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Thi ~ paper r (' prese nt s new proo f s for some known Il( · t work flow res ult s. Firs t. ma xim a l networ k fl ows 

are f' xprf' s!".cd as matroid s. and thell Ca lc's c haracterization of matroid s is u sed In pro ve the ('xi~ t ('r)(T of 

variou s lcxicographic network fl o ws. Second , a n independenc e prope rl y of m axi mum flow s is proved and thi s 

prop e rt y is r (' la ted to a n ind e pe nd e nce property of Rru a ldi and Scrimge r. 
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1. Network Flows as Matroids 

This section shows how a ne tw ork fl ow ma y be rega rd ed as a ma troid and the n shows how 
Gale's charac te rization of matroid s [8]1 ca n bp used to prove the exis tence of so me le xicogra phic 
ne twork fl ows [7,9]. 

A matr oid on a finit e se t E ca n be d e fin e d [3] as a family F of subse ts of set E with the 
property tha t 
(1) if A ' C. A and A E F , the n A ' E F , and 
(2) for any subset E' c.. E, all ma ximal m embe rs of F that are co ntained In t; ' have th e sa me 
cardinality. 

This definition IS the most app ropriate for the purpose of thi s paper. A s urvey of other 
definitions appears in [2] . 

Let N == (X,A) be a finit e, direc ted ne twork with nod e set X and arc set A. Le t 5 c.. X 
denote th e source nod es, and let T c.. X d e note the s ink nod es, whe re 5 n T == $. Our inte res t is 
in integer valued flows 2 that are feasibl e re lative to the given integer arc ca pac ities. It is 
technically convenient to assume that each arc in A has a capac ity equal to one and to 
compensate by assuming that more than one a rc may e xi s t be tween two nod es. (The read e r is 
asked to make th e required tran s la ti ons.) Note that with these conv e ntion s eac h fl ow 
correspo nd s to a uniqu e se t of arcs (t hose that ca rry flow ) so that one can s peak o f maximal 
flows. 

·IM,r.,'( MOS )SlIhjt'rI U(lssijin/(iulI: OS lns, OS(::lS 

1 Fj1! u re~ in I.r 'I(" "', 'I:' Indil"all- Ill!" lilt'fa l un' fl,ft'n' llIT" al tilt' 1'111 1 HI' Ihi~ paper . 

"! On (' t' Iht , rt' l a l ill l l.~hi p :<- 11I'1""t'li 111'1\\1\1"1.. ... \\il l1 inlq!t'r fli 1\\ f'. and mat n li d s are Undl'rS lolld . the Iheor v ('all he ('xll- n fll'd 10 pol y rn a lfllid f'. 1411:1. lu l Ilt'twllrks with 
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Let l:'s be the set of all arcs of the form (x,y), XES, and let t.'T be the set of all arcs of the 
form (x.y). YET Let Fsbe the set of all subset s of Esthat ca rry flow in so me feasible integer 
flow in network N. Similarly, let FT be the set of all subsets of ET that ca rry flow in some 
feasible integer flow in network N. 

Tm~OREM 1: The set Fs is a matroid on set Es. 
PROOF: To see that condition (1) in the definition of a matroid is satisfied, suppose there is 

a feasible flow in n e twork N that uses to ca pac ity arcs A t::. Es. Then for any subset A' t::. A, we 
ca n cons truct a feasible flow simply by dele ting the unit s of flow emanating from the arcs in A -

A'. He nce, condition (1) is satisfied. 
Let E's be any s ubset of E s. Consider all the maximal members of th e se t of integer fe asibl' 

flow s in network N that use only source arcs in set E's. Suppose not a ll these maximal flows 
have the same value. The n , disregard the arcs in set Es - E's, and try to increase the smallest 
valued maximal flow in the network by using Ford and Fulkerson's flow augmenting algorithm 
[6], p. 17 . It is known that this algorithm mu st increase the flow on this restricted ne t work (a rcs 
E s - E's are avoided) by an integer amount since the current flow is not maximum on this 
restricte d network. Furthermore, the algorithm does not decrease the flow on any arc adjacent 
to a source nod e . Thus all maximal intege r flows that use set E's have the same cardinality. 
Q.E.D. 

THI::OREM 2: Th e set FT is a matroid on set ET. 
The proof is si milar to th e proof of Theorem 1. 
Let F be any set of subsets of a totally ordered set E. A member A E F is said to be optimal 

if for e very set B E F, th ere exists a univale nt mapping f from B to A such that f( b) 3 b for all b 
in B . Note that set A must be a maximum cardinality member of F. 

