 1 6 11 - 1 1 1 3 3 3 0 -1 0 5 6 

U5 0 1 5 -1 - 1 0 3 3 3 -1 0 1 4 3 

UI 2 0 3 4 1 0 -1 0 3 3 3 1 - - 1 5 1 

UI 3 1 6 5 0 -1 0 1 3 3 3 1 1 - 11 6 

FI GU RE 4. Graph G. with f(u) "" - 1 for every vertex u. 

+ 1V21 + ... + IVI - II, the n u( has a weight bounded above by max (IVII + ... + IV( - II, IVI I 
- 1) ~ I VII _ Since the weight of u( is less than or equal to the weight I V( I of v, the centroid of G could 

not be {v}. Thus IVtl~IVII+ .. . +lVt - ll. Now let UEV j • Then f(v, u) ~ (~j = I .j ""' ilVji) 
-(IV;! -l) ~ 1. Thus f(v) ~ 1 and C(G)={ v} is the centroid. 

Next, suppose the centroid of G consists of two adjacent vertices, VI and V2. Let B I and B2 be 
the components of G - VI V2, with ViEB i and Vi the vertex set of Bi (i = 1,2). If I VII > I V21 the n the 
weight ofv2 is lVI I, and the weight ofv l is bounded above by max (1V21, IVtI-1)< IVII. Thus VI and 
V2 would have different weights, so the centroid of G could not be {VI, vt}. Similarly 1V21 ~ IVII. 
Thus I VI I = I V2 I -If UEVi - {Vi} (i = 1 or 2), thenf(u, v;} ~ -2, whic h impliesf( u) ~ -2. It is easy 
to see thatf(vtl=f(v2) =O, and so C(G)={ vJ, vd is the centroid. 

COROLLARY 1a: The security center of a tree consists of one point or two adjacent points . 

Graph G4 (fi g. 4) is an example of a graph for which the center , centroid , security center 
and securit y centroid are different s ubsets of V. Even for trees it is possible to have the 
center, centroid (security center) and securit y ce ntroid distinct, as in fi gure 5. Graph G6 

(fi g. 6) has a security centroid consisti ng of three independent points, namely those which are 
adjacent to the endpoints , when k ~ 14. 
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~ UI U2 U3 U4 Us U6 U7 Us U9 UIO UII 

U4 8 7 9 - 9 -1 0 1 2 3 4 

U6 7 4 5 1 5 - 1 2 3 4 5 

. 
U7 4 1 1 0 1 -1 - 3 4 5 6 

FIGURE 5. Graph G.with center {u,}, centroid {us} and security centroid {U4}' 

One can modify graph Gs by using n branches at v (instead of three), each of which is 
identical to a branc;h at v in G6• It can be shown that if k is sufficiently large, then the security 
centroid is precisely those n points which are adjacent to endpoints. One therefore has the 
following theorem. 

THEOREM 2: For any natural number n there is a tree Tn whose security centroid consists 
o/n independent vertices (in/act, n~ three o/which are on one path). 

v 

FIGURE 6 . Graph G6 with security centroid {x" x" X3}. 
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3. Cutpoints and Bridges in Graphs 

As Goldman has done for (2) in [2], it is convenient to put fun ction Jfrom (3) in a more general 
setting by assigning a nonnegative integer valued addend a(s) to each vertex s. One may think of 
a (s) in this case as a number of vertices of degree one, each of which is adjacent to s. If SfY"v 

then each of these vertices would also be closer to u than to v. Let a (s) = a (s) + 1, and let /* (u, v) 
be defined as follows. 

/*(u, v) = ( I Vuv I +~s,vvua(s)) _. ( I Vvu I +~s,v'vua(s)) 

(7) 

Note that UEVuv. One is now interested in maximizing the function 

J*(u) = min{f*(u, v) : VEV}. (8) 

MaximizingJis the same as maximizingJ* when a(s)'= 1 for every vertex s of V. The security 
center of (G, a) is the set of vertices for which J* is a maximum, and is denoted C * (G, a). 

