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This paper represents new proofs for some known network flow results. First. maximal network flows
are expressed as matroids, and then Gale’s characterization of matroids is used to prove the existence of
various lexicographic network flows. Second, an independence property of maximum flows is proved and this

property is related to an independence property of Brualdi and Scrimger.
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1. Network Flows as Matroids

This section shows how a network flow may be regarded as a matroid and then shows how
Gale’s characterization of matroids [8]' can be used to prove the existence of some lexicographic
network flows [7.9].

A matroid on a finite set E can be defined [3] as a family F of subsets of set E with the
property that
(1)if A" C A and 4 € F, then A" € F, and
(2) for any subset E' C E, all maximal members of F that are contained in £’ have the same
cardinality.

This definition is the most appropriate for the purpose of this paper. A survey of other
definitions appears in [2].

Let N = (X,4) be a finite, directed network with node set X and arc set 4. L.et S C X
denote the source nodes, and let 7 C X denote the sink nodes, where S N7 = ¢. Our interest is
in integer valued flows? that are feasible relative to the given integer arc capacities. It is
technically convenient to assume that each arc in 4 has a capacity equal to one and to
compensate by assuming that more than one arc may exist between two nodes. (The reader is
asked to make the required translations.) Note that with these conventions each flow
corresponds to a unique set of arcs (those that carry flow) so that one can speak of maximal
flows.

{IMSMOS) Subject Classification: 05835, 0525
' Figures in brackets indicate the literature references at the end of this paper.
2Once the relationships between networks with integer flows and matroids are understood. the theory can be extended to polymatroids [4] and networks with
noninteger capacities and flows. A polymatroid P is a compact nonempty subset of R, (the positive part of real |E| space) such that
(@) 0<21"<x'eP=>2"€P.
(h) for every tlER;(‘\i'l\ maximal xeP such that x = a has the same sum 2y ,x;.

Here maximal x means there is no v = v.x' # x. having the properties of x, and a < b means a; < b; for all j.
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et E ¢be the set of all arcs of the form (x,y), x € S, and let E;be the set of all arcs of the
form (x,y), v € T. Let Fgbe the set of all subsets of E ¢that carry flow in some feasible integer
flow in network N. Similarly, let F; be the set of all subsets of E;that carry flow in some
feasible integer flow in network N.

THEOREM 1: The set ¥q is a matroid on set Eq.

PROOF: To see that condition (1) in the definition of a matroid is satisfied, suppose there is
a feasible flow in network N that uses to capacity arcs 4 C E4 Then for any subset 4" C A, we
can construct a feasible flow simply by deleting the units of flow emanating from the arcs in A —
A'. Hence, condition (1) is satisfied.

Let E'sbe any subset of E . Consider all the maximal members of the set of integer feasibl~
flows in network N that use only source arcs in set Es. Suppose not all these maximal flows
have the same value. Then, disregard the arcs in set E5— E’;, and try to increase the smallest
valued maximal flow in the network by using Ford and Fulkerson’s flow augmenting algorithm
[6], p. 17. It is known that this algorithm must increase the flow on this restricted network (arcs
Es — E’s are avoided) by an integer amount since the current flow is not maximum on this
restricted network. Furthermore, the algorithm does not decrease the flow on any arc adjacent
to a source node. Thus all maximal integer flows that use set E’s have the same cardinality.
Q.E.D.

THEOREM 2: The set ¥ is a matroid on set E.

The proof is similar to the proof of Theorem 1.

Let F be any set of subsets of a totally ordered set E. A member A € F is said to be optimal
if for every set B € F, there exists a univalent mapping f from B to A4 such that f(b) = b for all b
in B. Note that set A must be a maximum cardinality member of F.

For example, if there is a preference on the order in which the source arcs are to be used,
then an optimal flow is a flow that uses the source arcs in the order of greatest preference, i.e.,
the most preferred source arc if possible, then the second most preferred source arc if possible,
etc.

Clearly, not all sets of subsets have an optimal member. For example, a student has a
choice between a grade of 4 in a single course or a grade of B in each of two courses. The set
{A,BB} possesses no optimal member for the total ordering 4 > B.

THEOREM 3: (Gale) If F is a matroid, then F has an optimal member .

The proof of this theorem can be found in [8], p. 178.

THEOREM 4: If the source arcs in a network are ordered , then there exists a maximum flow
that uses the source arcs optimally .

The proof is immediate from Theorems 1 and 3. A constructive proof for Theorem 4 that
uses only network flow arguments appears in [9].

