JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 79B, No. 3 & 4, July–December 1975

Properties of Neighboring Sequences in Stratifiable Spaces*

Ralph R. Sabella**

(May 12, 1975)

In T_0 -spaces metrizability can be characterized in terms of mutual convergence of "neighboring sequences." In this paper Nagata spaces are characterized in terms of a convergence property of neighboring sequences and more generally it is shown that in all stratifiable spaces, neighboring sequences satisfy a similar convergence property.

Key words: Coconvergent; contraconvergent; Nagata spaces; open neighborhood assignments; stratifiable spaces; U-linked sequences

An open neighborhood assignment (ONA) is defined in $[4]^1$ as a function

 $U: X \times Z \to \{N(x): x \in X\}$

such that $x \in U(x, n) \equiv U_n(x)$ where X is a topological space, Z is the set of natural numbers and N(x) is the collection of open neighborhoods of x. If U is an ONA then the sequence $\{x_n\}$ is U-linked to $\{y_n\}$ if $x_n \in U_n(y_n)$ for all n. Using the notation $Cp\{x_n\}$ for the set of cluster points of $\{x_n\}$ a space will be called *coconvergent* (contraconvergent) if $Cp\{x_n\} \subset Cp\{y_n\}$ ($Cp\{y_n\} \subset Cp\{x_n\}$) whenever $\{y_n\}$ is U-linked to $\{x_n\}$. If on X there is an ONA U satisfying some property P I shall say "X is P" or "U is P." Also, U will be said to be nested if $U_{n+1}(x) \subset U_n(x)$ for all x and n.

It was proved in [4]:

THEOREM 1: X is metrizable iff it is a coconvergent, contraconvergent T_0 -space.

Also, examples of a T_2 , coconvergent space and a T_2 , contraconvergent space, neither of which are metrizable were given in [4]. Coconvergence implies first countability whereas nonfirst countable contraconvergent spaces exist.

R. W. Heath in [3] proved:

THEOREM 2: A T₁-space X is a Nagata space (first countable and stratifiable) iff there is an ONA U on X such that (a) U is first countable and (b) for every $x \in X$ and open set R containing $x \in X$ there is an $n \in Z$ such that $U_n(x) \cap U_n(y)$ implies $y \in R$.

(Note: Condition (a) is implied by (b): If $x \in X$ and $R \in N(x)$ such that for all n there is a $y_n \in U_n(x) - R$, then $U_n(x) \cap U_n(y_n) \neq 0$. It follows from (b) there is a $y_k \in R$ for some k contradicting the way the y_n were chosen.)

PROPOSITION 3: A T₁-space X is a Nagata space iff it is first countable and contraconvergent.

PROOF: Let U be an ONA on X satisfying the conditions of Theorem 2. Without loss of generality we may take U to be nested. Let $\{y_n\}$ be U-linked to $\{x_n\}$ with $y \in Cp\{y_n\}$. Given an $R \in N(y)$ and $N \in Z$ there is an $n_1 > N$ such that $U_{n_1}(y) \subset R$. Also, since U is nested there is an $n_2 > n_1$ such that if x satisfies $U_{n_2}(x) \cap U_{n_2}(y) \neq 0$ then $x \in R$. Finally, there is a $k > n_2$ such

AMS Subject Classifications: Primary 54E35; Secondary 54D99.

^{*}AN invited paper. **Present address: California State University, Northridge, California 91324.

¹ Figures in brackets indicate the literature references at the end of this paper.

that $y_k \in U_{n_2}(y) \subset U_{n_1}(y)$. Since $\{y_n\}$ is U-linked to $\{x_n\}$, $y_k \in U_k(x_k) \cap U_{n_2}(y) \leq U_{n_2}(x_k) \cap U_{n_2}(y)$. It now follows from $k > N \in Cp\{x_n\}$ and that U is contraconvergent.

Conversely, without loss of generality it may be assumed there is an ONA U on X which is contraconvergent and first countable. If U does not satisfy the condition of Theorem 2, then for some x and $R \in N(x)$ there are sequences $\{x_n\}$ and $\{y_n\}$ such that $x_n \in U_n(x) \cap U_n(y_n)$ and $y_n \notin R$ for all n. It follows from the first countability and contraconvergence of U that $x \in Cp\{y_n\}$ which is a contradiction.

COROLLARY 4: A T₀-space is metrizable iff it is coconvergent and stratifiable.