For example, if there is a pre ference on the order in which the source arcs are to be used, 
then an optimal flow is a flow that uses the source arcs in the order of greatest preference, i.e. , 
the most preferred source arc if possible, then the second most preferred source arc if possible, 
etc. 

Clearly, not all sets of subsets have an optimal member. For example, a student has a 
choice between a grade of A in a single course or a grade of B in each of two courses. The set 
{A, BB} possesses no optimal member for the total ordering A > B . 

THEOREM 3: (Gale) IfF is a matroid, then F has an optimal member. 
The proof of this theorem can be found in [8], p. 178. 
THEOREM 4: If th e source arcs in a network are ordered, then there exists a maximum flow 

that uses th e source arcs optimally. 

Th e proof is imm ediate from Theorems 1 and 3. A constructive proof for Theorem 4 that 
uses only network flow arguments appears in [9] . 

A dynamic ne twork is a network whose arcs not only have a capac ity but also a trave rse 
time, and flow units travel through time in a dynamic network. An ea rlies t departure dy namic 
flow for p time period s is d efin ed as a flow from the sources to the sinks in a dynamic ne twork 
in whic h Viis maximised for each i = 0, 1, ... ,p, where Vi denotes the number of fl ow unit s that 
ca n leave the so urces in the first i time periods. A latest departure dynamic flow for p time 
period s can be define d as a flow from the sources to the sinks in a dynamic network in which Vi 

is maximised for i = 0, 1, ... ,p where V i denotes the number of flow unit s leaving the sources 
during the last i tim e periods , i.e ., from time p - i to time p. Similarly, an ea rliest arrival 
dynamic flow and a latest arrival dynamic flow can be define d . By de finition , each of th ese four 
types of flows is a maximum flow . 

A dynamic ne twork flow for p time periods is equivalent to a flow in a time·e xpanded , non· 
dynamic replica N(P) of th e original dynamic network N. In the time expanded network N(P), 

each node x in ne twork N is re presented by p + 1 nodes x(O),x(J), ... ,x(P), that represent node x 
a t each tim e pe riod. The arcs are re plica ted similarly. See [6], p. 144, for a detailed desc ription 
of how ne twork N(P) ca n be cons tru cted from ne twork N. Theorem 4 can be applied to network 
N(p) to show the ex iste nce of a maximum flow that uses the source (sink) arcs optimally . 
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THEOREM 5: Th ere exisls an em·liesl depanure (a rri va l) dy namic flow in n e lH'ork N for p 
lim e periods ,for p = 0, 1, .... 

PROOF: Form an ordering of all the source (s ink) a rcs in ne twork N(p) as foll o ws: all source 
(s ink) arcs originating from a source (s ink ) node at time i are in th e ith place in th e order. By 
Theorem 4, there ex is ts an optimal , maxima l fl ow on network N(P) , and thi s fl ow cor responds to 
an earliest departure (ar rival) dynamic fl ow in the network N. Q.E.D. 

A proof for the exi s tence of thi s fl ow using network flow tec hniques firs t appeare d in [7]. 
THEOR EM 6: Th ere exisls a lalesl d eparlure (arrival) d ynamic f lo w in n elwork N. 
The proof is sim ilar to the proof for Theorem 5 . A proof for thi s theo re m that uses on ly 

network flow argum e nts ca n be found in [9]. 

2. An Independence Property of Network Flows 

This sec ti on prese nts a noth e r proof for th e independe nce property of so urce arcs and s ink 
arcs [9] and show s how thi s prope rty is re lated to an ind e pe ndcnce th eorem of Brualdi and 
Scri mger [1]. 

TIIEORD1 7: (Inde pend e nce of So urce Arcs a nd S ink Arcs) . 
L e i (b and (J be any Iwo maximal il/l eger /lows on a n e lH'a rk N = (X,A) . L ei S '" ~ Es and So 

~ Es den o le Ih e sou rce arcs used by}]oH's ¢> and fJ respec lil 'e ly. Sill/ilarly, le i T", <:;; ET and T 0 ~ 
ET d e nol e th e sink arcs used by Jlaws ¢> and fI resp ec lively. Th en. Ih e re exiSIS a }]O\\' y sllch 

Ihal Sy = Sq,a nd Ty = To. 
PHOOF: Let Z <:;; A d e note a ny minimum cut separating the so urces fr om the s ink s in 

network N. We know from th e Max Flo w·Min C ut Theore m [6], p . 11 , that all maximal flow s 
saturate the a rcs of c ut Z. He nce maxim a l fl o ws cJ> and (J saturate c ut Z . 