Given a connected graph G, a cutpoint (bridge) is a vertex (edge) whose re moval disconnects G. 
A block B of G is a connected subgraph maximal with respect to the property that it has no cutpoints 
(and therefore if B has at least three vertices, B will also not have a bridge). In this section it will 
be shown how maximizing the function (8) can be reduced to an equivalent analogous problem for a 
single block of G. This will result in a simple algorithm for finding the security center (centroid) of 
a tree. 

Suppose one is given (G, a) where a (u) ~ 1 for every vertex u of G. Suppose s is a cutpoint, 
and let SI, S2, ... , Sk(k ~ 2) denote the vertex sets of the components of G-s. Let (T;=2",Si 

a(u), and assume the components are labeled in such a way that (T, ~ (T2 ~ ... ~ (TK' 
LEMMA 3: Ij(Tk < a(s) + I~:: a;, then C*(G, a) = {s}. 

PROOF: Assume 1 ~j ~ k-l and VESj. Now J*(s, v) ~ (a(s) + I~:: "i .. pj) -(Tj ~ 1. Therefore 

/*(s) ~ 1, implyingf* (u) ~ - 1 for every vertex u of G - s. Thus C* (G, a) = {s}. 

LEMMA 4: IJ Uk ~ a(s) +I7',:- t' (Ti, then C*(G, a) is contained in SkU {s} . 

PROOF: If /*(s) ~ 1 then the security center is {s}. Suppose /* (s) ~ O. Let S=Sk U {s}, 
and let S= Ur::ilS;. Since (Tk~a(s)+~1':I(Ti' if WES then/*(s, w) ~ 1. Thus there is a point 

XES" such thatf*(s, x) = /*(s) ~ O. 
Let WES. Since j*(w) ~ f*(w, x), to show that w~C* (G , a) it will suffice to show that/*(w, x) 

<f*(s, x) = /*(s). 
If VEVxs then VES", and so d(v, s) < d(v, w), implying VEVxw. Thus Vxs C: V,,'w. Suppose VEVwx . 

If viSk then clearly VEVsx , and if VES" then d(v, s) < d(v, w) < d(v, x), which implies VEVsx . 
Thus V wxC: Vox. Note also that WEV. x . It is claimed that at least one of the two inclusions V xs c: Vxw 
and VwxC: Vox must be proper. For, suppose Vwx = V. x. In particular, one has d(s, w) < d(s, x) 
since SEV,x. Hence d(s, x) ~ 2. Let s, SI, S2, ... , Sp, x be a shortest path from s to x, and note 
that p ~ 1. Now p cannot be even, else s p/ 2 would be in Vsx but not in V wx . Say p = 2j + 1. Now S j + I 

is in V xw but not V xs, and the claim is proved. 
Now we have 

591-673 0 - 76 - 2 

f*(w, x) = ~u.v wxa(u) - ~u.v xw a (u) 

< ~lI.v.xa(u)-~lI.vxsa(u) 

= /*(s, x) = f*(s). 
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Consequently f* (w) < f* (s), and w is not in the security center. 
THEOREM 5: If (Tk ~ a (s)+ L~:: (Tj, then C*(G,a)= C*(G-S, a') where S = U ~;; ISh a' (u) 

= a(u)ifuESk,and a' (s)= a(s)+ Lu.sa(U). 
PROOF: Let 5 = 5 k U {s}. By definition of a' (s), if x and yare any two vertices of 5 thenf* (x, y) 

in (G - 5, a') equals f* (x, y) in (G,a). In particular, iff* (s) ~ 1 in (G, a) thenf* (s) ~ 1 in (G-S, 
a'), and so C*(G,a) = C*(G-5, a') = {s}. 