Coconvergent spaces are those included in the class of spaces in which compact sets have countable local bases $(D_0$ -spaces) [5]. The set of all ordinals less than or equal to the first uncountable ordinal, with the order topology is an example of a D_0 -space which is not coconvergent. It was shown in [5] that spaces in which the stratifications of open sets satisfy a certain monotone condition, "coconvergent" can be replaced by " D_0 " in Corollary 4.

If X is stratifiable, I will use: R_n , $(X - F)_n$ and $[U_k(x)]_n$ to denote the nth layers of stratifications of the open sets R, X - F and $U_k(x)$ respectively and more generally, A^- for the closure of A. Without loss of generality I shall assume $R_n \subset R_{n+1}$ for any open R. It will be shown that if X is stratifiable that the ONA U defined by $U_n(x) = X - (X - x_n)^-$ satisfies a condition similar to that defining contraconvergent spaces. The ONA U will be referred to as the ONA associated with the given stratification.

DEFINITION 5: An ONA U on X satisfies property A if whenever $\{y_n\}$ is U-linked to $\{x_n\}$ and $y \in Cp\{y_n\}$ then for any N $\in Z$ there is a k > N such that $x_k \in U_N(y)$.

PROPOSITION 6: A T_1 -space is a Nagata space iff there is a first countable ONA, U on X satisfying property A.

PROOF: If X is a Nagata space, by Proposition 3 there is an ONA, U which is first countable and contraconvergent. If $\{y_n\}$ is U-linked to $\{x_n\}$ and $y \in Cp\{y_n\}$ then $y \in Cp\{x_n\}$ and it follows that U satisfies condition A.

Let U be a first countable ONA satisfying condition A. If $\{y_n\}$ is U-linked to $\{x_n\}$ with $y \in Cp\{y_n\}$ and if $N_1 \in Z$ and $R \in N(y)$ then there is an $N_2 > N_1$ and by property A a $k > N_2$ such that $x_k \in U_{N_2}(y) \subset R$ proving $y \in Cp\{x_n\}$ and that U is contraconvergent. By Proposition 3, X is a Nagata space.

PROPOSITION 7: Let X be a stratifiable space. Then the ONA U associated with a given stratification satisfies property A.

PROOF: It follows from $R_n \subset R_{n+1}$ for any open R that U is nested. If U does not satisfy property A, then there exist a $\{y_n\}$ U-linked to $\{x_n\}$, a $y \in Cp\{y_n\}$ and an $N \in Z$ such that for all k > N, $x_k \notin U_N(y)$. Hence $F \equiv \{x_k : k > N\}^- \subset X - U_N(y)$. For all $n \in Z$, $[U_N(y)]_n \subset (X - F)_n$. Also, for all k > N, $x_k \in F$ and for all $n \in Z$, $(X - F)_n \subset (X - x_k)_n$. Hence for all k > N and $n \in Z$, $U_n(x_k) \subset$ $X - (X - F)_n$. Since $y \in U_N(y)$, it follows $y \in [U_N(y)]_M$ for some M. Therefore there is an $r \in Z$ with $r > \max(N, M)$ such that $y_r \in [U_N(y)]_M$. On the other hand we have $y_r \in U_r(x_r) \subset U_M(x_r) \subset$ $X - (X - F)_m \subset X - [U_N(y)]_m$ which is a contradiction.

In the next proposition I use Ceder's result [2] that locally compact M_3 (= stratifiable) spaces are metrizable.

PROPOSITION 8: A locally compact space is metrizable iff it is contraconvergent and Hausdorff.

PROOF: Let U be a contraconvergent ONA on X and for each x let C(x) be a neighborhood of x whose closure is compact. Also for each x and n let $U_n'(x) = U_n(x) \cap C(x)$. Suppose $R \in N(x)$ and for all n there is a $y_n \in U_n'(x) - R$. Then there is a $y \in [C(x)]^- \cap Cp\{y_n\}$. It follows that y = x which is a contradiction. Hence U' is first countable and by Proposition 3 and Ceder's result, X is metrizable.

The converse is immediate from Theorem 1.

References

^[1] Borges, C. J. R., On stratifiable spaces, Pacific J. Math. 3, 175-186 (1966).

^[2] Ceder, J. G., Some generalizations of metric spaces, Pacific J. Math. 11, 105-125 (1961).

- [3] Heath, R. W., On open mappings and certain spaces satisfying the first countability axioms, Fund. Math. 57, 91-96 (1965).
 [4] Sabella, R. R., Convergence properties of neighboring sequences, Proc. Amer. Math. Soc. 38, 405-409 (1973).
 [5] Sabella, R. R., Spaces in which compact sets have countable local bases, Proc. Amer. Math. Soc. (to appear).

(Paper 79B3 &4-425)