A Note on the Metrizability of Spaces With Countably Based Closed Sets

Ralph R. Sabella

California State University, Northridge, California 91324

(January 14, 1975)

The main result of this note is a generalization of an earlier theorem on the metrizability of spaces with countably based closed sets. Use is made of some results related to co-convergent spaces which are spaces having countably based compact sets.

Key words: Co-convergent; contra-convergent; Nagata spaces; open neighborhood assignments; stratifiable spaces; U-linked sequences.

C. E. Aull in [1]¹ defines a D_1 -space as a topological space in which every closed set F has a countable local base $\{B_n(F)\}$: i.e., for each $n \in N$, the set of positive integers, $B_n(F)$ is an open set containing F; and if $F \subset R$, where R is open, then $B_k(F) \subset R$ for some $k \in N$.

An open neighborhood assignment (ONA) is defined in [2] as a function

$$U : X \times N \to \bigcup \{N(x) : x \in X\}$$

such that $x \in U(x,n) \equiv U_n(x)$ where X is a topological space and N(x) is the collection of open neighborhoods of x. If U is an ONA then the sequence $\{y_n\}$ is U-linked to $\{x_n\}$ if $y_n \in U_n(x_n)$ for all n. Using the notation $Cp\{x_n\}$ for the set of cluster points of $\{x_n\}$ we define a space to be coconvergent (contra-convergent) if $Cp\{x_n\} \subset Cp\{y_n\} \subset Cp\{x_n\}$) whenever $\{y_n\}$ is U-linked to $\{x_n\}$. If on X there is an ONA U having some property P we shall say "X is P" or "U is P." Finally for any $S \subset X$ and ONA U we have $U_n(S) \equiv \bigcup \{U_n(x) : x \in S\}$.

The following two theorems were proved in [2]:

THEOREM 1: X is metrizable iff it is a co-convergent, contra-convergent T_0 -space.

THEOREM 2: The following are equivalent on a space X:

(a) X is co-convergent.

(b) There exists an ONA U on X such that for any countably compact K and open R containing K, $U_n(K) \subset R$ for some $n \in N$.

AMS (MOS) Subject Classification (1970): Primary 54E35; Secondary 54D99.

¹Figures in brackets indicate the literature references at the end of this paper.

(c) There exists an ONA U on X such that for any convergent sequence $\{x_n\}$ with limit x_0 and open R containing $\{x_k : k = 0, 1, ...\}$, $U_n(\{x_k : k = 0, 1, ...\}) \subset R$ for some $n \in N$.

A characterization of a *natural-D*₁ space is as a space X on which there is an ONA U such that for every closed set F, $\{U_n(F)\}$ is a local base for F. We note that if X is T_2 and U is a natural- D_1 ONA then it is co-convergent.

We have an analogue of Theorem 2:

THEOREM 3: Let U be an ONA on X. Then the following are equivalent:

(a)U is natural-D₁.

(b) For any sequence $\{x_k\}$, $\{U_n(\Delta\{x_k\}) \text{ is a local base for } \Delta\{x_k\} \text{ where } \Delta\{x_k\} \equiv Cl\{x_n : n = 1, 2, ...\}$.

PROOF: Only (b) implies (a) requires any consideration. Suppose F is closed and is contained in an open R. If for each n there is a $z_n \in U_n(F) - R$ then there is a sequence $\{x_n\}$ in F with $\{z_n\}$ U-linked to $\{x_n\}$. But then $\Delta\{x_n\} \subset F$ and for some k, $U_k(\Delta\{x_n\}) \subset R$ implying the contradiction $z_k \notin R$.

The following result was proved in [3]:

THEOREM 4: If X has at most a finite number of isolated points it is compact and metrizable iff it is natural- D_1 and Hausdorff.

We shall generalize Theorem 4, by using Aull's result in [1] that every regular, D_1 -space is the union of a countably compact set and a set of isolated points.

THEOREM 5: X is compact and metrizable iff it is natural- D_1 and Hausdorff,

PROOF: We need only consider the sufficiency part of the proof, the necessary part being the same as for Theorem 4.

Let U be a natural- D_1 ONA on X. Without loss of generality we can assume U is nested. Furthermore $\{U_n(x)\}$ is a local base for each $x \in X$. X is regular, for if F is closed and $x \in F$ and if for all n there is a $z_n \in U_n(x) - U_n(F)$, then there is a sequence $\{y_n\}$ in F such that $\{z_n\}$ is U-linked to $\{y_n\}$. It follows that $\{z_n\}$ converges to x. Hence there is an M > 0 such that for all k > M, $z_k \in X - F$. Since U is natural- D_1 there is an n > M such that $U_n(F) \subset X - \Delta\{z_k\}_{k=M}^{*}$, which implies $U_n(y_n) \subset X - \Delta\{z_k\}_{k=M}^{*}$, contradicting $z_n \in U_n(y_n)$.

Let $X = C \cup I$ where C is countably compact and I is a set of isolated points of X. We can assume $C \cap I = 0$. Again without loss of generality we can let $U_n(x) = \{x\}$ for all $x \in I$ and all n. Let $\{y_n\}$ be U-linked to $\{x_n\}$ and $y \in Cp\{y_n\}$. Then there is a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ converging to y. If $x_{n_k} \in I$ for infinitely many k, then $\{x_{n_k}\}$ clusters at y. If $\{x_{n_k}\} \in C$ for infinitely many k, $\{x_{n_k}\}$ clusters at some $x \in C$, implying by the co-convergence of U that x = y. Hence U is contra-convergent and by Theorem 1, X is metrizable.

References

[1] Aull, C. E., Closed Set Countability Axioms, Indag. Math. 28, 311-316 (1966).

[2] Sabella, R. R., Convergence Properties of Neighboring Sequences, Proc. Amer. Math. Soc. 38, 405-409 (1973).

- [3] Sabella, R. R., Metrizability of Spaces with Countably Based Closed Sets, Port. Math. 29, 1-3 (1970).
- [4] Sabella, R. R., Spaces in Which Compact Sets have Countable Local Bases, Proc. Amer. Math. Soc. (to appear).

(Paper 79B1&2-422)