Suppose f* (s) ~ 0 in (G, a). Now f* (s) = f* (s,y) in (G,a) for some y in 51;. Thus f* (s) has the 
same value in (G-5,a') as in (G,a). If xE5 k and weS, then (by the proof of Lemma 4)f*(w,x) < 
f*(s,x), so that f*(x,w) = - f*(w,x) > - f*(s,x) = f*(x,s). Thereforef* (x) in (G,a) equals min 
{f*(x, u): uE5},which isf*(x) in (G-5,a'). 

Thus no point of 5 is in C*(G,a) and every point of G-5 = 5 attains the same value off* in 
(G-S, a') as in (G,a). Consequently C*(G,a)= C*(G-S,a ') . 

Now suppose edge st is a bridge of G, and let Sand T be the vertex sets of the components of 
G-st with sE5 and tET. Let (T=Lu.sa(U), and let T=Luaa(U). Note that each of sand t is a cut· 
point or an endpoint. 

COROLLARY Sa: If (T=T then the security center of (G, a) is {s, t}. 
COROLLARY Sb: If (T>T, then no vertex ofT can be in the security center. 
COROLLARY Sc: If (T>T, then the security center of (G, a) is the security center of (G-T, a') 
with a'(u) = a(u)for UES - {s} and a'(s)= a(s) + LVETa(v). 
The following algorithm, Algorithm 5C, can be used to reduce the problem of finding C * (G, a) 

to the problem of finding C * (B, a') where B is a single block of G. Given any graph G one finds 
C * (G) by setting a (v) = 1 for every vertex v. 

STEP 1: If G has only one vertex, stop; that vertex is C* (G, a). 
STEP 2: If.G has no bridges, then go to Step 3. Otherwise, select any bridge st. Let Sand T 

denote the components of G-st with sE5 and tET. Compute (T=Lu.s a(u) and T=Lua a(u). If 
(T= T, stop; C * (G, a) = {s, t}. If (T =;6 T, then one can assume (T > T. Modify G by deleting T and reo 
placing a(s) by a(s) +T. Go to Step l. 

STEP 3. If G has no cutpoints, stop; G is a block. Otherwise, select any cut point s. Let 5 I, 
52, ... ,51; be the vertex sets of the components of G-s, let a; =Lu,s;a(u), and assume (T; ~ 

(Tk(l~i ~k -l). If (T1; < a(s)+L~'~: a;, stop; C*(G, a)={s}. Otherwise modify Gby deleting 

each 5; (1 's:: i ~ k - 1) and replacing a(s) by a(s) + l7·'; /(T;. Repeat Step 3. 

Note that if G is modified by Step 3, then 5 I; U {s} has at least three points and no bridges are 
created when one deletes each 5;. 

If G is a tree then one never enters Step 3. Steps 1 and 2 therefore comprise an algorithm for 
finding the security center of a tree. This algorithm is similar to one given in [1] by Goldman. 

4. Graphs With Edges of Arbitrary Lengths 

If s is a cutpoint of graph G, then it is easy to see that Lemma 3 holds independent of the 
lengths of the edges. If (Tk ~ a (s) + L~'~ll (T;, it is also clear that C* (G, a) is not changed if one 

alters the length of an edge in 5 (as defined in Theorem 5). 

THEOREM 6: If e is an edge of graph G which is not in the block that contains C *(G, a), then 
C*(G, a) will not be changed if the length of e is altered. 

COROLLARY 7a: 1fT is a tree, then the security center (the centroid) is determined independent 
of the lengths of the edges. 

COROLLARY 7b: Algorithm SC can be used to reduce the problem of finding C *(G, a) to the prob­
lem of finding C *(B, a'), where B is a single block ofG, without considering the lengths of the edges 
ofG. 

Given (G, a), where G is a block, it is necessary to consider the lengths of the edges of Gin 
order to determine C*(G, a). For example, consider graph G7 (fig 7) with a(ud=a (u2)=a(u3)=1 
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FIGURE 7. Graph G,. 

and L (U:I Ul )= L (U3U2)= 1. If L (U2Ul )= 1, then C * (c , a)= {Ul , U2, U:l } ; if L (u2ud:=2, then C * (c ,a )= 

{U3} . 
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