A dynamic network is a network whose arcs not only have a capacity but also a traverse
time, and flow units travel through time in a dynamic network. An earliest departure dynamic
flow for p time periods is defined as a flow from the sources to the sinks in a dynamic network
in which V/;is maximised for each i = 0, 1,...,p, where V'; denotes the number of flow units that
can leave the sources in the first { time periods. A latest departure dynamic flow for p time
periods can be defined as a flow from the sources to the sinks in a dynamic network in which v;
is maximised for i = 0, 1, ....p where v, denotes the number of flow units leaving the sources
during the last ¢ time periods, i.e., from time p — i to time p. Similarly, an earliest arrival
dynamic flow and a latest arrival dynamic flow can be defined. By definition, each of these four
types of flows is a maximum flow.

A dynamic network flow for p time periods is equivalent to a flow in a time-expanded, non-
dynamic replica N(p) of the original dynamic network N. In the time expanded network N(p),
each node x in network N is represented by p + 1 nodes x(0),x(1),...,x(p), that represent node x
at each time period. The arcs are replicated similarly. See [6], p. 144, for a detailed description
of how network N(p) can be constructed from network N. Theorem 4 can be applied to network
N(p) to show the existence of a maximum flow that uses the source (sink) arcs optimally.
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THEOREM 5: There exists an earliest departure (arrival) dynamic flow in network N for p
time periods , for p = 0,1,....

PROOF: Form an ordering of all the source (sink) arcs in network N(p) as follows: all source
(sink) arcs originating from a source (sink) node at time i are in the ith place in the order. By
Theorem 4, there exists an optimal, maximal flow on network N(p), and this flow corresponds to
an earliest departure (arrival) dynamic flow in the network N. Q.E.D.

A proof for the existence of this flow using network flow techniques first appeared in [7].

THEOREM 6: There exists a latest departure (arrival)dynamic flow in network N.

The proof is similar to the proof for Theorem 5. A proof for this theorem that uses only
network flow arguments can be found in [9].

2. An Independence Property of Network Flows

This section presents another proof for the independence property of source arcs and sink
arcs [9] and shows how this property is related to an independence theorem of Brualdi and
Scrimger [1].

THEOREM 7: (Independence of Source Arcs and Sink Arcs).

Let ¢and 6 be any two maximal integer flows on a network N = (X,A). Let S, C Eg and S,
C Eg denote the source arcs used by flows ¢and #respectively. Similarly . let T ,C Ex and T, C
Er denote the sink arcs used by flows ¢ and 6 respectively. Then, there exists a flow 7y such
that S, = S 4and T, = T,.

PROOF: Let Z C A4 denote any minimum cut separating the sources from the sinks in
network N. We know from the Max Flow-Min Cut Theorem [6], p. 11, that all maximal flows
saturate the arcs of cut Z. Hence maximal flows ¢ and 0 saturate cut Z.

Now construct a flow that is identical to flow ¢ on all the arcs on the “source side’ of cut
Z. This flow, of course, saturates cut Z. Then let the flow proceed from cut Z to the sinks along
the arcs chosen by flow 6. Clearly, such a construction is possible since cut Z is saturated by
flows ¢ and 6. The resulting flow satisfies the conditions of the theorem. Q.E.D.

Theorem 7 is called an independence theorem for maximal flows because it demonstrates
the independence between the source arcs used by the flow and the sink arcs used by the flow.
A constructive proof for Theorem 7 first appeared in [9].

A similar independence theorem appears in [1], p. 253, for matchings. We shall consider
only the finite case of this theorem: given two finite sets S and 7, associate with each s € § a
subset r(s) C 7. A matching is defined as any univalent mapping ¢ of a subset Sy of S into 7T
such that if s € S,., then ¢(s) C r(s). A matching ¢ is said to be maximal if there is no other
matching 6 such that S, C S,. Define T, = &(S,).

THEOREM 8: (Brualdi and Scrimger). Let ¢ and 6 be any two maximal matchings between
finite sets S and T. Then there exists a maximal matching ysuch that S, =S ;and T, = T,.

The proof in [1] uses set theoretic arguments. For the finite case, Theorem 8 is clearly a
special case of Theorem 7 for a network N with only source nodes and sink nodes.

Other examples of matching theory results proved by network flow methods can be found in
[5].

For dynamic flows, Theorem 7, together with Theorems 5 and 6, asserts the existence of a
maximal dynamic flow that has both a latest departure schedule and an earliest arrival schedule
and also the existence of a maximal dynamic flow that has both an earliest departure schedule
and a latest arrival schedule.
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