Now construct a flow that is id en tica l to fl o w q) on a ll th e a rcs on th e "source sid e" of cu t 
Z . Thi s fl ow, of course, sa tura tes c ut Z . The n le t th e flow proceed from cut Z to the s ink s a long 
th e arcs c hosen by flow (J. C lea rly , such a co ns truc tion is possible s ince c ut Z is sa turated by 
flow s ¢ and e. The resulting fl ow sa ti s fi es th e co nditions of the theorem. Q.E.D. 

Theorem 7 is call ed an ind epe nd e nce th eo rem for m ax ima l fl ows because it demonstrates 
the inde pe nd e nce be t ween th e source a rcs used by the flow and the s ink a rcs used by the fl ow. 
A constructive proof for Theorem 7 firs t appeared in [9]. 

A si milar ind epe nd e nce theorem appears in [1], p. 253, for ma tc hings. We shall cons id e r 
only the finite case of thi s theore m: given two finite set s 5 and T, associate with each s E 5 a 
s ubse t res) ~ 1'. A matching is define d as any univale nt mapping cJ> of a s ubse t 5q, of S into T 

such that if s E 5q" th e n cJ>(s) ~ res). A matching cJ> is said to be maxim al if the re is no othcr 
matc hing e such that 5q, C 50' Defin e Tq, = ¢(Sq,). 

THEOREM 8: (Brualdi and Scr imge r). L e i ¢> and fJ be any Iwa maximal malchings b e twe en 

finile sels Sand T. Then th ere exis ts a maximal matching ysuch th a I Sy = S",and Ty = To. 
The proof in [1] uses set th eo re ti c a rgume nts. For the finit e case, Theorem 8 is clearly a 

special case of Theorem 7 for a network N with only sou rce nodes and sin k nodes . 
Other examples of matching theory result s proved by network flow me thods can be found in 

[5]. 
For dynamic flow s, Theorem 7, toge th er with Theorems 5 and 6, asserts the ex is tence of a 

maximal dynamic flow that has both a la test departure schedule and an earliest arriv a l sched ule 
and also th e e xis te nce of a maximal dynamic flo w that has both an earliest d e parture schedule 
and a latest arrival schedule. 

61 



3. References 

[II Brua ldi . R. A. and Snimg'>r. F:. B .. F:'Xchange Systems. Mat c hings a nd Tra nsve rsa ls. J. Combinatorial Theory 5. 244· 

2S7 ( 1968 ). 
[21 Bruter. C. P .. Vue d'en se mble s ur la Theorie de s Matroides. Bull. So(". Math .. France. Me moire 17. 48 pages (1969). 

[31 F:dmonns. J .• Minimum Partition of a Matro id into Ind ependent Subsets. J. R('s . Nat. Bur. Sta nn. Il ' .S.). 69B. 67·72 

(1965). 
[41 F:dmonds. 1.. S uhmodular Fun ction s. Matroid s. and Certain Polyhedra. Proc. of the Calgary Co mbinatorial 

Conference. August 1969. Gordon and Breach. New York. pp. 69·87 (1970). 
[51 F:dmonds. J. and Fulkerson. D. R .. Transversals and Matroid Partitions. J. Res . Nat. Bur. Stand. (t. S. ). 698. 147· 

IS.l( 1965). 
[61 Ford. L. R. and Fulkerson. n. R .. Flow s in Networks , Princeton University Press. 1962. 

[71 Gale. D .. Transient Flows in Networks. Michigan Math . J. 6 , 59·63 (1%9). 
[81 Gale. D .. Optimal Assignments in an Ordered Se t: An App lication of Matroid Theory. J. Comhinatorial Theory 4. 

176·180 (1968). 

[91 Minieka. E.. Vlaximal. I. px icographic a nd Dynami c Network Flows. ORSA. Vo l. 20. No.6. 1162- 1170 (1972). 

(Paper 79B1&2- 421). 

62 


	jresv79Bn1-2p_59
	jresv79Bn1-2p_60
	jresv79Bn1-2p_61
	jresv79Bn1-2p_62

